
This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-09-15646
PREPRINT

Neural Network Based
Intrusion Detection
System for Critical
Infrastructures

2009 International Joint Conference on
Neural Networks

Ondrej Linda
Todd Vollmer
Milos Manic

July 2009

�
Abstract— Resiliency and security in control systems such as

SCADA and Nuclear plant’s in today’s world of hackers and
malware are a relevant concern. Computer systems used within
critical infrastructures to control physical functions are not
immune to the threat of cyber attacks and may be potentially
vulnerable. Tailoring an intrusion detection system to the
specifics of critical infrastructures can significantly improve the
security of such systems. The IDS-NNM – Intrusion Detection
System using Neural Network based Modeling, is presented in
this paper. The main contributions of this work are: 1) the use
and analyses of real network data (data recorded from an
existing critical infrastructure); 2) the development of a specific
window based feature extraction technique; 3) the construction of
training dataset using randomly generated intrusion vectors; 4)
the use of a combination of two neural network learning
algorithms – the Error-Back Propagation and Levenberg-
Marquardt, for normal behavior modeling. The presented
algorithm was evaluated on previously unseen network data. The
IDS-NNM algorithm proved to be capable of capturing all
intrusion attempts presented in the network communication
while not generating any false alerts.

Index Terms— Anomaly Intrusion Detection System, Neural
Network, Control System

I. INTRODUCTION

RITICAL infrastructure control systems are often
composed of interconnected computer-based systems

exchanging crucial information via the computer network.
These critical infrastructures, which are the focus of increased
security, can be found in systems such as SCADA or nuclear
plants [1], [2]. Compromising such a system with intrusion
attacks can lead not only to high financial loses but, more
importantly, to the endangerment of public safety. The danger
is even higher considering that critical infrastructures are not
immune to these threats and that they may be potentially more
vulnerable than common information technology systems.
Hence intrusion protection for critical infrastructures is an
obvious need.

Having a system performing predefined legal tasks, an
intrusion can be defined as anything that differs from the
allowed operations and was in most cases generated with the
intention of compromising or misusing the information
system. Intrusion detection system (IDS) aims at detecting and
tracing such an inappropriate, incorrect, illegal or anomalous
activity within the computer network.

The idea of intrusion detection goes back to 1980 and an
early intrusion detection model was proposed in 1987 by
Dennning [3], [4]. In general there are two kinds of IDS;
anomaly detection and signature based detection systems [5].

A database of known and labeled intrusion instances is
needed in order for the signature based IDS to work correctly.
[5]-[8]. Each instance belongs either to a normal or to an
intrusion class. The system is very powerful in recognizing
intrusion attacks that match previously seen signatures. The
main drawback of a signature based IDS is that dynamically
changing intrusion attacks with previously unseen signatures
will deceive the system and generate high number of false
negatives.

An anomaly IDS seeks deviations from the learned model
of normal behavior [9], [11]. The system assumes very little
about the features of the future intrusion instances. It builds a
representative model exclusively based on the previously
collected normal behavior. The system is capable of detecting
novel and dynamically changing intrusion instances, when
these are distinctively different from the model of normal
behavior. Unfortunately, any normal acceptable behavior not
included in the training set will not match the model and will
generate a false positive. The anomaly intrusion detection
approach is adopted in this work.

In this paper a specific window based attribute extraction
technique is derived from the analyses of real network data
recorded in an existing critical infrastructure. Extracted
window based feature vectors capture accurately the trends
and the time series nature of the packet stream. A specific
combination of two neural network learning algorithms, the
Error Back-Propagation and the Levenberg-Marquardt
algorithm, is used to train an artificial neural network to model
the boundaries of the clusters of recorded normal behavior
[12]-[14]. It is shown that the training dataset, consisting of a
combination of recorded normal instances and artificially
generated intrusion instances, successfully guides the neural
network towards learning the complex and irregular cluster
boundary in a multidimensional space. The performance of the
system is tested on unseen network data containing various
intrusion attacks.
 The rest of the paper is organized as follows. The network
communication within a critical infrastructure is analyzed in
section II. Section III gives a description of the extracted
window based feature vector. Section IV introduces the IDS-
NNM algorithm. Section V presents the achieved
experimental results followed by the conclusion given in
section VI.

Neural Network Based Intrusion Detection
System for Critical Infrastructures

Ondrej Linda, Todd Vollmer, Milos Manic, Member, IEEE

C

II. NETWORK DATA ACQUISITION AND ANALYSES

One of the main contributions of this paper is the use and
analyses of real network data recorded from an existing
infrastructure. The collected data consists of representative
samples of normal network behavior, actual intrusion sets as
well as data acquired from intrusion attempts. This section
describes the data acquisition setup and provides an analysis
of the information directly obtainable from packet headers.

A. Network Data Acquisition
Critical infrastructure control systems may consist of

interconnected Programmable Logic Controls (PLC) hardware
units [15]. An Allen Bradley PLC 5 controller attached to an
Ethernet network was used as the testbed for the data
acquisition [16]. The PLC controller was connected to a
control PC station through an Ethernet hub. The hub is an
entry point into the network for data acquisition and intrusion
generation. Through this hub the simulated intrusion attempts
were generated and the network behavior was recorded. The
PLC unit was responsible for controlling valves in a fluid flow
structure system. The intrusion attempts were generated using
software tools Nmap, Nessus, and MetaSploit [17]-[19]. A
diagram of the data acquisition system is shown in Fig. 1.

 While the intrusions were artificially generated, they
represented a valid estimation of the actual real intrusion
attempts that might be experienced by the critical
infrastructure. However only confronting the proposed
algorithm with these real intrusions can prove its performance
and it is a subject of future research and experiments.

B. Network Data Analysis
The packet header is an important source of information

describing the network traffic. Attributes from different
network layers contain information about the origin of the
packet, its target, purpose and function. Examples of attributes
extracted from the collected data are: the frame number, the
time of recording, the time interval from the previous packet,
the sequence number, the acknowledgement number, the
protocol type, the window size, data length, the flags code, the
source address, or the destination address.

The analyses of the recorded network data showed very
regular and stationary patterns of communication. Control and
monitoring information was exchanged between the PLC and

(a)

(b)

Fig. 3. Plot of the window size attribute as a function of the packet frame
number during normal communication (a) and during an intrusion (b).

Fig. 1. Network data acquisition setup. A PLC is connected through a hub to
the control PC station using an Ethernet network.

(a)

(b)

Fig. 2. Plot of the time of recording attribute as a function of the packet frame
number during normal communication (a) and during an intrusion (b).

the control PC at almost a constant rate with very little
deviation. Examples of the regular communication pattern are
shown in Fig. 2(a) and Fig. 3(a). From Fig. 2(a) the constant
speed of the communication is apparent. In Fig. 3(a), two
separate streams of packets from the PLC and the control PC
can be clearly identified.

Further analysis reveals the clear visibility of recorded
intrusion attempts. The simulated intrusion attempts as well as
the response of the PLC to these attacks are significantly
different from the regular pattern of the normal
communication.

Fig. 2(b) and Fig. 3(b) show examples of network
communication containing intrusion attacks. Plotting the time
of recording and the window size attributes as a functions of
the frame number show irregularities that do not match with
the regular stream of normal communication. Thus the
intrusion attempt is clearly identified. In Fig. 2(b) and 3(b) the
intrusion attempt is circled. However, it is important to note
that other intrusion examples were not so significantly
different from the normal behavior.

It can be observed that the packet headers carry sufficient
information to differentiate the normal behavior from an
intrusion attempt.

III. WINDOW BASED FEATURE EXTRACTION

 As demonstrated in Fig. 2 and Fig. 3, the stream of packets
can be described as a time series. Recurrent artificial neural
networks are suitable for time-series prediction based intrusion
detection [10], [16]. However, a specific window based
attribute extraction approach was adopted in this paper.
 The time series nature of the packet stream is captured in a
single description vector by calculating the statistical features
of a limited number of neighboring packets. A window of
specified length � is being shifted over the packet stream. At
each position, a window based feature vector jr

�
is computed

from all the packets iv
� currently in the window.

Consequently, the window is being shifted by one packet
forward in the time-sequential ordering of packets. The
process of window based feature extraction is illustrated in
Fig. 4. In the figure, the new window based feature vector jr

�

is computed based on the attribute extraction from packets
12 ... �� ki vv

�� located in the window.
The list of extracted window based attributes is as follows:

the number of IP addresses in the window, the maximum and
minimum number of packets per single IP, the average
interval between packets, the time length of the whole

window, the data speed, the number of protocols in the
window, the maximum and minimum number of packets per
protocol, the number of flag codes, the maximum and
minimum number of packets per flag code, the number of
packets with window size attribute set to 0, the number of
packets with data length attribute set to 0, the average value of
the window size attribute, and the average value of the data
length attribute.

These window based attributes were empirically derived
based on the analyses of the recorded network traffic and the
motivation to most accurately capture the time series nature of
the packet stream. Fig. 5 demonstrates the network traffic
description using these attributes. Plotted are the instances of
normal behavior (�), the intrusion attempts (�) and the
anomalous response of the PLC (�) respectively. The cluster
of the normal network behavior (circled) can be identified
surrounded by the anomaly instances.

IV. THE IDS-NNM ALGORITHM

A. Neural Network as a Cluster Boundary Modeling Tool
Clustering constitutes a traditional approach to intrusion

detection [5], [21], [22]. The most common problems of
clustering techniques are: how to define the number of clusters
beforehand; how to initialize of the center of gravities (COGs)
of clusters; and how to choose the maximum radius of
clusters. Inappropriate choice of these parameters may result
in a low performance of the algorithm. Additionally, centroid-
based clustering techniques describe a cluster by its COG and
by the farthest pattern distance from the COG [23]. Thus the
clusters have shapes of hyperspheres in the given input space.
This is insufficient for constructing the complex and irregular
shapes of clusters in multidimensional spaces.

Artificial neural networks (ANNs) overcome the previously
mentioned issues by their inherent capability of constructing Fig. 4. Window based feature extraction process.

Fig. 5. The network traffic description using the window based attributes.

boundaries between classes of irregular and complex shapes in
highly dimensional space. The presented IDS-NNM algorithm
leverages this capability of the ANNs to accurately model the
boundary of the cluster of normal behavior instances. The
cluster is modeled by a feed-forward neural network trained in
a supervised manner with a specific combination of two
learning algorithms, the Error Back-Propagation (EBP) and
the Levenberg-Marquardt (LM) learning rule [19]-[21].

Hence, the proposed methodology does not require any
upfront knowledge on the number of clusters or their radii.
Instead, the ANN is used to define the exact boundary of the
normal behavior class. Also, the ANN works as a classifier,
directly classifying the current input vector. This proves to be
superior to other clustering techniques, where typically the
nearest COG has to be found and the decision made based on
a heuristically determined threshold.

B. The IDS-NNM Algorithm
 The IDS-NNM algorithm consists of two main phases – the
specific training set construction and the neural network
training process. The trained neural network is applied in the
network communication system to detect intrusion attempts.

During the supervised training process the neural network
has to be confronted with instances of both normal and
intrusion classes. However, in case of an anomaly IDS, future
intrusion data vectors are unknown at the time of training. It is
only assumed that they will be different from the pattern of the
recorded normal behavior.

Hence in the first phase of the IDS-NNM algorithm, the
intrusion instances are randomly created in the attribute space.
Since the real intrusion vectors are unknown ahead, they will
be uniformly generated within the whole attribute space. This
newly generated intrusion vector dataset is combined with the

recorded normal behavior. Fig. 6(a) – 6(c) illustrate the
construction of the training dataset.

In the second phase of the IDS-NNM algorithm, a
feedforward neural network is trained using a specific
combination of the Error Back-Propagation and the
Levenberg-Marquardt algorithm [19-21]. An example of a
three-layer feedforward neural network is shown in Fig. 7.

The output of the input layer is directly determined by the
input vector p

�
:

pa
��

�0 (1)

The net input of neuron i in layer k+1 is calculated as:

� 	 � 	 � 	 � 	

�

��� ��
Sk

j

kkkk ibjajiwin
1

111 , (2)

Here Sk denotes the number of neurons in layer k , � 	jiwk ,1�

is the weight of the connection from neuron j in layer k, � 	ibk 1�

is the bias of neuron i and � 	jak is the output from neuron j in
layer k.

The output of neuron i in layer 1�k is:

� 	 � 	� 	infia kkk 111 ��� � (3)

Here 1�kf is the activation function of neuron i.
For an L layer neural network, the task of the LM algorithm

is to minimize the total error:

� 	

� �

��
P

p

M

m

L
pmpm adE

1 1

2 (4)

which can be reduced to:

� 	

� �

�
P

p

M

m
pmeE

1 1

2 (5)

Here P and M are the number of patterns and the number of
outputs respectively, and dpm denotes the desired output.

The weight update rule for the LM algorithm is derived from
the Newton’s method and written as:

 (a) (b) (c) (d)
Fig. 6. Illustrative example of the training set construction and the cluster boundary modeled by the neural network. Recorded instances of normal behavior (a)
and simulated intrusion instances (b) are combined together into a training set (c). The classification function and the cluster boundary (dotted line) is modeled
by the neural network during the supervised learning process (d).

Fig. 7. Three-layer feedforward neural network.

gAw 1��� (6)

Here A and g are the Hessian and the gradient respectively.
For the error function E, which is a sum of squares, the
Hessian and gradient can be computed as follows:

JJA T2
 (7)

eJg T �2� (8)

Here e� constitutes the error vector and J is the Jacobian of
the partial derivative of error with respect to the weights. The
Jacobian matrix can be computed by a modified EBP
algorithm [21]. The matrix form of the Hessian and the
gradient is written as:

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�

��
�

��
�

��
�

�
�

��
�

��
�

��
�

�
�

�

2

2

2

2

1

2

2

2

2
2

2

21

2
1

2

12

2

2
1

2

nnn

n

n

w
E

ww
E

ww
E

ww
E

w
E

ww
E

ww
E

ww
E

w
E

A

�

����

�

�

 and

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�

�
�
�
�

�

nw
E

w
E
w
E

g
�

2

1

 (9)

The LM method solves the problem with ill-defined
Jacobian matrix by introducing an identity matrix I and
learning parameter � . The LM weight update rule is defined
as:

� � eJIJJw TT �� 1�
��� � (10)

For 0�� the LM becomes the Guass-Newton method,
whereas for larger values of � the algorithm is reduced to the
steepest decent algorithm. Initially � is set to 0.001. If the
total error (5) increases, � is multiplied by 10. In case of error
reduction the learning parameter is divided by 10.

Based on the constructed training dataset, the training of the
neural network is driven by two assumptions:

1) The intrusions can appear anywhere in the attribute space
(including within the cluster of normal behavior);

2) There is a cluster of normal behavior somewhere in the
attribute space.

By attempting to minimize the classification error, the
training algorithm eventually finds the boundary of the normal
behavior class. Anything located outside of the class is
therefore considered an intrusion. Fig. 6(d) describes the
learned classification function.

The steps of the IDS-NNM algorithm are as follows:
Step 1.1: Construct an ordered sequence ST of attribute

vectors iv
� using the information from packet headers. The

vectors are order time-sequentially:

� �NT vvvS
���

,...,, 10� (11)

Here, 0v
� and Nv

� are the first and the last recorded packets
in the sequence, respectively.

Step 1.2: Extract sequence SW of window based feature
vectors jr

�
 from sequence ST. This extraction of window based

attributes can be described as:

� 	 � �1,...,1,0,,,...,, 11 ������� �� Njirvvvf jiii
����

 (12)

Where � denotes the length of the window.
 Step 1.3: Create set *

WS of normal behavior training
instances by assigning each feature vector jr

�
 class label lNorm.

� 	� �
1...,,2,1

* ,
���

�
�NjNormjW lrS

� (13)

 Step 1.4: Create randomly generated set IW of simulated
intrusion vectors uniformly distributed over the window based
attribute space.

� �MW rrrI
���

,...,, 10� (14)

Where M is the number of generated intrusion vectors.
Step 1.5: Create set *

WI of the intrusion training instances by
assigning each feature vector kr

� class label lIntr.

� 	� � MkIntrkW lrI ...,,2,1
* , ��

� (15)

Step 1.6: Combine sets *
WS and *

WI into a single training
dataset T:

**
WW IST �� (16)

Step 2.1: Propagate the training dataset T to the output of
the neural network using (1), (2) and (3).

Step 2.2: Using the modified EBP compute the Jacobian
matrix.

Step 2.3: Calculate the weight update vector w
�

� by solving
(10).

Step 2.4: Update the network weights and the learning
parameter � :

Step 2.6: If predefined convergence criteria is not met, go
to step 2.1.

V. EXPERIMENTAL RESULTS

 This section presents the experimental results. The suitable
architecture of the neural network as well as the importance of
using only the relevant attributes is discussed and
demonstrated. The performance is evaluated on the recorded
real network data.

A. Testing Datasets
The data acquisition testbed is shown in Fig. 1. Software

tools Nmap, Nessus and MetaSploit were used to generate
various intrusion attacks. Even though only simulated, the
intrusion attacks represented representative samples of
expected real intrusion challenges. Five datasets were
recorded directly from the network communication. Each

dataset consists of approximately 20000 packets. To
accurately model the normal network behavior, an additional
data set of purely normal network behavior was recorded.
100000 randomly simulated intrusion vectors were generated
for all the experiments.

B. Intrusion Detection Evaluation
The performance of the IDS-NNM algorithm was tested on

the recorded network traffic datasets. It was measured by the
detection rate and the false positive rate. The detection rate
represents the ratio between the correctly identified intrusion
attacks and the overall number of intrusions in the dataset:

� �%_
_

_

IntrusionsAll

IntrusionDetected

N
N

RateDetect � (15)

The false positive rate calculates the ratio between the
number of instances of normal behavior falsely marked as an
intrusion and the overall number instances of normal behavior:

� �%_
_

_

NormalAll

NormalFalse

N
N

PositiveFalse � (16)

 The classification function of the system can be adjusted by
setting a sensitivity threshold. When the output value of the

(a)

(b)

(c)

(d)

Fig. 8. Intrusion detection of datasets 1 using 1 hidden layer and 16 attributes (a), 1 hidden layer and 8 attributes (b), 2 hidden layers and 16 attributes (c) and 2
hidden layers and 8 attributes (d).

neural network is above the sensitivity threshold, the input
vector is marked as an intrusion. Otherwise it is denoted as a
normal network behavior.

The size of the window for the window based feature
extraction was set to 20 packets. This value is a compromise
between having enough packets to accurately compute the
statistical properties of the packet stream and having too many
packets in the window to hide short intrusion attacks.

C.Relevant Attributes Selection and ANN Architecture
 Each of the constructed window based attributes has a
different importance to the classification task. Reducing the
dimensionality of the problem to the most important attributes
only is important for two main reasons: 1) the classification
task is generally easier in spaces with lower dimensionality
and using only the relevant attributes; 2) the needed number of
randomly generated intrusion instances grows exponentially
with the dimensionality of the problem.
 The experimental leave-one-out approach was used to
identify the eight most significant window based attributes.
They are listed in Table I.
 The architecture of the used feed-forward neural network
also has to reflect the complexity of the problem. Several
architectures were tested in order to locate the optimal one.
The identified architecture consisted of two hidden layers with

10 and 6 neurons in first and the second layer respectively and
one output neuron.
 Fig. 8 demonstrates the effect of using relevant attributes
and the optimal network architecture on the performance of
the system. The classification performed by the network can
be compared to the true occurrence of the intrusion attempts,
marked with a bold line. The classification performance of
particular setups on one of the recorded datasets is
summarized in Table II.
 Fig. 8(a) shows the performance of neural network with
only 1 hidden layer with 10 neurons trained on all the 16
attributes. It resulted in a quite poor detection rate (66.08%)
and several false positives. Reducing the number of attributes
to the eight most significant ones and the same network
architecture substantially improved the performance (85.08%)
and no false positives were generated as shown in Fig. 8(b).

(a)

(b)

Fig. 9. Intrusion detection of datasets 2 (a) and 3 (b) using the presented IDS-NNM algorithm.

TABLE I
MOST SIGNIFICANT WINDOW BASED ATTRIBUTES

Num. of IP addresses Num. packets with 0 win. size

Avg. interval between packets Num. packets with 0 data lenght

Num. of protocols Average window size

Num. of flag codes Average data length

TABLE II
PERFORMANCE OF THE IDS-NNC ALGORITHM ON DATASET 2

Data Set Detection Rate False Positive

1 layer, 16 inputs 66.063% 0.378%
1 layer, 8 inputs 85.081% 0%

2 layers, 16 inputs 78.643% 0%
2 layers, 8 inputs 100% 0%

TABLE III
PERFORMANCE OF THE IDS-NNC ALGORITHM

Data Set Detection Rate False Positive

Testing Set 1 100% 0%
Testing Set 2 100% 0%
Testing Set 3 100% 0%
Testing Set 4 100% 0%
Testing Set 5 100% 0%

Similarly, expanding the neural network structure into 2
hidden layers and using all 16 attributes led to an
improvement of the detection rate (78.64%). Finally, using the
expanded network architecture with 2 hidden layers and
training on the 8 most relevant attributes the optimal
performance of the system (100%) was achieved as
demonstrated in Fig. 8(d).
 Table III summarizes the experimental results achieved on
all the 5 recorded datasets containing the intrusion attempts.
Further, Fig. 9 shows another two examples of the system’s
performance on datasets 2 and 3. The zoomed section of Fig.
9(a) shows that the neural network correctly identifies even
short intrusion attempts.

VI. CONCLUSION AND FURTHER WORK

This paper presented a novel intrusion detection system
tailored to the specifics of critical infrastructures. The main
contributions of this work were: 1) the use and analyses of real
network data; 2) the development of specific window based
feature extraction technique; 3) the construction of training
dataset using randomly generated intrusion vectors; 4) the use
of a specific combination of two neural network learning
algorithms – the Error-Back Propagation and Levenberg-
Marquardt, for normal behavior modeling.

The IDS-NNM - the Intrusion Detection System using
Neural Network based Modeling algorithm - achieved a
perfect detection rate while generating no false positives on
previously unseen testing data. The presented experimental
results illustrated the ability of the system to detect long
intrusion attacks as well as short intrusion attempts consisting
only of several packets. This demonstrated the correctness of
the presented window based feature extraction mechanism as
well as the power and robustness of the artificial neural
network as a cluster boundary modeling tool. Further, the
importance of identifying the relevant attributes and using the
suitable ANN architecture was demostrated.

Further research is intended in the area of extracting
additional significant features of the network traffic as well as
generating other different types of intrusions to test the
implemented system. Furthermore, the performance of the
algorithm as a function of the length of the window used for
feature extraction will be addressed.

ACKNOWLEDGMENT

The authors would like to thank the Idaho National
Laboratory and the University of Idaho Nuclear Engineering
Program for providing support for this project.

REFERENCES

[1] D. Yang, A. Usynin, J. W. Hines, “Anomaly-Based Intrusion Detection
for SCADA Systems”, 5th Intl. Topical Meeting on Nuclear Plant

Instrumentation, Control and Human Machine Interface Technologies
(NPIC&HMIT 05) , Albuquerque, NM, Nov 12-16, 2006.

[2] H. S. Kim, J. M. Lee, T. Park, W. H. Kwon, “Design of networks for
distributed digital control systems in nuclear power plants”, Intl. Topical
Meeting on Nuclear Plant Instrumentation, Controls, and Human-
Machine Interface Technologies (NPIC&HMIT 2000), Washington, DC,
November 2000.

[3] J. P. Anderson, Computer security threat monitoring and surveillance,
Technical report, James P. Anderson Co, 1980.

[4] D. E. Denning, “An Intrusion Detection Model”, IEEE Transactions on
Software Engineering,Vol. SE-13, February 1987, pp. 222-232.

[5] S. Zhong, T. Khoshgoftaar, N. Seliya, “Clustering-based network
intrusion detection”, In Intl. Journal of Reliability, Quality and Safety,
Vol. 14, No. 2, 2007, pp. 169-187.

[6] K. Ilgun, R. A. Kemmerer, P. A. Porras, “State transition analyses: A
rule-based intrusion detection system”, IEEE Transaction on Software
Engineering, 21(3), March 1995.

[7] G. Stein, B. Chen, A. S. Wu, K. A. Hua, “Decision Tree Classifier For
Network Intrusion Detection With GA-based Feature Selection”, in
Proceedings of the 43rd ACM Southeast Conference, Kennesaw, GA,
March 2005.

[8] W. Lee, S. Stolfo, P. K. Chan, “Learning patterns from unix process
execution traced for intrusion detection”, In Proceedings of AAAI97
Workshop on AI Methods in Fraud and Risk Management, 1997.

[9] J. Ryan, M. Llin, R. Miikkulainen, “Intrusion Detection with Neural
Networks”, In Advances in Neural Information Precessing Systems 10,
Cambridge, MA, MIT Press, 1998.

[10] A. K. Gosh, A. Schwartzbard, M. Schatz, “Learning Program Behavior
Profiles for Intrusion Detection”, In Proceedings of the 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, Santa Clara,
CA, April 1999, pp. 51-62.

[11] A. K. Gosh, J. Wanken, F. Charron, “Detecting anomalous and unknown
intrusions against programs”, In proceedings of the 1998 Annual
Computer Security Applications Conference (ACSAC’98), December
1998.

[12] P. J. Werbos, The Roots of Backpropagation, New York: Johns Wiley &
Sons, 1994.

[13] D. Marquardt, “An algorithm for least squares estimation of non-linear
parameters,” J. Soc. Ind. Appl. Math., pp.431-441, 1963.

[14] M. Hagan, M. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Transaction on Neural Networks, vol. 5,
no. 6, pp. 989-993, 1994.

[15] Dana A. Shea, “Critical Infrastructure: Control Systems and the Terrorist
Threat,” Report for Congress RL31534, February, 2003.

[16] Allan Bradley PLC 5 Controller:
http://www.ab.com/programmablecontrol/plc/pclsystem/index.html

[17] Nmap – “Network Mapper”: http://nmap.org
[18] Nessus: http://www.nessus.org.org/nessus/
[19] The Metasploit Project: http://www.metasploit.com/home
[20] H. Debar, B Dorizzi, “An Application of a Recurrent Network to an

Intrusion Detection System”, In Proceedings of the International Joint
Conference on Neural Networks, pp. 78-83.

[21] Q. Wang, V. Mehalooikonomou, “A Clustering Algorithm for Intrusion
Detection,” in SPIE Conference on Data Mining, Intrusion Detection,
Information Assurance, and Data Networks Security, Orlando, Florida,
USA, 2005.

[22] L. Portnoy, E. Eskin, S. Solfo, “Intrusion detection with unlabeled data
using clustering,” Proc. Of ACM CSS Workshop on Data Mining
Applied Security, Philadelphia, PA, November 5-8, 2001.

[23] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, Morgan Kaufmann Publishers, 2005.

