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Subspace Based Linear Programming Support Vector Machines

Syogo Takeuchi, Takuya Kitamura, Shigeo Abe, and Kazuhiro Fukui

Abstract— In subspace methods, the subspace associated with
a class is represented by a small number of vectors called
dictionaries and using the dictionaries the similarity measure is
defined and an input is classified into the class with the highest
similarity. Usually, each dictionary is given an equal weight. But
if subspaces of different classes overlap, the similarity measures
for the overlapping regions will not give useful information for
classification.

In this paper, we propose optimizing the weights for the
dictionaries using the idea of support vector machines (SVMs).
Namely, first we map the input space into the empirical feature
space, perform kernel principal component analysis (KPCA) for
each class, and define a similarity measure. Then considering
that the similarity measure corresponds to the hyperplane, we
formulate the optimization problem as maximizing the margin
between the class associated with the dictionaries and the re-
maining classes. The optimization problem results in all-at-once
formulation of linear SVMs. We demonstrate the effectiveness
of the proposed method with that of the conventional methods
for two-class problems.

I. INTRODUCTION

IN subspace methods [1] each class is considered to be
confined in a specific subspace and the subspace for a

class is defined by a small number of linearly independent
vectors called dictionaries. In classifying an input, the simi-
larity of the input to the set of dictionaries for each class is
calculated and the input is classified into the class with the
highest similarity. Because subspace methods do not directly
control the overlap between classes, selection of dictionaries
directly influence classification performance.

To improve classification ability various variants have been
developed, such as learning subspace methods [2]. In most
cases, the dictionaries are generated by principal component
analysis (PCA). To improve class separability, many kernel-
based subspace methods have been developed, such as kernel
mutual subspace methods [3], kernel-based learning (KBL)
algorithms [4], prototype reduction schemes (PRS) to opti-
mize kernel-based nonlinear subspace methods [5], selecting
the optimum dimension of subspaces using heuristic func-
tions called overlap criterion [6], kernel constrained mutual
subspace methods (KCMSM), which provide a framework
for 3D object recognition [7], and kernel orthogonal subspace
methods (KOMSM), which classify sets of patterns such as
video frames or multi-view images [8]. Most of the methods
are concentrated on the definition of the subspace so that
each class separates one another but little effort is done to
improve separability after subspaces are defined.
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To solve this problem, in this paper, we optimize the
weights in the similarity measure so that the margin between
classes is maximized while minimizing the classification
error for the training data: the same idea as optimizing
support vector machines (SVMs). Namely, we consider the
similarity measure as the separating hyperplane that separates
the associated class from the remaining classes and formulate
the optimization problem under the constraints that for a
data sample belonging to a class, the associated similarity
measure is maximized among the similarity measures for
all the classes. This formulation is the same as all-at-once
formulation, which is considered to be inefficient. But even if
kernels are used, kernel evaluations are done when similarity
measures are calculated. Thus, during optimization, kernel
evaluations are not necessary. We use the linear objective
function, instead of quadratic objective function, so that the
problem can be solve by linear programming. We call this
method subspace based linear programming SVMs, SSLP-
SVMs for short.

The paper is organized as follows. In Section II, we
summarize conventional kernel based subspace methods.
And in Section III, we propose SSLP-SVMs. In Section IV,
we evaluate the proposed method using two-class benchmark
data sets, and in Section V we conclude our work.

II. KERNEL SUBSPACE METHODS

In kernel subspace methods, each class is defined by a
small number of dictionaries that define the subspace in
the feature space associated with the class, and using the
dictionaries a similarity measure is defined for each class.
And for an input, the similarity measures are calculated for
all the classes and the input is classified into the class with
the maximum similarity.

Let the kth dictionary for class i in the feature space be
ϕik (k = 1, ..., ri). Then the similarity measure for class i,
Si(x), is defined by

Si(xi) =
ri∑

k=1

wik (ϕT
ik g(x))2

‖ϕik‖2 ‖g(x)‖2
, (1)

where wik is the weight for the kth similarity of class i and
g(x) is the mapping function that maps the input space into
the feature space.

Defining

fi(x) =

(
(ϕT

i1 g(x))2

‖ϕi1‖2 ‖g(x)‖2
, ...,

(ϕT
iri

g(x))2

‖ϕiri
‖2 ‖g(x)‖2

)T

, (2)

(1) becomes

Si(x) = wT
i fi(x),

(3)
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where wi = (wi1, ..., wiri )T . Input vector x is classified into
class

argi max
i=1,...,n

Si(x). (4)

In generating dictionaries, PCA is often used. But, because
PCA performs linear transformation of the input space,
separability of the classes does not change. Thus, if different
classes overlap in the input space, PCA may not give useful
information for the regions where different classes overlap.
Kernel PCA (KPCA) can avoid this situation by mapping
the input space into the high-dimensional feature space and
performing the PCA in the feature space.

In kernel subspace methods using KPCA, each class is
defined by the eigenvectors of KPCA performed for the
training data associated with the class, and using the eigen-
vectors a similarity measure is defined for each class. Unlike
conventional KPCA, in calculating the covariance matrix, the
mean vector is not subtracted from the training data. Thus, a
dictionary ϕik is the eigenvector of the following eigenvalue
problem:

1
|Xi|

∑
i∈Xi

g(xi)gT (xi)ϕik = λik ϕik, (5)

where Xi is the index set of class i data and λik is the
eigenvalue of ϕik .

In the above calculation, we usually use kernel tricks to
avoid explicit treatment of variables in the feature space
because the dimension of mapping function becomes very
large or for RBF kernels infinite. Instead of using kernel
tricks we use the concept of empirical feature spaces [9]. In
the following, we describe the procedure.

Let the kernel be H(x,x′) = gT (x)g(x′). For M
training data, the associated kernel matrix is the M × M
symmetric, positive semi-definite matrix H = {H(xj ,xk)}
(j, k = 1, ...,M) given by

H = USUT , (6)

where the column vectors of U are eigenvectors of H .
Because it is orthonormal, S is expressed by

S =

⎡
⎢⎢⎢⎣

σ1 · · · 0
...

. . .
... 0N×(M−N)

0 · · · σN

0(M−N)×N 0(M−N)×(M−N),

⎤
⎥⎥⎥⎦ , (7)

where σj(> 0) are eigenvalues of H , whose eigenvectors are
the jth columns of U .

Defining the N vectors of U associated with the nonzero
eigenvalues as the M × N matrix P and

Λ =

⎡
⎢⎣

σ1 · · · 0
...

. . .
...

0 · · · σN

⎤
⎥⎦ , (8)

we can rewrite (6) as follows:

H = PΛP T . (9)

The mapping function to the N -dimensional empirical
feature space is expressed by

h(x) = Λ−1/2PT (H(x1, x), . . . , H(xM , x))T . (10)

The kernel for the empirical feature space is defined by

He(x,x′) = hT (x)h(x′). (11)

It is proved that

H(xi,xj) = He(xi,xj) for i, j = 1, . . . , M. (12)

Namely, both kernels give the same values for the training
data and this is extended for the case where one of the
arguments is a training data sample [10]. Thus, kernel
methods in the feature space can be treated in the empirical
feature space without any approximation.

The covariance matrix calculated by (5) is equivalent to
the following formula:

1
|Xi|

∑
j∈Xi

h(xj)hT (xj)ϕik = λikϕik. (13)

Although the dimension of the coefficient matrix on the
left-hand side of (5) is infinite for RBF kernels, we can
calculate the equivalent covariance matrix using (13). But
because by this method we need to calculate the eigenvalues
and eigenvectors, we use the following mapping function:

h(x) = (H(xk1 , x), . . . , H(xkN , x))T
, (14)

where ki (i = 1, . . . , N) ∈ {1, . . . , M} and xk1 , . . . ,xkN

are N training data, which are linearly independent in the
feature space. We select these training data by the Cholesky
factorization. Namely, during factorization of the kernel
matrix, if the diagonal element becomes zero, we consider
the associated training data sample is expressed by the linear
combination of previously factorized training data. And we
delete the associated column and row vectors and proceed
the Cholesky factorization [11], [12].

For the kernel subspace methods, because each subspace
is defined separately using the training data for the class, we
may use different kernels and different kernel parameters.
But, by this method, optimization of the kernels and the
kernel parameters is difficult. Therefore, we use the same
kernel and parameter value for all the subspaces.

For the given kernel and the parameter value, we need to
determine the number of eigenvalues, namely the number
of dictionaries, ri, for class i. To select the number of
eigenvalues, we use the cumulative proportion of eigenvalues
[3]:

α(ri) =
Σri

j=1λj

ΣN
j=1λj

× 100 (%). (15)

Defining the threshold κ, which takes the value between
0 and 100, we determine ri that satisfies α(ri − 1) < κ ≤
α(ri).

We use the same κ value in determining ri for i =
1, . . . , n, where n is the number of classes. The parameter
value for a given kernel and the κ value are determined by
cross-validation.
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III. SUBSPACE BASED LINEAR PROGRAMMING SUPPORT

VECTOR MACHINES

In conventional subspace methods, equal weights are used
for dictionaries, i.e., wik = 1, or if KPCA is used, the eigen-
values are set to wik . However, these values are not optimal
from the standpoint of class separability. In this section, to
solve this problem, we discuss SSLP-SVMs, which use the
idea of SVMs, that is, maximizing margins between the class
associated with a subspace and the remaining classes. We use
a linear objective function, instead of a quadratic objective
function, so that the optimization problem can be solved by
linear programming.

A. Definition of SSLP-SVMs

To introduce freedom into the similarity measure given by
(3), we use the following decision function, which includes
the bias term bi:

Di(x) = wT
i fi(x) + bi. (16)

As will be shown in the “Experimental Results” section, in
some cases inclusion of the bias term does not work well.
In such cases, we delete the bias term.

Equation (16) can be considered as the separating hyper-
plane in the dictionary space given by fi(x) for class i,
and it separates class i data from those belonging to the
other classes. Thus, minimizing ‖w‖1 results in maximizing
the margin in the dictionary space. By this definition, the
difference from SVMs is that there are n distinct dictionary
spaces and thus a data sample belonging to class i to be
correctly classified, the value of (16) for class i must give
the maximum value. This results in all-at-once formulation
used for SVMs.

Accordingly, SSLP-SVMs are defined by

minimize Q(w,b, ξ) =
n∑

i=1

rk∑
k=1

wik +

M∑
j=1

n∑
i�=yj ,i=1

C M

n |Xyj |
ξji (17)

subject to wT
yj

fyj (xj) + byj − wT
i fi(xj) − bi ≥ 1 − ξji

for i �= yj, i = 1, ..., n, j = 1, ...,M, (18)

ξji ≥ 0
for i �= yj, i = 1, ..., n, j = 1, ...,M, (19)

wik ≥ 0 for i = 1, ..., n, k = 1, ..., rk, (20)

where b = (b1, . . . , bn)T , C is the margin parameter that
determines the tradeoff between maximizing margins and
minimizing misclassifications, yj (yj ∈ {1, . . . , n}) are the
class labels for the jth training data, ξji (i �= yj) are
nonnegative slack variables for the jth training data for
class i, and ξ = (. . . , ξij , . . . )T . In (17), M/(n |Xyj |) is
to set different values of the margin parameter for different
classes for unbalanced training data. Namely, if |Xyj | is
larger than those of the remaining classes, ξji is multiplied
by C M/(n |Xyj |). But if |Xi| are the same for all classes,
ξji is multiplied by C.

Unlike regular SVMs, we make the weights nonnegative
by (20). Since fi(xj) are constants, the above optimization
problem is equivalent to a linear all-at-once SVM with
nonnegative weights.

To solve the above problem by linear programming we
convert variables bi that take negative values into the differ-
ence of nonnegative variables as follows:

bi = bi
+ − bi

−, (21)

where bi
+ ≥ 0, bi

− ≥ 0.
In addition, to transform inequality constraints into equal-

ity constraints, we introduce nonnegative slack variables uji

(i = 1, . . . , n, i �= yj, j = 1, ...,M). Then the optimization
problem given by (17)–(20) is transformed as follows:

minimize Q(w,b+,b−, ξ,u) =
n∑

i=1

rk∑
k=1

wik +
M∑

j=1

n∑
i�=yj ,i=1

CM

n Nyj

ξji (22)

subject to wT
yj

fyj (xj) + b+
yj

− b−yj

−wT
i fi(xj) − b+

i + bi
− = 1 − ξji + uji

for i �= yj , i = 1, ..., n, j = 1, . . . , M,(23)

where u = (. . . , uji, . . . )T . In the above optimization
problem, all the variables are nonnegative and excluded from
the constraints. Thus, (20) is deleted. In this formulation,
the number of variables is

∑n
i=1 ri+(n − 1)M+2n and the

number of constraints is (n − 1)M .
We can solve the above optimization problem by linear

programming using simplex methods or primal-dual interior-
point methods.

When optimization is finished, if wik = 0, we assume
fik(x) does not contribute in recognition, where fik(x) is the
kth element of fi(x). Therefore, we can delete fik(x) from
the dictionary. This means that we can carry out training and
feature selection at the same time.

B. Training Algorithm

In our following study we use radial basis function (RBF)
kernels: exp(−γ‖x − x′‖2), where γ is the width of the
radius. In training SSLP-SVMs, we need to determine the
values of γ, κ, and C. Since SSLP-SVMs can perform
dictionary selection during training, we set a large value to
κ. In the computer experiments we set κ = 99.9 (%) and
make SSLP-SVMs select the optimum dictionaries.

In addition to optimizing the values of γ and C simul-
taneously, to make clear the improvement of the proposed
method over the conventional methods with equal weights
and with weights equal to the eigenvalues, we optimize
weights for the parameter values optimized for conventional
kernel subspace methods. Namely, we first determine, in
the empirical feature space determined by the Cholesky
factorization, the kernel parameter value and the cumulative
proportion for the conventional methods by fivefold cross-
validation. Then using the subspaces determined by the con-
ventional methods, we optimize the weights of the similarity
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measures by fivefold cross-validation. In the following we
show the training algorithm of for this case.

Step 1 For the conventional subspace method, determine
the value of γ and cumulative proportion of eigen-
values, κ, by fivefold cross-validation. Namely, for
a given value of γ, select linearly independent
training data by the Cholesky factorization. Then,
perform KPCA for each class and determine the
subspace for a given value of κ. For all the com-
bination of γ and κ values, select the values of γ
and κ that realize the highest recognition rate for
the validation data set. For the determined γ value,
determine the value of C for the SSLP-SVM by
fivefold cross-validation.

Step 2 Select the linearly independent data by performing
the Cholesky factorization of the kernel matrix
H = H(xj ,xk) (j, k = 1, . . . , M) with the γ
value determined in Step 1.

Step 3 For class i (i = 1, . . . , n), calculate eigenvectors
ϕik and eigenvalues λik using (13).

Step 4 Using the κ value determined in Step 1, determine
the number of eigenvalues, ri, for class i (i =
1, . . . , n).

Step 5 Calculate fi(xj) for i = 1, . . . , n, j = 1, . . . , M
replacing g(x) by h(x) in (2).

Step 6 Train the SSLP-SVM and obtain w.

IV. EXPERIMENTAL RESULTS

We compared the proposed SSLP-SVMs with the con-
ventional subspace methods using the two-class problems
[13], [14] shown in Table I, which lists the numbers of
inputs, training data, test data, and training and test data
sets. We used RBF kernels and in selecting the linearly
independent data by the Cholesky factorization, we assumed
the diagonal element is zero when the argument of the
square root is less than or equal to 10−5. We trained the
SSLP-SVMs by the simplex method [15]. As conventional
kernel subspace methods (KSMs), we used (1) KSMs with
weights equal to 1, KSMs (1) for short; and (2) KSMs
with weights equal to eigenvalues, KSMs (E) for short. We
trained three types of SSLP-SVMs: (1) SSLP-SVM with
κ = 99.9 (%) and the γ and C values optimized by fivefold
cross-validation; (2) SSLP-SVMs with the γ and κ values
optimized by KSMs (1); and (3) SSLP-SVMs with the γ
and κ values optimized by KSMs (E). When we say SSLP-
SVMs we mean the first type, and last two SSLP-SVMs are
abbreviated as SSLP-SVMs (1) and SSLP-SVM (E). The
reason why we set κ = 99.9 (%) for SSLP-SVMs is that we
wanted to check whether the feature selection mechanism of
linear programming formulation works. In training the SSLP-
SVMs (E) we deleted the bias term because the recognition
performance evaluated by cross-validation was better.

We determined the values of γ and κ for KSMs (1) and
KSMs (E) by fivefold cross-validation using the first five
training data sets. Then for SSLP-SVMs (1) and SSLP-SVMs
(E), we used the same values of κ and γ, and determined
the value of C by fivefold cross-validation.

TABLE I

BENCHMARK DATA SETS

Data Inputs Train. Test Sets

Banana 2 400 4900 100
B. cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 18 1300 1010 20

Ringnorm 20 400 7000 100
F. solar 9 666 400 100
Splice 60 1000 2175 20

Thyroid 5 140 75 100
Titanic 3 140 75 100

Twonorm 20 400 7000 100
Waveform 21 400 4600 100

We selected the values of κ from κ = {80.0, 85.0,
90.0, 95.0, 99.0, 99.9}, C from C = {0.1, 0.5, 1, 3, 5, 10,
50, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000}, and
γ = {0.1, 0.5, 1, 1.5, 3, 5, 10, 15} by fivefold cross-
validation.

Table II shows the parameter values determined by the
above procedure. The C values for SSLP-SVM (1) and
SSLP-SVM (E) were determined using the γ and κ values
determined for KSM (1) and KSM (E), respectively. From
the table, the optimal values of γ for KSM (1), KSM (E),
and SSLP-SVM are different for most of the problems.

Table III shows the average recognition rates and their
standard deviations of the validation data sets generated by
the first five training data sets. For each problem, the best
average recognition rate is shown in boldface. From the table,
SSLP-SVM performed best for six problems and KSM (1)
did for four problems. Comparing SSLP-SVM and KSM
(1), SSLP-SVM performed better than KSM (1) for eight
problems. Thus, SSLP-SVM performed best. SSLP-SVM (1)
performed better than KSM (1) for six problems and SSLP-
SVM (E) performed better than KSM (E) for six problems.

Usually, weights of 1 gave better results than those by the
eigenvalues. And optimization of weights worked better for
SSLP-SVM (1) than for SSLP-SVM (E). Especially, for the
breast cancer and splice problems SSLP-SVM (E) performed
especially worse than KSM (E). Namely, optimization of
weights worsened classification performance. This may be
due to the fact that the optimal values of γ are very different
for SSLP-SVM (E) and KSM (E) as seen from Table II.

Table IV shows the average recognition rates and their
standard deviations of test data sets. It also includes the
results for the regular SVMs. The better results excluding
those of SVMs are shown in boldface.

The best performance was obtained by SSLP-SVM and
the second best was KSM (1). Comparing SSLP-SVM and
KSM (1), SSLP-SVM performed better for seven problems.
Especially for the ringnorm problem improvement was sig-
nificant.

SSLP-SVM (1) and SSLP-SVM (E) performed better than
KSM (1) and KSM (E) for four problems, respectively.
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TABLE II

PARAMETER VALUES

KSM (1) KSM (E) SSLP-SVM SSLP-SVM (1) SSLP-SVM (E)
Data γ κ (%) γ κ (%) γ C C C

Banana 15 99.9 15 99.9 5 10 5 5
B.cancer 0.5 99.9 3 85.0 0.5 1 1 1
Diabetes 3 99.9 5 80.0 0.5 100 10 3
German 3 85.0 10 85.0 5 10 3 50
Heart 0.1 95.0 3 85.0 3 0.5 3 0.5
Image 15 99.0 15 99.9 0.5 10000 100 50

Ringnorm 0.1 99.9 15 99.9 0.1 1000 1000 1
F. solar 5 80.0 10 95.0 0.5 1000 3 3
Splice 1 99.0 15 99.9 0.1 1000 10 1

Thyroid 15 85.0 15 80.0 0.5 50 5 5
Titanic 0.1 80.0 5 95.0 0.5 0.5 5 0.1

Twonorm 0.1 80.0 3 80.0 0.5 1 10 5
Waveform 1.5 80.0 5 80.0 1 50 50 1

TABLE III

AVERAGE RECOGNITION RATES (%) AND THEIR STANDARD DEVIATIONS OF VALIDATION SETS

Data SSLP-SVM SSLP-SVM (1) SSLP-SVM (E) KSM (1) KSM (E)

Banana 89.7 ± 2.8 89.0 ± 3.2 89.2 ± 3.3 89.8 ± 3.1 88.3 ± 2.9
B. cancer 74.1 ± 5.0 74.1 ± 5.0 68.1 ± 6.4 72.6 ± 4.6 75.7 ± 3.5
Diabetes 74.8 ± 3.0 71.6 ± 3.7 70.9 ± 3.0 73.5 ± 2.6 73.8 ± 3.0
German 71.6 ± 3.5 70.2 ± 5.9 71.5 ± 2.5 73.9 ± 3.0 71.6 ± 2.8
Heart 83.5 ± 5.4 82.2 ± 4.0 83.5 ± 5.4 82.1 ± 3.9 82.9 ± 3.9
Image 94.4 ± 1.1 83.2 ± 14.4 95.2 ± 1.0 95.7 ± 0.9 88.1 ± 1.4

Ringnorm 98.4 ± 1.2 98.4 ± 1.2 63.9 ± 5.7 52.8 ± 1.8 62.5 ± 4.0
F. solar 65.6 ± 2.9 63.0 ± 6.2 65.1 ± 3.2 65.2 ± 2.8 64.4 ± 3.7
Splice 87.7 ± 1.8 86.2 ± 1.4 62.4 ± 9.2 87.4 ± 2.5 72.0 ± 3.0

Thyroid 96.6 ± 3.0 95.7 ± 2.5 96.1 ± 2.4 95.5 ± 2.5 96.0 ± 2.7
Titanic 78.3 ± 8.6 78.7 ± 7.8 73.5 ± 9.0 79.6 ± 7.8 79.4 ± 7.0

Twonorm 97.4 ± 1.2 97.5 ± 1.3 97.1 ± 1.4 97.1 ± 1.5 97.2 ± 1.4
Waveform 89.2 ± 3.0 90.0 ± 2.6 89.1 ± 2.5 89.6 ± 3.0 89.0 ± 2.8

Comparing the results in Tables III and IV, improvement
was decreased. Therefore, it is better to optimize the γ value
for SSLP-SVM not using the value obtained for KSM (1) or
KSM (E).

Comparing SVM and SSLP-SVM, SSLP-SVM performed
better than or comparable to SVM for eight problems. The
average recognition rate of SSLP-SVM was 5.3 lower for
the german problem. Since the standard deviation was 6.6,
in some cases very low recognition rates were obtained.

As seen from Tables III and IV, tendency to perform best is
similar for the validation data sets and test data sets and even
if the classifiers that show best performance are different,
performance difference is not so large. Thus, we can select
the suitable classifier according to the recognition rate of the
validation data sets.

Table V shows the numbers of deleted eigenvalues per
class by SSLP-SVM, SSLP-SVM (1), and SSLP-SVM (E).

The “Class 1” column in SSLP-SVM lists the numbers of
eigenvectors for class 1 selected by setting κ = 99.9 %
and the next column shows the deleted eigenvectors by
training SSLP-SVM. And the “Class 1” column in SSLP-
SVM (1) lists the numbers of eigenvalues for Class 1 selected
by KSM (1), and the next column lists the numbers of
deleted eigenvectors by training SSLP-SVM. For the breast-
cancer, heart, and twonorm problems, the number of selected
eigenvalues per class is almost one and still SSLP-SVM
performed very well. Thus, for these problems, the feature
selection worked well.

Comparing the number of eigenvectors for KSM (1) and
KSM (E), KSM (E) needed more eigenvalues for nine
problems. But by optimizing weights by SSLP-SVM (E),
many eigenvectors were deleted.
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TABLE IV

AVERAGE RECOGNITION RATES (%) AND THEIR STANDARD DEVIATIONS OF TEST DATA SETS

Data SSLP-SVM SSLP-SVM (1) SSLP-SVM (E) KSM (1) KSM (E) SVM

Banana 89.0 ± 0.6 88.6 ± 0.6 88.6 ± 0.6 88.6 ± 0.6 87.8 ± 0.7 89.3 ± 0.5
B.cancer 73.3 ± 4.6 73.3 ± 4.6 67.4 ± 5.0 75.0 ± 4.2 75.1 ± 4.3 72.4 ± 4.6
Diabetes 73.5 ± 2.0 71.3 ± 4.9 70.1 ± 2.8 73.4 ± 1.7 71.7 ± 2.2 76.3 ± 1.8
German 70.9 ± 6.6 71.2 ± 8.5 71.1 ± 8.5 75.1 ± 2.2 73.7 ± 2.1 76.2 ± 2.2
Heart 83.1 ± 3.8 82.9 ± 3.7 83.1 ± 3.8 80.4 ± 3.3 82.4 ± 3.6 83.7 ± 3.4
Image 95.1 ± 1.0 87.3 ± 13.5 95.8 ± 0.8 96.3 ± 0.6 88.0 ± 0.9 97.3 ± 0.4

Ringnorm 98.2 ± 0.2 98.2 ± 0.2 64.1 ± 2.4 76.5 ± 11.1 64.1 ± 2.4 97.8 ± 0.3
F. solar 64.7 ± 1.9 63.4 ± 4.7 65.0 ± 1.7 65.1 ± 1.8 63.5 ± 3.9 67.6 ± 1.7
Splice 88.2 ± 0.6 86.7 ± 0.8 51.4 ± 4.5 87.6 ± 0.8 71.9 ± 1.5 89.2 ± 0.7

Thyroid 96.3 ± 2.2 95.3 ± 3.8 96.1 ± 2.1 95.6 ± 2.0 95.0 ± 2.4 96.1 ± 2.0
Titanic 76.8 ± 1.1 77.0 ± 1.7 76.1 ± 8.9 76.6 ± 1.2 77.3 ± 0.6 77.2 ± 1.1

Twonorm 97.6 ± 0.2 97.5 ± 0.2 97.3 ± 0.3 97.6 ± 0.1 97.0 ± 0.5 97.6 ± 0.1
Waveform 89.3 ± 0.7 89.9 ± 0.7 88.2 ± 1.2 88.5 ± 5.6 88.0 ± 1.1 90.0 ±0.4

TABLE V

THE NUMBER OF DELETED EIGENVECTORS FOR SSLP-SVMS

SSLP-SVM SSLP-SVM (1) SSLP-SVM (E)
Data Class1 Del Class2 Del Class1 Del Class2 Del Class1 Del Class2 Del

Banana 67.7 56.2 73.2 62.5 123.1 104.9 128.8 108.3 123.1 104.9 128.8 108.3
B. cancer 75.6 74.8 53.5 52.6 75.6 74.8 53.5 52.6 20.2 14.7 22.7 13.3
Diabetes 99.7 88.7 103.3 92.1 229.4 192.5 159.0 116.7 19.0 3.9 54.7 18.3
German 494.6 461.4 212.8 83.7 113.0 93.2 83.0 29.0 398.8 138.8 192.3 91.7
Heart 94.4 92.7 75.6 74.2 21.2 14.3 28.1 19.4 37.3 36.1 42.0 40.7
Image 65.7 42.1 70.7 50.5 201.4 158.4 135.6 109.1 485.9 418.0 572.9 491.0

Ringnorm 21.0 18.8 85.6 84.9 21.0 18.8 85.6 84.9 225.4 186.1 199.0 114.2
F. solar 17.2 8.8 26.6 20.0 2.0 0.2 3.0 0.4 13.4 4.7 27.8 12.6
Splice 108.3 100.8 63.5 51.1 314.7 304.7 188.8 173.8 517.0 490.8 459.9 317.2

Thyroid 15.3 13.3 33.5 31.6 11.8 6.0 29.7 2.6 8.8 2.8 27.1 1.0
Titanic 7.6 6.2 9.5 8.9 1.0 0 1.0 0.1 5.3 4.2 7.7 6.7

Twonorm 187.2 186.2 190.9 189.9 1.0 0 1.0 0 120.0 88.9 121.8 5.6
Waveform 265.3 255.0 132.3 121.1 3.0 0 2.0 0 187.1 184.1 92.0 54.8

V. CONCLUSIONS

In this paper, we proposed subspace based linear program-
ming SVMs (SSLP-SVMs). In SSLP-SVMs, the weights
for the dictionaries are optimized based on the idea of
maximizing margins. We formulate the optimization problem
by linear programming and all-at-once formulation. By for-
mulating the problem by linear programming, we can select
dictionaries during training.

By the computer experiments for 13 two-class problems,
we showed that the SSLP-SVM performed better than the
kernel subspace method with equal weights for eight prob-
lems and optimum dictionaries were shown to be selected.
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