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Improving the performance of ANN training with an unsupervised
filtering method

Sekou Remy, Chung Hyuk Park and Ayanna M. Howard

Abstract- Learning control strategies from examples has
been identified as an important capability for many robotic
systems. In this work we show how the learning process can
be aided by autonomously filtering the training set provided to
improve key properties of the learning process. Demonstrated
with data gathered for manipulation tasks, the results herein
show the improved performance when autonomous filtering is
applied. The filtration method, with no prior knowledge of the
task was able to partition the training sets into sets almost
equal to expertly labeled sets. In the case where the filter did
not produce the same groupings as the expert user, the method
still permitted a controller to be trained which demonstrated
a success rate of 92%.

I. INTRODUCTION

In a large number of fields there has been interest, effort,
and progress in the battle to uncover knowledge from data. It
is often the case that such knowledge once uncovered is then
applied to enable autonomous (or semi-autonomous) control
of some system. In a narrow view of this broad domain,
learning specific control strategies based on observations of
data is a common challenge for many types of practitioners.

A plethora of methods exist to implement control strate­
gies but due to their flexible structure and ability to map
non linear functions [1], neuro-controllers [2] have become
a commonly applied method for robotics and other complex
systems. Several approaches have been devised to generate
the weights used for these controllers, each with their relative
benefits.

Whether considering evolutionary techniques, back prop­
agation, or any other method, the quality of the training sets
applied have a strong influence on the determined weights.
Concern for the quality of the training sets is also elevated
by the growing trend to use human examples to generate
training sets. The process of gathering human examples is
often the most readily accessible method of acquiring useful
data.

One quality of learning from human examples that we
are interested in developing is the ability of the system to
identify similar subsets in the provided training sets. With
this capability, the system can determine what are likely
different behaviors, and then learn from them separately.
Learning from appropriately partitioned sets can have bene­
ficial outcomes regardless of the learning method.

The issue of how to partition training sets, especially con­
sidering the design goal of minimizing human involvement,
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is a challenge, but it is a key facet for solutions of interest
to the "learning from examples" community.

II. RELATED WORK

For this work we consider the domain of manipulation
and learning generated from human examples. Many re­
searchers have built frameworks to transfer human skills to
a manipulation platform. Among others, Michael Nechyba
[3] designed a system in which a robot works as both
a learner and a teacher in transferring dynamic control
skills. More recent studies of manipulation learning shows
a tendency to rely primarily on vision. A. Saxena et al.
presented research in grasping real-world objects based on
grasping point classification using monocular vision [4]. And
K. Yamazaki et al. tried to learn a simple task in the visual
domain by using direct instruction guiding [5]. The common
limitation in these studies, however, lies in the need to hand­
code the task behaviors at some level.

Learning from demonstration (also known as Imitation
Learning [6]) is widely studied in the robotic learning field,
as it provides methods similar in nature to the ones by
which humans learn from others. However, it requires a
high level of visual recognition and physical modeling, and
current learning from demonstration is typically limited to
a restricted area equipped with expensive camera systems
or motion capture devices (e.g., [7]). Also, a transformation
between the human model and a robotic model is usually
required to institute robot control. In order to improve the
robots' abilities to function as an integral part of our daily
lives, we need to design the robots such that they are both
easier to control and to interact with.

Instead of mapping a human model to a robot's model
there have been several works including [8], [9] who have
utilized teleoperation interfaces to capture examples of target
behaviors. These methods utilize knowledge of the kinemat­
ics of the robotic system and map the motion of salient por­
tions of the system to some Human Interface Device (HID).
The human teacher's role is then to control manipulation via
the HID and other parts of the user interface provided by the
robot designer(s).

While this approach simplifies control in many ways,
collecting examples in this manner does not remove the
need to screen bad examples of behavior, or isolate different
behaviors prior to the application of learning techniques.

The work in [10] presents an approach which partially
addresses this issue. In this work the researchers demonstrate
successfully the functionality of identifying success or failure
from unlabelled examples of the activity. Where this work
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C. Summary

This is how instances of behaviors are filtered. This
method is called coherence based because it exploits the
consistent relationships between sensing and action for each

To make the capability available, we apply a variant of
the Kolrnogorov-Smirnoff (K-S) test [11], one of a family of
offerings of statistical tests including Pearson Chi-squared
test and the Anderson-Darling test. The basis of this test is
the null hypothesis that in its two sample form states that
the samples are drawn from the same distribution. To test
this hypothesis, a K-S statistic (Dn,m) is calculated based
on empirical distributions Fn and Fm of the two samples
defined over range x (See (1)). Dn,m is then compared to a
derived value D 1- a , which is typically extracted either from
standard or custom tables. The hypothesis is rejected if Dn,m
is sufficiently large.

With this two dimensional representation of a behavior, we
must apply a two dimensional variant of the K-S test. For
this work, we use the implementation of the two-dimensional
two-sample K-S (2D2SK-S) presented in [12] to calculate the
values of Dn,m This implementation is based on the work
of Peacock[13], and Fasano and Franceschini [14] to extend
the K-S test to two dimensions.

For behaviors defined in this manner, the K-S statistic
is calculated for pairwise combinations of all presented
instances. Instead of using D 1- a from tables, the median
Dn,m value is used as the threshold. Such a decision seeks
to capitalize on the likely scenario that two or more instances
of a behavior will be provided in a training set.

(2)

(1)Dn,m == sup IFn(x) - Fm(x)1
x

B. Representing Behaviors

For CBF, we take the approach that a behavior is a
potentially non-linear mapping from sensing to action. For
most interesting scenarios, this mapping is defined over large
sensing and action spaces which make the study of the un­
derlying mapping computationally challenging. To mitigate
this challenge, dimensionality reduction which preserves the
local geometry of the high-dimensional space can be applied.
We are interested in methods which can effectively reduce
the dimensionality of the spaces to one (i.e. one dimension in
sensing and one dimension in action). Both linear and non­
linear techniques exist which accomplish this task, each with
its own merit, but principal components analysis, principal
curves, self-organizing maps are often applied approaches.

This is how the values of a and s are respectively derived
from the actuator values and sensor values. For a given
example of a behavior B i , the sensor state s j and the
associated action state aj are collected during teleoperation.
N i is the total number of sensor-action pairs that exist for
the behavior B i (See 2).

III. METHODOLOGY

When considering human-in-the-loop robotic systems
which incorporate learning, one challenge is the process of
acquiring training data. For example, even under the best
of circumstances, the human teacher will display a level of
variability while demonstrating a task; and in many cases
will also demonstrate more than one task during normal
robot operation. The multiplicity caused by such a scenario
often results in training sets which include poor examples of
behaviors which must be screened prior to the application
of the learning process. To reduce the burden on the (hu­
man) instructor, we present a method to permit automated
filtration/grouping of behaviors prior to the learning process.
This two phase process is implemented via coherence based
filtering and then learning.

Coherence based filtering (CBF) is a behavior filtration
method that is predicated on the assumption that the human
teacher possesses knowledge about the behavior they would
like to teach the robot. Each time they demonstrate a target
behavior it is expected that they demonstrate an instance of
the behavior. Whether due to natural human variability or
error, instances of the behavior may vary but in the mind
of the teacher there still exists some model of that behavior.
The teacher, knowing this model, has the ability to generate
additional examples of the model (other instances).

A. Differentiating Behaviors

In CBF it is then the challenge of the automated system
to apply a method to determine if two or more data sets are
likely to be instances of the same behavior. Said more plainly,
if provided with three examples A, B, and C, determine
the likelihood that A, B, and C are examples of the same
behavior (e.g. obstacle avoidance). If it can be determined
that example C is not an instance of the same behavior as
A and B, then it can be excluded from the training data. If
it is not possible to infer that C is an instance of a different
behavior from A and B, while it may indeed be the case,
there would not be enough evidence to rule this instance out.
In such a scenario, grouping A, B, and C then using these
as instances of the same behavior by incorporating them into
the same learning process is a defensible approach to filtering
instances of the behaviors.

falls short is that it requires previous training exposure of
successful (and non-successful) actions and is only able to
classify future unlabelled examples based on this a priori
information. What is needed is a method to provide some
level of differentiation based only on the examples provided.
Removing the burden of labeling examples a priori is a
design goal since it would remove a critical barrier in systems
that learn from human examples. Equipping the robot to
recognize differences and adapt accordingly would enable
a much more fluid learning process as well as permit the
teacher greater degrees of freedom. More significantly, it
would also reduce the need for the robot teacher to have the
knowledge level of a robot designer. It is for these reasons
that we propose the method presented in this work.
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Fig. 2. GUI for Teleoperative Manipulation.
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Due to dimension matching problem, haptic force feedback
was minimized to creating holding forces to acquire stable
manipulation at this time.

instance of a behavior. There is however one major as­
sumption with this approach. CBF assumes that the sensing
provided contains all that is necessary to make the decision
about the required action. If this is not the case then the link
between sensing and action can appear random. While this
is significant, no learning method performs well if the basis
for the learning is incomplete, no matter how carefully it is Fig. I. Teleoperative manipulation system using Pioneer3AT and Pioneer
gathered. Arm.

D. Learning

When performing a manipulation task via teleoperation ,
it is necessary to sense the target object and understand the
action(s) required relative to the target. Since cognition and
reaction take place over time, we focus on the temporal
sequences of sensing and actuation data. We utilize feed­
forward artificial neural networks (ANN) trained by the
back-propagation algorithm ([15]) for learning relationships
within the temporal sequences of teleoperation commands
from the human. We design two different architectures for
this temporal data based learning, one happening in joint
space and the other in Cartesian space. Our ANN structure
is conventional three-layer network with one hidden middle
layer. Basically, we set the learning rate to 0.10, with error
limit (tolerance) applied with 0.01, 0.05, and 0.1, and choose
the best networks in terms of error. More details on this
approach are presented in the following section.

IV. EXPERIM ENTAL SETUP

A. Teleoperative Manipulation System

Our teleoperative manipulation system depicted in Fig.
I consists of a Pioneer3AT mobile robot, 5-DOF Pioneer
Arm, a USB camera, a laptop for master interface program
(Fig. 2), and a force-feedback joystick. Pioneer3AT is a four­
wheel drive, skid-steer mobile robot. The Pioneer Arm is
a relatively low-cost robot arm that is driven by six open­
loop servo motors, providing five degrees-of-freedom with
an end-effector capable of grasping objects up to 150 grams
in weight.

For acquisition of the visual data, we mount a small USB
webcam on the gripper, so our system can transmit the
workspace view observed by the end-effector to the operator
(i.e. as the arm approaches an object, the object in the view
grows larger in size). The maximum frame rate of the camera
is approximately 30 fps/sec with pixel resolution of 320x240.
It also has a diagonal 54 degrees of field-of-view angle with
focus range of 5cm to infinity.

Due to the difficulties in controlling the position and
orientation at the same time caused by lack of degrees of
freedom and awkward positioning of the pivot joint and
rotational joint of the wrist, we utilized only four degrees
of freedom with this arm and opted to keep the wrist
orientation fixed. To incorporate the 2D joystick control with
5DoF arm movements, we mapped 2 dimensional control of
joystick into x-axis and y-axis of arm's end-effector, and
used the slider of joystick to control z-axis. The window
size of the mapping between joystick and arm's workspace
area is designed to change as it approaches the object.

B. Task

For this work, multiple demonstrations of two tasks were
considered. The aim of all cases was to teach our robotic
system to reach down and grasp an object which was ini­
tially in the view of the eye-in-hand camera. Demonstrative
trajectories were captured while a user picked up an object
from distinct location on the surface. The overall training set
would feature an object on a planar surface in a 15cm by 10
cm area (See Figure 3).

The second task was similar to the first except that the
start position of the end effector was initialized near to the
target object. This task posed slightly different challenges
since each trajectory would contain a fewer number of items
and errors early in the motion sequence could have greater
impact on keeping the object in the portion of the workspace
where it was visible to the camera .

For each task, an expert user (the system designer) pro­
vides nine examples . In each case the object is located within
5 - 7 em from the center of the workspace, on the plane the
robot rested. The selection of locations was not precise but
they were disbursed over the space as indicated in Figure
3. Figure 4 shows the view from the camera just prior to
activating the gripper.

During these "good" examples, the user demonstrated
the skill expected of an expert user. In addition to a good
examples, three bad examples were also captured . For these
examples, the user intentionally introduced extra motion in
the x, y, and z dimensions of the workspace. Examples of the
end effector trajectories for both "good" and "bad" examples
are shown in Figures 5 & 6 respectively. It should be noted
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Fig. 8. Expert labelled grouping of trajectories for behavior 2.

that in all examples, whether good or bad, the user did grasp
the target. The discrete data was collected every lOOms over
the teleoperation time, and each trajectories consist of 90­
150 sequences. For conciseness, the labels of the training
set gathered are presented in Figures 7 and 8.

Fig. 7. Expert labelled grouping of trajectories for behavior I.

C. Applied Learning

J) Joint Space: The first structure we utilize for training
on the temporal data sequences is associating independent
neural networks to each degree of freedom. The main advan­
tage of this approach lies in the ability to recover from errors
by decomposing the dimensional load into several distributed
ANNs. As shown in Figure 9, each neural network for the
i-th joint has inputs of object position in image domain (XY
plane - See Figure 10), object size from the camera viewpoint
(W - in pixels) , and joint values from the base joint to the
i-th joint in the kinematic chain. It also has one hidden
layer of neurons and has one output for differential value
for the joint that corresponds to the commanded actuation
value. So five ANNs are in charge of our 5-DoF Pioneer
Arm (used in our experimental setup), and these ANNs take
the current manipulator state and the current sensor (camera)
status as inputs, and trains itself to generate proper output
for the next actuated movement. Since the differential values
are generated by subtracting the robot's current arm state
from the human operator's command, this structure facilitates
learning the behavior taught by the human operator, in the
domain of robot's joint coordinates . With this neural network
structure, we seek to decouple the linkage inherent in the
kinematic chains of the man ipulator and learn each joint's
independent contribution to the task.

2) Cartesian Space: The second approach we utilize for
building the neural net structure is to consider the actions
of the end-effector in Cartesian space. As depicted in Figure
11, only three independent ANN s are in control of our 5­
DoF man ipulator, and each ANN is trained to generate the
proper differential value for the next movement in each of
X, Y, Z direction, based on the input values of the current

Fig. 5. End effector trajectory of a good example. Z coordinate is negative
valued since the arm is attached on top of Pioneer and it is reaching down
to grasp an object. 113 sequences (l1.3sec) are represented in the graph.
Units are in centimeters.

Fig. 4. Images of eye-in-hand view at the final (grasping) status of
trajectories 1-9.

Fig. 3. Images of eye-in-hand view at the initial state of trajectories 1-9
of the training data.

Fig. 6. End effector trajectory of a bad example. 271 sequences (27.1 sec)
are depicted.
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Fig . 9. Artificial neural network (ANN) structure of learn ing in joint space .
Each joint has its independent ANNs , with input from the camera sensor and
joint angles , and with output of incremental joint angles for next movement.

Fig . II. Artificial neural network (ANN) structure of learning in Cartesian
space. Each joint has its independent ANNs , with inputs from camera sensor
and current posit ion of the end-effector, and with output of incremental value
for x-,y-,z-coordinates for next movement.

Fig. 12. CBF labelled group ing of trajectories for behavior 1.
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Fig . 10. XY-W plane for camera image . The W dimension is derived from
the diameter of the marker of known size, and is thus related to depth .

end-effector X, Y, Z positions and the object data from the
camera (X, Y, W). Since the coordinates of the arm position
are in the arm's base frame while the coordinates of the
object are in the camera frame, we do not combine them
directly but provide as independent inputs to the ANN so
that the correlations can be trained over two different space
domain.

In this structure, we disregard the previous consideration
on the status of arm posture, and decide to learn the direct
mapping between the sensor condition (environment) and
actuation of the end-effector (result in action), based on
assumed prior knowledge of the global inverse kinematics of
the manipulator system. This approach is designed to create
a direct mapping between the dimensions of sensing and the
dimensions of actuation, and to simplify the learning problem
for a manipulation task. We are also composing these three
ANNs independently in order to avoid the potential coupling
of motion in the X, Y, and Z axis.

V. R ESULTS

To briefly recap, the goal of this work was to present
a method to permit training sets provided from human
examples to be filtered in an unsupervised manner prior to
applying the set to a learning mechanism.

A. Coherence Based Filtering

Each of the trajectories captured is treated as an instance
of a behavior. The sensor values with temporal markers were
mapped from four dimensional space into a one dimensional
sensor state with 100 values and the actuator values were
mapped from a four dimensional space to a one dimensional

action state with 25 values. These states captured a repre­
sentation of sensing and action at different times.

The null hypothesis was considered for pairwise compar­
isons of behaviors B , and B/'c/i =I=- j . If the null hypothesis
is not rejected for the K-S statistic of B, and Bj , these
behaviors are placed in the same behavior candidate set. If
the null hypothesis is rejected and the behavior is not already
in a candidate set, a new candidate set is created for the
behavior. If any behavior is in more than one candidate set
then these sets are replaced by their union.

After all comparison have been made, the resulting be­
havior candidate sets contain groups of instances which are
likely instances of statistically similar behaviors. Learning
from these candidate sets separately instead of all together
is expected to produce improved learning performance.

The results of applying CBF to the 24 trajectories consid­
ered in this work are presented in the candidate sets shown
in Figures 12 & 13.

1) Behavior Candidate Sets: Figure 12 shows the be­
havior candidate sets uncovered for Behavior 1. This figure
groups trajectories 1-9 into a single candidate set and tra­
jectories 19, 20, and 21 into separate candidate sets. Such
groupings provide support for training a single ANN with
trajectories 1-9, separately from the other examples. It is
interesting to note that these were all the examples of "good"
behaviors . Without prior knowledge about the training set,
CBF permitted the good behaviors to be grouped into the
same behavior candidate set. It is also significant that each
of the bad trajectories is relegated to its own candidate
set. This is not alarming since it was unlikely that each of
these trajectories would be distorted in the same manner.
A high degree of connectivity was observed in the graph
which captured the relationship between trajectories 1-9.
This indicates to some degree the confidence that each of
these trajectories are examples of the same behavior.
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Fig . 14. Trajectory of ANN performance trained with set C. Execution
time was 3.4 sec.

_3
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clear that the ANN produced with A performs better in every
axis. Similar observations are evident when considering the
mean square error. The error is observed during the training
process are higher for B. These comparisons show that CBF
provides advantages over blindly applying all the examples
in the training set.

Further comparisons between ANNs trained with C, D,
and E serve to confirm the advantages of performing CBP.
This method, without external expert knowledge about the
training set, performs better than the case where it was not
applied. In each dimension, the CBF method produced a
training set that was within 80 percent of the performance
with respect to learning rates and error rates.

While these comparisons do not yet show the performance
of the trained ANN, they show that the ANNs were trained
faster and better when CBF was applied to the training sets.
They also show that in the case where the candidate set was
not equivalent to the "good" set that the ANN's training specs
rivaled those of the "good" set.

2) Task Performance: For evaluation of the trained ANNs,
we do not use the hold-out sets since the objective of the

End
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TABLE"

L EARNI NG AND ERROR RATES BY CAS E.

-20

_10

-35

Group Tolerance
Learn Rate (%) Error (MSE)

X Y Z X Y Z
0.01 40.6 83.2 58.6 0.153 0.040 0.111

A
0.02 66.6 97.0 79.5 0.154 0.040 0.113
0.05 90.7 100.0 95.4 0.155 0.066 0.115
0.1 98.7 100.0 97.9 0.149 0.066 0.112

0.01 28.3 62.4 35.3 0.377 0.129 0.326

B
0.02 41.0 80.3 57.2 0.393 0.132 0.323
0.05 70.2 94.5 84.1 0.394 0.131 0.322
0.1 88.1 99 .1 92.7 0.386 0.129 0.312

0.01 36.6 66.9 46.7 0.259 0.099 0.221

C
0.02 56.3 83.4 64.4 0.258 0.098 0.215
0.05 79.5 97.4 85.9 0.255 0.098 0.217
0.1 95.0 99.8 96.8 0.257 0.098 0.221

0.01 19.3 34.6 28.9 0.581 0.485 0.530

D
0.02 32.7 43 .6 43.5 0.578 0.510 0.513
0.05 57.4 70.5 71.0 0.558 0.517 0.493
0.1 76.9 87.5 85.5 0.543 0.482 0.535

0.01 33.0 60.0 37.9 0.304 0.110 0.255

E
0.02 48.6 80.7 55.8 0.308 0.108 0.254
0.05 74.4 96.0 79.9 0.310 0.107 0.260
0.1 92.4 99.7 94.4 0.313 0. 108 0.255

Behavior Type I (a) Type" ({3)
I 0/9 0/3
2 0/9 1/3

11 10

12 13 17 24
15 18

14 16

TABL E I

E RROR VALUES BY CASE

Fig . 13. Expert labelled grouping of trajectories for behavior 2.

A similar story is told in Figure 13. In this figure we con­
sider the trajectories presented for Behavior 2. The behavior
candidate sets group trajectories 10-18, and 24 into a single
candidate sets and trajectories 22 and 23 are relegated into
their own candidate sets.

Unlike the case with the examples of Behavior 1, a single
behavior from the user defined "bad" set is included with
the "good" trajectories . The errors in classification for each
of these tasks are presented in summary form in Table I.

2) Evaluation : To test the effects of the candidate set
groupings, the following sets of trajectories were considered
as training sets for ANNs:

A = {1,..,9}
B = {1,..,9, 19,..,21}
C = {1O,..,18}
D = {1O,..,18, 22,..,24}
E = {1O,..,18, 24}
Comparing the differences between learning from sets A

and B will show the expected benefit of learning from the
CBF suggested examples of the behavior over learning from
the entire set of examples of that behavior.

Unlike the case for Behavior I, none of the candidate sets
for Behavior 2 are equivalent to perfect knowledge of good
examples . This provides an opportunity to demonstrate what
is likely to be useful information to evaluate this approach.
Since an expert user presented the trajectories for C, it
would be expected that the ANN trained with that set would
outperform the sets D and E. The outcome of a successful
test of CBF would show that the performance of a network
trained with E exceeds that of one trained with D. Such
an outcome would be better only if the performance after
learning with E is equivalent to that of learning with C.

B. Learning

To evaluate learning, we consider the effects of two
different parts of the learning process: 1) learning and error
rates, and 2) evaluation of the trained ANN.

1) Learning and Error Rates: For each of the sets pre­
viously defined an ANN was trained. The table II shows
the observed learning rates and errors . When comparing the
learning rates for the networks trained with A and B, it is
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Fig . 15. Trajectory of ANN performance trained with set E. Execution
time was 9.5 sec .

TABLE 1II

SUCCESS VALUES BY CASE

Dataset Success rate percentage
A 7/9 78%
B 4/9 44%
C 12/12 100%
D 7/12 58%
E 11/12 92%

task is to generate proper trajectories toward the target and
calculating the errors of 3-dimensional trajectories may not
be sufficient to tell if it is a good trajectory or not. So instead,
we physically test the trained ANNs on the actual robotic
platform, with randomly distributed target points over the
workspace. nine tests are performed with ANNs generated
from A, B, while 12 were performed for C, D, and E.

In case of Behavior 1, the ANNs from the good dataset
A shows 78% of success rate, lower than expected due
to the characteristic of the dataset containing small spa­
tial distribution. However, A shows definitely better result
than B. For Behavior 2, dataset C which contained only
the good example trajectories generates ANNs with 100%
success rate, while D has a 58% success rate and E a
92% success rate. These numbers confirm our claim that
CBF is an effective method to improve the performance of
these learning techniques. The networks are trained faster
and better and now these results confirm that they also help
produce controllers which are more

One notable point is that ANNs from C shows reliability
with 0.1 error boundary, while ANNs from E is reliable with
lower boundary such as 0.05. And still the ANNs from set
E generated more noisy trajectories than C, as shown in the
following figures

One minor failing point is that ANNs trained over the
joint space did not show good results, due to the unexpected
reason that each ANN for the joint actually interferes with
other joints ' movements, making the arm's movement unsta­
ble. It conflicted with our intent to use independent ANN for
each joints to dissolve the kinematic linkages, but increases
our knowledge on composing ANN structures for robotic
manipulation.

As a result we can only present these results for the
networks trained with data for the Cartesian space. This is
not a limitation of the filtration approach.

VI. SUMMARY AND FUTURE WORK

In this work we have presented a process to autonomously
filter training sets provided from teleoperation. It is well
known that better training sets provide opportunities for
better learning and our process removed the burden of
selecting/grouping the examples manually. In this work we
have shown that when applied, Coherence Based Filtering
enables better controllers to be learned faster and confirmed
the improvement in performance with on-robot tests.

In the future we seek to study the sensitivity of this
approach and also investigate whether its performance is
contingent on the learning method applied.
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