Abstract:
Inspired by human immune system, a concentration based feature construction (CFC) approach which utilizes a two-element concentration vector as the feature vector is prop...Show MoreMetadata
Abstract:
Inspired by human immune system, a concentration based feature construction (CFC) approach which utilizes a two-element concentration vector as the feature vector is proposed for spam detection in this paper. In the CFC approach, dasiaselfpsila and dasianon-selfpsila concentrations are constructed by using dasiaselfpsila and dasianon-selfpsila gene libraries, respectively, and subsequently are used to form a vector with two elements of concentrations for characterizing the e-mail efficiently. As a result, the design of classifier actually amounts to establishing a mapping between two real-value inputs and one binary output. The classification of the e-mail is considered as an optimization problem aiming at minimizing a formulated cost function. A clonal particle swarm optimization (CPSO) algorithm proposed by the leading author is also employed for this purpose. Several classifiers including linear discriminant, multi-layer neural networks and support vector machine are used to verify the effectiveness and robustness of the CFC approach. Experimental results demonstrate that the proposed CFC approach not only has a very much fast speed but also gives 97% and 99% of accuracy just using a two-element concentration feature vector on corpus PU1 and Ling, respectively.
Published in: 2009 International Joint Conference on Neural Networks
Date of Conference: 14-19 June 2009
Date Added to IEEE Xplore: 31 July 2009
ISBN Information: