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A Pulse-density Modulation Circuit Exhibiting Noise Shaping with
Single-electron Neurons
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Abstract—We propose a bio-inspired circuit performing
pulse-density modulation with single-electron devices. The pro-
posed circuit consists of three single-electron neuronal units,
receiving the same input and are connected to a common output.
The output is inhibitorily fedback to the three neuronal circuits
through a capacitive coupling, tuned to obtain a winners-share-
all network operation. The circuit performance was evalu-
ated through Monte-Carlo based computer simulations. We
demonstrated that the proposed circuit possesses noise-shaping
characteristics, where signal and noises are separated into
low and high frequency bands respectively. This significantly
improved the signal-to-noise ratio (SNR) by 4.34 dB in the
coupled network, as compared to the uncoupled one. The
noise-shaping properties are as a result of i) the inhibitory
feedback between the output and the neuronal circuits, and ii)
static noises (originating from device fabrication mismatches)
and dynamic noises (as a result of thermally induced random
tunneling events) introduced into the network.

I. INTRODUCTION

FOR the past 3 decades, the scaling of semiconductor
devices has been the primary driving force behind

improving the performance of LSI processors and systems.
The decreasing feature sizes of transistors have been ac-
companied by dramatic increase in speed and integration
densities, which have in turn led to increased and diversified
functionality. This trend has been viable mainly due to
guaranteed reliability in the downscaled devices even with
decreasing process technologies. Reliability corresponds to
high yields per die, hence low production costs (high cost
efficiency), giving the circuit designer the opportunity to
create reliable integrated systems with improved processing
speeds, and increased functionality.

However, as the physical feature sizes approach the deep
sub-micron regime, process variations and undesirable in-
ternal (and or external) noises associated with nano-scale
properties pose critical concerns in the future of scaling
and in system system design; they dramatically reduce the
reliability of electronic devices on the edge of the nano-scales
[1]. This reduced reliability is even more conspicuous as
electronic device sizes are further scaled down to the nano-
meter regime [2].
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Getting rid of these nano-scale characteristics would in-
volve introducing error-detecting circuits within the system,
which leads to advanced complexity, and design tradeoffs
in using high integration capacities available to the circuit
designer. Some design techniques offering possible ways
to mitigate the impact of within-die variations have been
explored [3]. Other works involving introduction of error-
detecting circuitry in electronic systems include architectures
proposed by Milor et. al [4] and Chatterjee [5]. Unfortu-
nately, these approaches offer only a short term solution. The
uncertainty in coming up with a long-lasting solution to these
challenges has paved the way into a new field of the so called
emerging research nano devices, which effectively utilize
nano-scale characteristics in their operation. Such devices
are viewed as promising blocks for creating application-
specific processors, and ultra low-power systems in coming
generations of LSI platforms. Such devices would include
single-electron devices [6].

Single-electron devices inherently operate with extreme
low power dissipation, and provide a high integration density
per unit area. Thus, they are viewed as potential building
blocks for low-power, parallel-based computational applica-
tions in future LSI platforms. However, one of the major
problems facing single-electron devices is that they are
potentially unreliable. Their low reliability originates from
two factors: i) large variations in the features of fabri-
cated devices, hence device characteristics, and ii) sensitivity
to internal and external noises. Therefore, despite all the
appealing features in utilizing nano-electronic devices in
future electronic systems, we have to address and solve a
fundamental question; how do we build reliable systems from
error-prone building devices?

Improvements in fabrication technology alone cannot ac-
comodate such enormous device failures. Therefore in de-
signing functional electronic devices in the deep sub-micron
and post-silicon era, we need to keep in mind the fact that
we have to build reliable systems with unreliable, and error-
prone devices [7] - [8]. Thus the need to address robustness
and design systems with large enough signal-to-noise ratios
is inevitable [9].

An innovative architectural approach to increasing reli-
ability, is to exploit the internal and external noises, and
the heterogeneity originating from fabrication mismatches
in designing new electronic systems. For example, if we
look at how living organisms code and transmit signals in
their systems, we find similarities between neurons (the basic
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elements responsible for information processing in neuronal
systems) and nano-meter sized electronic devices. Neurons
are sensitive to noises, operate asynchronously because of
differences in their structural properties, and have large time
jitters—that is, they are imperfect and unreliable [10]—-
but nevertheless they carry out information processing effec-
tively. Similarly, nano-electronic devices (for instance single-
electron devices) are sensitive to external interferences and
noises, and have diverse fabrication variations in feature
sizes, resulting in heterogeneity in parameters and device
characteristics. Thus in creating electronic systems with such
imperfect units, obtaining hints from living organisms is
evidently of much importance. Such electronic systems that
mimic neurological systems are referred to as neuromorphic
circuits [11]. A number of neuromorphic circuits that operate
by utilizing noises and device fabrication mismatches have
been proposed. They include neuromorphic CMOS circuits
utilizing device fabrication mismatches and environmental
noises [12], single-electron circuits employing thermally
induced stochastic resonance (SR) (see [13] for details on
SR) in signal transmission [14], and single-electron networks
performing synchrony detection [15].

This paper explores the possibility of creating novel cir-
cuit architectures with single-electron devices, by employing
environmental (dynamic) noises, and static noises originat-
ing from fabrication mismatches. The circuit architecture is
inspired by information coding mechanisms in biological
neural networks that convert analog input signals into spike
densities (digital-pulse streams) in the time domain. This
operation is also referred to 1-bit analog-to-digital conver-
sion, and is often implemented with ∆ − Σ modulators.
Such converters exhibit noise-shaping properties (see [16]
for details on neuronal noise-shaping), separating signal and
noises into low and high frequency bands respectively. A
theoretical investigation of noise-shaping in neural networks
is elaborated by Mar et. al [17]. In their work, they demon-
strated that noise-shaping was improved by introducing an
inhibitory coupling between noisy model integrate-and-fire
neurons (IFNs). In addition, the authors note that the noise-
shaping properties were improved due to heterogeneity and
noises introduced into the network. Inspired by their work,
we propose and investigate the performance of a single-
electron pulse-density modulating circuit that exhibits noise
shaping properties.

This paper is organised as follows. Firstly, a brief review of
pulse-density modulation in neurons is presented. Secondly,
implementation of integrate-and-fire neurons, together with
fundamental operation of single-electron devices is illus-
trated. Thirdly, a model on how to realize pulse-density
modulation employing excitatory and inhibitory mechanisms
is explained. This is followed by the circuit structure imple-
menting the model with single-electron oscillators. Fourthly,
the performance of the proposed circuit is investigated
through Monte-Carlo based computer simulations. The paper
is summarized by noting on a possible architecture that also
employs noises in achieving improved signal-to-noise ratio

in single-electron circuits and nanowire transistor networks.

II. A SHORT REVIEW OF PULSE-DENSITY MODULATION
IN NEURONS

A neuron aggregates inputs from other neurons connected
through synapses. The aggregated charge raises the mem-
brane potential until it reaches a threshold, where the neuron
fires generating a spike. This spike corresponds to a binary
output“ 1”. After the firing event, the membrane potential
is reset to a low value, and it increases again as the neuron
accepts inputs from neighboring neurons (or input signals)
to repeat the same cycle; producing a stream of“ one”
and “ zero” pulse trains. The spike interval (density of
spikes per unit time) is proportional to the analog input
voltage i.e. the level of analog input is coded into pulse
density. Thus a neuron can be considered as a 1-bit A-D
converter operating in the temporal domain. Fig. 1(a) shows
a schematic representation of analog-to-digital conversion
in neurons. The output pulse density is proportional to the
amplitude of the input signal. The operation of neurons is
often modeled with spiking neurons such as the integrate-
and-fire neurons. Fig. 1(b) illustrates the fundamental op-
eration of an integrate-and-fire (IFN) neuron. The open
circles (◦) and shaded circles (•) represent excitatory and
inhibitory synapses, respectively. The IFN receives input
signals (voltages) through the excitatory synapses (to raise its
membrane voltage) and inhibitory synapses (which decrease
the membrane voltage) from adjacent neurons, to produce a
spike if the summed input voltage (

∑
V ex

i −
∑

V in
j ) exceeds

the threshold voltage. After the IFN fires, its membrane
voltage is reset to a low value, and the integration action
resumes. The output pulse density is proportional to the net
input voltage.

III. SINGLE-ELECTRON INTEGRATE AND FIRE NEURON

A single-electron oscillator [6], [18] is used to model the
operation of an integrate-and-fire neuron (IFN). A single-
electron oscillator (Fig. 2(a)) consists of a tunneling junction
(capacitance = Cj) and a high resistance R connected in
series at the node (•) and biased with a positive or a negative
voltage Vd. It produces self-induced relaxation oscillations
if the bias voltage is higher than the tunneling threshold
(Vd > e/(2Cj)) (where e is the elementary charge and kB is
the Boltzmann constant). The node voltage V1 increases as
the capacitance Cj is charged through the series resistance
(curve AB), until it reaches the tunneling threshold e/(2Cj),
at which an electron tunnels from the ground to the nanodot
across the tunneling junction, resetting the node voltage to
−e/(2Cj). This abrupt change in node potential (from B
to C) can be referred to as a firing event. The nanodot is
recharged to repeat the same cycles. Therefore, a single-
electron oscillator could be viewed as an integrate and fire
neuron, which aggregates input voltages (or inputs from
from neighboring neurons) producing a pulse when its node
voltage reaches the threshold voltage (Fig. 2(b)). By feeding
a sinusoidal input to a single-electron oscillator, one can
adjust the probability of electron tunneling in the circuit:
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Fig. 1. (a) Pulse density modulation in neurons: analog input is converted into a pulse train whose density is proportional to the net amplitude of the input
signal. (b) Fundamental structure and operation of integrate-and-fire neurons (IFNs). The IFN receives input voltages through excitatory and inhibitory
synapses, and produces pulses when the net input voltage exceeds the threshold. The output pulse density (firing rate) is proportional to the net input
voltage.
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Fig. 2. Single-electron tunneling (SET) oscillator: (a) circuit configuration
and (b) waveform showing oscillation of node voltage V1, as capacitor Cj
is charged through resistance R (from A to B) and reset by an electron
tunneling from the ground to the node (voltage drop from B to C). This
sudden drop in the node voltage (BC) corresponds to a pulse output.

the tunneling rate increases as the input voltage rises above
the threshold and gradually decreases to zero as the input
approaches and falls below the threshold value. In other
words, a single-electron oscillator converts an analog input
into digital pulses. A single-electron oscillator can thus be
viewed as a PDM converter, that produces a spike train (or
produces zero) if the input signal exceeds (or falls below)
the threshold value.

IV. CIRCUIT IMPLEMENTATION

Fig. 3 shows the model of the proposed circuit, consisting
of three neuronal elements, the minimum number of units
required to achieve a considerable signal-to-noise ratio ([12]).
The neurons receive the same analog input through excitatory
synapses (◦) and produce digital pulses toward the global
inhibitor Σ [19]. The output is fed-back to the three elements
through inhibitory synapses denoted by shaded circles (•) in
the network. Firing in any of the neurons in the network

output

neuron  #1

neuron  #2

neuron  #3

global inhibitor

input 

inhibitory synapse
excitatory synapse

Fig. 3. Model of pulse-density modulation circuit employing excitatory
and inhibitory mechanisms. A common input is fed to the three neurons
through excitatory synapses (◦), while the output is fedback to the three
neurons through inhibitory synapses (•).

decreases the membrane potential of the other neurons,
reducing the probability of their firing.

The neuronal structure in Fig. 3 is implemented with
single-electron oscillators that receive the same analog input.
Each neuron in the network is implemented with a single
electron oscillator. The input induces electron tunneling in
the single-electron oscillators, generating pulses toward the
global inhibitor. The global inhibitor (Σ) sums the pulses
to produce a train of spikes representing tunneling (firing)
events in the three neurons. Fig. 4 shows the circuit con-
figuration. The global inhibitor is realized by numerically
summing the firing events in the network. Inhibitory synapses
are implemented by coupling capacitances (C), that decrease
the node voltages of all the oscillators once a pulse is released
at the output.

Each neuron in the network receives the same input (V (t))
raising its node voltage. Whenever any of the three single-
electron oscillators reaches its threshold voltage, it fires,
releasing a pulse toward the global inhibitor. The global in-
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Fig. 4. Single-electron circuit performing pulse-density modulation. The
structure consists of three single-electron oscillators, and a global inhibitor
Σ. The output is fed back to all the other oscillators through the capacitive
coupling C.

hibitor, through the coupling capacitors C, subtracts a certain
amount of voltage from the other oscillators, suppressing
them from tunneling for a certain period of time. This
contributes to the distribution of output pulses. In the absence
of the global inhibitor, all the neurons would fire randomly
and with almost the same timing, producing a Poisson-
like distribution of inter-spike intervals (ISIs). Contrally, by
introducing the global inhibitor, consecutive firing events
in the network are suppressed, resulting in a Gaussian-like
distribution of ISIs in the coupled network.

V. SIMULATION RESULTS

As mentioned in the introduction, the noise-shaping prop-
erties of the network of model neurons were reportedly im-
proved by introducing dynamic and static noises [17]. In our
circuit, this was realized as follows. As noted earlier, thermal
noises lead to random electron tunneling in single-electron
devices. We therefore introduced dynamical noises by tuning
the temperatures in both the coupled and the uncoupled
networks. Static noises were introduced only in the coupled
network, by varying the values of series resistances R. In
the coupled network, all the series resistances were set to
44 MΩ, whereas in the coupled network, the mean value of
the three resistances was 44 MΩ (to obtain a ISI distribution
with a standard deviation of one sigma), and the variance
was ±12.5%. The inhibitory coupling in the coupled network
was implemented with a capacitive coupling of 4 aF. The
temperature was set to 0.5 K in all simulations.

The performance of both the coupled and the uncoupled
circuits was investigated through Monte-Carlo based com-
puter simulations. All the circuit units in both the coupled and
the uncoupled networks were fed with an input Vd = 7.85
mV.

Fig. 5 shows the raster plots of the firings of the net-
work elements. The top diagrams of (a) and (b) show the
random pulses for each unit in the uncoupled and coupled
networks, respectively. The bottom diagrams in (a) and (b)

show the summed output (pulse train) for all the elements
in the uncoupled and coupled networks, respectively. From
the diagrams, we could observe that the firing timings in
the uncoupled network were random and all the neurons
fired with almost the same timing. In the coupled network,
however, the firing of one of the neurons inhibited the others
from firing, thus reducing the probability of consecutive
firing in the network. In addition, the variance in the series
resistances results in variations in the time constants of the
network neurons. This reduced the probability of neurons
attaining the firing threshold at the same time, and thus
improved the distribution of firing intervals in the network.
Consequently, these two factors resulted in well distributed
firing timings in the network, leading to a Gaussian-like
distribution of inter-spike intervals.

Fig. 6 shows the ISI distribution of firing events in the
whole network. The histogram for the coupled network
shows a Gaussian-like distribution with an inter-spike interval
of 1.65 ns at the maximum number of firing counts. The
histogram for the uncoupled network, in contrast, shows
a Poisson-like distribution. We also investigated the effect
of increasing the variance in the series resistances on the
standard deviation of the Gaussian-like distribution. We
found that the standard deviation increases as the varia-
tion decreases below or increases above 12.5 %. As the
variance decreases, the probability that multiple neurons
in the network reach the threshold voltage at the same
time increases. This shifts the ISI at the maximum firing
rate toward zero, consequently leading to a larger standard
deviation of the ISI distribution. The ISI distribution can,
however, be tuned by adjusting the value of the inhibitory
coupling capacitance C. As the coupling strength increases,
the number of neurons reaching the threshold concurrently
decreases drastically. In otherwords, the firing timings tend
to distribute evenly, resulting to a sharper Gaussian-like
distribution. However, increasing the coupling strength to a
relatively high value, beyond the optimal value (of 4 aF in
our simulations), leads to a winner-takes-all [20] operation
(where only one neuron in the network produces the highest
spike rate and inhibits all the others from firing). This would
be undesirable, especially in a network of fault- and defect-
prone elements, where increasing the probability of correct
operation requires that all the elements play a substantial
part in the network operation (i.e. a winners-share-all [21]
operation, where several neurons in the network survive).
Thus obtaining an ideal operation of the network requires
tuning the firing rates of individual neurons though the series
resistances, and also tuning the summed firing rate of the
network through the capacitive coupling to obtain a winners-
share-all type function.

Fig. 7 shows the power spectra for the coupled and
uncoupled networks. The three neurons in both networks
were fed with a sinusoidal input Vd = V0 + Asin(2πft),
where amplitude A = 2.5 mV, frequency f = 100 MHz, and
bias voltage V0 = 7.85 mV. The power in both cases was
calculated with 25 runs averaged with a square window. From
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Fig. 5. Raster plots for firing events for uncoupled (left diagrams) and coupled (right diagrams) networks. The top diagrams show firing events for each
neuron, while the bottom diagrams show summed output spike train at the global inhibitor Σ. Firing events in the uncoupled network were random and
almost consecutive, whereas firing timings in the coupled network were well distributed as a result of the inhibitory coupling inhibiting concurrent events.
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Fig. 6. Histogram of inter-spike intervals (ISIs) for coupled and uncoupled
networks. The uncoupled network shows a Poisson-like distribution of ISIs
where the firing events in the network elements are almost concurrent. The
coupled network shows a Gaussian-like distribution, as a result of distributed
firing events.

the results we can confirm that the global inhibitory coupling
and the heterogeneity in series resistances collectively helped
reduce the noise level in the coupled network substantially.
The signal-to-noise ratio in the uncoupled network was
22.96 dB, while that in the coupled network was 27.30
dB below the cutoff frequency of 1 GHz. The harmonic
distortions in the results are due to (i) the intrinsic firing
rates of the individual neurons in the network and (ii) non-
linear feedback introduced to the network. These distortions
degraded the SNR characteristics. They could be decreased
by setting the input signal frequency to a value much lower
than the firing frequencies of individual neurons in the
network. Another way of increasing the SNR without tuning
the input frequency would be by filtering the output signals,
to get rid of the higher frequencies. This is often realized
with digital filters in the feedback loop of Σ−∆ converters
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Fig. 7. Power spectra of coupled and uncoupled networks. The coupled
network shows a reduced noise level in the lower frequencies (signal band),
improving the SNR with 4.34 dB as compared to the uncoupled network.

[22].

VI. DISCUSSIONS AND CONCLUSION

To provide a basis for designing electronic circuits with
mismatch-prone single-electron devices, this paper proposed
and investigated the performance of a bio-inspired 1-bit
analog-to-digital converter. The circuit elements are coupled
to each other through a global inhibitory coupling. Through
Monte-Carlo based computer simulations, we demonstrated
that the presence of static and dynamic noises, and the
global inhibitory coupling introduced into the circuit play
an important role in improving its noise-shaping properties.
The signal to noise ratio improved by 4.34 dB in the coupled
network as compared to the un-coupled one.

In the present network we extensively investigated the
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effect of static noises as a result of variations in series
resistances, and of the inhibitory coupling in the network to
noise-shaping properties. Investigating the effect of dynamic
noises at higher temperatures, would also give a guideline
into actual circuit design with such noise sensitive devices.
From the results of these investigations, we can deduce that
the performance of the circuit would improve up to an opti-
mal value of thermal noises, and then deteriorate drastically
as randomly induced firing further increases. This is as a
result of decreased effect of the inhibition strength which
contributes to the Gaussian-like distribution as discussed in
the simulation results.

Also, choosing the optimal number of neurons to use
in the network would play an important role in improving
its performance. As the number of neurons increases, we
would obtain better resiliency toward faults and defects in
the network. This would however, come at the expense of
tuning the optimal inhibitory coupling strength to realize a
winners-share-all operation.

Before summarizing the paper, it’s worth noting on similar
promising works in achieving robust electronic systems by
utilizing noises in improving signal-to-noise ratio in elec-
tronic systems. This approach has been demonstrated with
single-electron devices, and nanowire transistor networks
[23] by some of the authors of this paper. The architec-
tures effectively employ stochastic resonance (SR) [13], and
demonstrate a viable novel approach to realizing robust
systems in noisy environments. Stochastic resonance is a
phenomenon where weak signals can be retrieved from a
noisy output [24] by applying an optimal amount of random
noise. Oya et. al., [14] proposed a single-electron neural
network that utilizes SR in signal transmission in neural
networks, and successfuly demonstrated that using SR indeed
improved the temperature performance of the circuit. Kasai
et. al. [23] experimentally investigated the performance of
nanowire transistors with variations in threshold voltages and
operating in a noisy experimental setup. In both cases, the
effects of SR were investigated by setting the input signal to
a value lower than the tunneling (firing) threshold of the
network elements. By applying noises, network elements
with non-zero inputs were induced to tunnel—tunneling
events synchronized with the input signal to a certain quantity
of noises. The authors showed that the SNR in their circuits
was enhanced through partially using noises.

Such innovative approaches, in addition to the neuro-
morphic methodology described in this paper would be
indispensable in addressing reliability issues in electronic
circuitry with nano-electronic devices. From the investigation
results in this paper, we can conclude that by learning
from biological systems: high levels of redundancy where
information processing depends on many neurons operating
in parallel, controlled signal transfer through excitatory and
inhibitory synapses, and stochastic resonance mechanisms,
we could get hints on how to design circuits that perform
better even in noisy environments and (or) with failure-prone
electronic devices.
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