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Abstract: Recurrent neural networks functioning as associative 
memories are often studied and optimized for recall quality 
and capacity, with the focus primarily on the network’s 
stability, i.e., convergence to stored attractors. However, the 
ability of networks to switch between attractors in a controlled 
way is also potentially a useful phenomenon. Networks that are 
stable under most conditions, but can be switched by specific 
stimuli may be used to model cognitive control and other time-
varying cognitive phenomena. Such networks, which we term 
stable-yet-switchable (SyS) networks, are also of interest from 
the networks perspective, and the SyS properties of scale-free 
networks have been noted by researchers. In this paper, we 
consider networks with bimodal connectivity – a core of 
densely connected neurons and a larger periphery with sparser 
connectivity – and compare their SyS performance with 
random and scale-free recurrent neural networks. The results 
show that core-periphery networks have much better SyS 
performance than scale-free networks. 
 

 

I. INTRODUCTION 

Recurrent neural networks with embedded attractors are 
widely used as models of associative memory [1], [2]. The 
attractors stored in the networks are meaningful patterns of 
neural activity (memories), which are recalled when the 
network is allowed to relax from initial states similar to 
these patterns, resulting in recall, pattern completion, noise 
reduction, etc. The primary concerns in these networks are 
convergence to the stored attractors from nearby initial 
states and the stability of these stored attractors. Relatively 
little attention has been focused on the destabilization of 
attractors. However, from a functional perspective, a 
network’s ability to switch out of its current attractive state 
to another is of great significance. This is especially true in 
cases where attractor networks are used to model cognitive 
functions, many of which involve switching between 
functional states [3]–[6]. In such networks, each stable state 
represents a functional context. The network remains in the 
state corresponding to the appropriate context regardless of 
external stimuli, and switches to another stable state only 
when a stimulus or internally generated signal indicates a 
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change of context. We term such behavior stable-yet-
switchable (SyS). 
Figure 1 shows a simple instance where SyS behavior can be 
useful. The processing network, P, responds to incoming 
stimuli in a context-specific way (i.e., the same stimulus can 
produce different responses in different contexts). The key 
point is that context information is only transiently available 
but must influence P over an arbitrarily long period until the 
next context switch, i.e., it must be latched [7]. This 
eliminates the use of approaches based on tapped delay lines 
or decaying memory [8]–[12]. In the system shown here, the 
Latching Network, L, performs this function. It recognizes a 
context based on external stimulus and the current state of P 
and switches to an attractor representing this context, 
thereby projecting a context-specific bias on P and 
influencing the flow of information through that system. 
Thereafter, the attractor in L remains stable until a new 
context is recognized, which triggers another switch. Thus, 
L must have SyS behavior: It should be able to monitor the 
stimulus and the state of P without switching in most cases, 
but switch reliably when these indicate a new context.  
 

 
Fig. 1. A simple architecture for context-sensitive neural processing. The P 
network generates responses to incoming stimuli through complex recurrent 
dynamics, while the L network detects changes of context and latches a 
biasing signal for the duration of each context using attractors. The L 
network is SyS. 

 
Previous work in our lab has shown that the approach shown 
in Figure 1 allows simple attractor networks using Hebbian 
learning to perform complex temporal tasks with context 
dependence [13]–[16], and may explain how context-
dependent place representations arise in the rodent 
hippocampus [13], [17]. Subsequently, we have speculated 
that this may be a general mechanism underlying context-
dependent functionality in the cortex [16], [18], [19], as well 
as the regulation of gene expression during development 
[20]. Such ideas are also implicit in models of behavioral 
control based on switching mediated by the basal ganglia 
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[21]–[26]. In the current paper, we focus on the SyS 
functionality per se, and propose a simple method for 
obtaining it in recurrent neural networks. Such networks 
could form important components of larger cognitive 
architectures. We only consider networks with bipolar 
neurons, but networks of real-valued neurons with the 
possibility of chaos are potentially also very interesting. 
 

II.  INHERENT SYS BEHAVIOR 

The finite-state machine formalism has generally been used 
to model controlled switching in neural networks  [27], [28], 
[12], and has been proposed as the basis of cognitive control 
[27], [29], [30]. However, such models typically use error-
driven learning algorithms, which require long learning 
periods and many iterations – both of which are biologically 
implausible. It is thus interesting to consider whether certain 
classes of simple recurrent networks are inherently capable 
of  producing SyS behavior based on a simple prescription. 
 
One class of networks where SyS behavior is well-known 
and well-studied are scale-free networks [31]. These 
networks are characterized by a power-law distribution of 
connectivity, i.e.,  
 

                      α−kpk ~                                             (1) 

 
where pk is the probability that a node has k connections and 
α is a parameter, typically between 2 and 3. In networks 
with independent random connections between nodes, the 
degree distribution is expected to be Poisson [32], which has 
an exponentially decaying tail, implying that most nodes 
have a similar “typical” connectivity. Almost all models of 
recurrent neural networks have followed this prescription, 
with a few recent exceptions [33]–[37]. The power-law 
connectivity distribution with its lowly decaying tail (“fat 
tail”) implies that a significant number of nodes have 
exceptionally high connectivity, and serve as hub nodes, 
binding the network together. It has been shown that scale-
free networks (also called power-law networks) are very 
robust to random disruptions of their nodes because of the 
strong integrity provided by the hubs, but are exceptionally 
sensitive to disruptions of the hubs [38]. Recently, Bar-Yam 
and Epstein [39] investigated the behavior of attractor 
networks with scale-free connectivity, and found that 
perturbations applied to the networks’ hub nodes were far 
more disruptive than those applied to other nodes. In other 
words, they found SyS behavior, which is a particular case 
of the “robust-yet-fragile” characteristic seen in most 
complex systems [40]. 
 
The results of [39] suggest that scale-free networks can be 
used as the SyS block in the architecture of Figure 1. 
However, a natural question to ask is whether there is some 
architecture even better suited to provide SyS functionality. 
Based on logical considerations, we hypothesized that 
networks with a bimodal connectivity distribution 

represented such an architecture. These networks – termed 
core-periphery (CP) networks – have a relatively small 
subset of densely connected nodes, called the core, with the 
remaining nodes forming a sparsely connected periphery. 
Networks with bimodal degree distributions have been 
investigated for robustness, and found to be more robust 
than scale-free networks [41], [42]. In this paper, we report 
on a systematic comparison of random, scale-free and CP 
networks with respect to the SyS property, which is defined 
as follows:  

 
 
Fig. 2. Connectivity distributions in the three network models: (a) CP 
network; (b) Random network; (c) Scale-free network. All networks have 
approximately the same number of total connections. 

 
 
Given a N-node recurrent network with M stored attractors, 
if the network has converged to any of its stored attractors: 
 
1. The network should be robust, i.e., almost all state 

perturbations up to size m < N  should leave the network 
in the same attractor. 

2. The network should be switchable, i.e., a few specific 
perturbations of the same size should switch it reliably 
to other stored attractors. 

2510



 
 

 

3. The switching should be targetable, i.e., the same 
switching perturbation should always lead to the same 
attractor independent of network state. 

 
Strictly speaking, condition 3 is not necessary for the SyS 
property, but is essential for it to be useful. 

III.  MODELS AND METHODS 

A. The network model  

The Core-Periphery (CP) network consists of a small core 
sub-network, and a much larger periphery sub-network. 
Each core neuron is connected to every other core neuron, 
and also to some periphery neurons. Each periphery neuron 
is very sparsely connected to other periphery neurons, and to 
a few core neurons. The connections between any two 
neurons i and j are symmetric i.e. wij = wji, where wij is the 
weight from neuron j to neuron i.  

The result is a sparse network with a bimodal distribution of 
node degree. The hypothesis is that these networks would 
provide the needed stable-yet-switchable functionality: 
perturbations targeted at the highly-connected core neurons 
will cause switching while random perturbations that are 
spread across the whole network would not destabilize the 
current attractor. In this report, we use 500-neuron networks, 
with 100 neurons in the core and 400 in the periphery. The 
connectivity levels are: core-core: 100%; periphery-
periphery: 8.5%; core-periphery: 20%. 

The state of each neuron can either be 1 or -1, and all 
neurons are updated synchronously. This means that the 
network can sometimes converge to a period-2 cycle instead 
of a fixed points, but the results are qualitatively similar to 
those obtained for the asynchronous update case, which is 
more complicated to simulate. A threshold activation 
function is used to determine the activation state of neurons, 
and is given by: 

                                                                               (2)          

where xi(t) is the net input to neuron i at time t given by: 
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where f (xj(t-1)) is the activation function of neuron j at time 
t-1, N is the number of neurons, Wij is the weight from 
neuron j to neuron i. 

B. Attractor patterns  

Homogeneous, unbiased attractor patterns are used for all 
simulations. Each neuron has equal probability of being 
active i.e., having an activation state of 1, in each attractor, 
and the number of 1s and -1s in a pattern are equal. Since 
the core comprises the significant neurons responsible for 
switching, care is taken to see that each core neuron is active 

in approximately the same number of attractors to achieve 
parity of significance among core neurons. In the periphery, 
the neurons are chosen  randomly for activation.  Storing 
orthogonal attractor patterns reduces the effect of spurious 
attractors, so the patterns are made as orthogonal as 
possible.  

C. Learning rule  

A Hebbian learning rule is used to learn the attractor 
patterns by setting the weights between neurons. 
Mathematically the rule is given by: 
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where Wij is the weight from neuron j to neuron i, N is the 
number of neurons, p is the number of stored patterns, and 
δi

k is the activation of neuron i for pattern k.  

D. Network dynamics and output  

With synchronous update, a network started from an initial 
condition could settle into one of four situations: 1) a stored 
attractor close to the initial state of the network; 2) a distant 
stored attractor; 3) a spurious attractor; or 4) a period-2 
cyclic attractor. We allow 50 time steps for the network to 
converge after each perturbation, which defines a single 
cycle of the network..  

Upon convergence, the final state of the network is 
determined by comparing the network output to each of the 
stored attractors using overlap metric given by:              

                            
 
                                                      (5)        

where z is a stored pattern and y is the network’s final state.  

The overlap is a number between -1 and 1, with value 1 if 
both patterns are same; 0 if the number of similar bits is 
equal to the number of dissimilar bits; and -1 if all bits are 
dissimilar. It must be noted that since the stored attractors 
are approximately orthogonal to each other the overlap 
measure between any two stored attractors is approximately 
0. Since small recall errors of a few bits are unavoidable 
with sparse-connectivity [1], an overlap of 0.94 or above is 
considered to indicate sufficient recall. This means that, for 
a network of size 500 neurons, an error of up to 15 bits is 
considered acceptable.  
 

IV.  NETWORK PARAMETERS 

Functionally, the core represents the sensitive part of the 
network, while the periphery is the insensitive part. 
Perturbations targeted at the core have network-wide impact 
and cause switching, while those spread across the whole 
network primarily affect the periphery and do not have 
much impact overall, leaving the network stable.  
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Fig. 3 shows the stability of a 500 neuron (100 core, 400 
periphery) network to perturbations of different sizes. The 
network has 10 stored attractors. Three cases are shown: a) 
Perturbation directed only at the core; b) Perturbation 
directed only at the periphery; and c) Perturbation spread 
uniformly over the entire network. 

Figure 3(a) shows that perturbing slightly more than 50 
neurons in the core (i.e., half the core) is enough to 
destabilize the attractor in some cases, and perturbing the 
entire core guarantees such destabilization. In contrast, 
Figure 3(c) shows that a perturbation of more than 175 
neurons is needed to produce any destabilization for 
network-wide perturbations, and a 250-neuron perturbation 
is needed to guarantee switching. Figure 3(b) shows that the 
periphery by itself is even more stable. Thus, the CP 
network clearly shows the first two criteria for SyS 
behavior, as listed in Section II. The issue of targeting will 
be addressed below. 

 

Fig. 3.  Stable-yet-switchable behavior in CP networks. For each trial, the 
network is started in a stored attractor and a fraction of neurons is perturbed 
(flipped to complementary values). The figure shows the overlap of the 
network’s final state with the initial attractor. The graphs are: (a) 
perturbation is applied only to the core; (b) perturbation is applied only to 
the periphery; (c) perturbation applied randomly across the network. X 
indicates the point where the network starts to destabilize. Each data point is 
averaged over 100 trials – ten with reach stored attractor as the initial state. 

V. COMPARISON WITH OTHER NETWORK MODELS 

A. Comparison with Scale-free (SF) networks  

Since SyS behavior has previously been investigated in 
scale-free networks [39], we compare it with that seen in the 
equivalent CP network. The number of connections for the 
CP network and SF network are kept approximately equal. 
Since the CP network core size is 100, the 100 most 
connected neurons of SF network are considered its core. 
The switching performances of Core-Periphery and Scale-
free networks are compared in Figure 4 for random 
perturbations directed only at the core. It can be seen that 

even for perturbation of the entire core (0.2 on the x-axis) 
SF networks do not switch reliably, and larger perturbations 
are needed to guarantee switching. In contrast, CP networks 
switch reliably for perturbations of slightly less than the size 
of the core. These results are not unexpected because the 
core (defined as the 100 most connected neurons) accounts 
for many more connections in CP networks than in SF 
networks. 

 
Fig. 4. Comparison of stability between CP and Scale-free networks for 
core-only perturbations. The x-axis represents the fraction of total neurons 
perturbed, and the y-axis the average overlap of final network state with the 
initial attractor. (a) CP network; (b) Scale-free network. Each data point is 
averaged over 100 trials. 

Figure 5 shows more detailed results on what happens when 
core neurons in SF and CP networks are perturbed 
randomly. The networks are started in each of the 10 stored 
attractors and 1000 random core perturbations are applied in 
each case, giving a total of 10,000 trials. The state of the 
network is then checked after 50 iterations. Figure 5(a) 
shows the percentage of trials that settled in stored attractors 
other than the initial one. The first important observation is 
that this number is rather small for both networks, indicating 
that random perturbations – even focused in the core – do 
not usually cause switches to other stored attractors. This 
means that the  perturbations needed for reliable targeted 
switching between stored attractors will require careful 
construction through learning or heuristic specification (see 
below). The second important observation is that CP 
networks are far more amenable to desirable switching than 
SF networks, which makes the former more promising as 
SyS networks. The primary reason for this disparity is 
shown by Figure 5(b): In the SF networks, most random 
core perturbations of size 85 or 90 (out of 100 core neurons) 
actually fail to destabilize the initial attractor. Larger 
perturbations do destabilize it, but much less so than for CP 
networks, where even a perturbation of size 80 causes 
switching 80% of the time, and in all cases for perturbations 
of size 95 or 100. This confirms the results shown in Figure 
4, and again shows that CP networks are more switchable 
than SF networks. Figure 5(c) shows the percentage of trials 
where the networks switched to spurious attractors or to 
period 2 cycles (because of synchronous update). Here, 
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another interesting pattern is seen. While the CP network 
has a large number of such undesirable switches for all 
perturbation levels, the SF network has much fewer at the 85 
and 90 neuron levels. However, this is only because the 
latter networks are not switching at all, and when they do 
switch in response to larger perturbations, the fraction of 
undesirable switches becomes similar to that for CP 
networks. Finally, Figure 5(d) shows the number of possible 
switches to stored attractors that are actually seen in the 
10,000 trials. 9 such switches are possible from each initial 
attractors, giving a total of 90. The fraction of these that are 
actually seen is rather low for both networks, though far 
lower for SF networks. This means that the switches shown 
in Figure 5(a) are, in fact, not broadly spread out, but go 
only to a small fraction of stored attractors, further 
reinforcing the need for an efficient mechanism that can 
target all attractors from all others. Overall, the data in 
Figure 5 shows that, while both CP and SF networks show 
only a limited degree of desirable switching in response to 
random core perturbations, CP networks show much more 
promise for useful SyS behavior. The key, then, is to 
leverage this promise by finding appropriate perturbations 
for all desirable switches, and to minimize undesirable ones. 
The latter objective has to do with reducing spurious 
attractors, which we do not address in this paper (see [43], 
[44] for possible approaches). We do propose an approach 
for reliable targeting, as described next. 

Targeted switching comparison: The perturbations used in 
the results discussed above were all random, and the focus 
was simply on considering stability vs. switching. However, 
it is also important that the switching be targetable, i.e., 
directed at specific target attractors. For this, it is important 
to develop a rule for choosing specific perturbations for 
particular target attractors. One naturally intuitive rule is to 
apply perturbations that make a fraction of the core resemble 
the corresponding bits in the target attractor. We call this 
resemblance-based targeting.  This approach was tested for 
CP and SF networks and the results are shown in Table I. 
Each of the 10 attractors was used as the initial condition, 
and perturbations applied to switch it to each of the other 9 
stored attractors – making a total of 90 trials per simulation. 
The data presented is averaged over 10 such simulations. 
The incorrect switches can be to stored or spurious 
attractors, or to 2-cycles due to synchronous updating. 

From Table I it can be seen that for SF networks, 76.94% of 
trials remained stable in the initial attractor itself, with only 
4.44% cases switching successfully. For CP networks, 
switching success with resemblance is 42.5%. The 
remaining trials mostly settled in spurious/cyclic attractors 
(46.95%) ,with a small percentage stable in the initial 
attractor itself (10.55%). While these results still do not 
indicate sufficiently reliable switching, they are a huge 
improvement over those seen for random core perturbations 
(Figure 5). Subsequent simulations with continuous 
switching rather than discrete trials show similar 
performance in that more natural situation. 

 

 
Fig. 5.  Comparison of CP and SF networks. The data presented is average 
over 1000 trials for each of the 10 attractors with the simulation parameters 
obtained earlier. Subplots: (a) - percentage of trials settling in another stored 
attractor for varying perturbation from 85-100 core neurons; (b) - 
percentage of trials settling in initial stored attractor for varying perturbation 
from 85-100 core neurons; (c) - percentage of trials settling in spurious 
attractor/2-step cycle for varying perturbation from 85-100 core neurons; (d) 
- percentage of total attractors switches covered with varying random 
perturbations from 85-100 core neurons. 
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TABLE I  
COMPARISON OF RESEMBLANCE-BASED TARGETING 

PERFORMANCE BETWEEN CP AND SF NETWORKS 

TABLE II  
CAPACITY COMPARISON BETWEEN RANDOM, CP AND SF 

NETWORKS 

 

 

 

Quantity measured CP SF 

Percentage of trials with correct switches 42.5 4.44 

Percentage of trials stable in initial attractor 10.55 76.94 

Percentage of trials with incorrect switches 46.95 18.62 

 

B. Comparison with Random networks  

 
Fig. 6.  Comparison between CP and Random  networks for stability against 
network-wide random perturbations. The X-axis represents the fraction of 
total neurons perturbed, and the y-axis the average overlap of network 
outputs with the initial attractor. Graph (a) shows data for CP networks, and 
graph (b) for random networks. 

Random networks are not really expected to show SyS 
behavior, but do provide a benchmark for stability in 
response to network-wide perturbations. For useful SyS 
performance, the stability of the CP network to such 
perturbations should be similar to that of random networks. 
This was tested by applying network-wide random 
perturbations to both CP and Random networks with 
approximately equal number of total connections. From 
Figure 6, it can be seen that both networks behave in a 
similar way as perturbation increases. The CP network 
destabilizes from the initial attractor approximately for the 
same perturbation as the Random network. 

Fig. 7 compares the CP and Random networks for the 
percentage of total trials (1000 trials/attractor) that stay in 
the initial attractor for perturbation of 180 to 230 neurons, 
which is the range where destabilization begins to occur. 
The graph shows that Random networks are stable for a 
somewhat larger fraction of trials compared to CP networks, 
for same perturbation level, which is as expected. However, 
it is worth noting that this difference is small. 

 
Fig. 7.  Comparison of CP and Random networks showing the percentage of 
trials that remain stable in the initial attractor. The data presented is average 
over 1000 trials for each of the 10 attractors. As perturbation increases, both 
networks become less stable, with the CP networks slightly more so. 

 C. Capacity Analysis  

A fully-connected Hopfield network with N neurons can 
store approximately 0.14N patterns [2]. However with 
sparse connectivity, the capacity of the network is expected 
to decrease. For this reason we stored only 10 patterns for 
our simulations with 500 neuron networks. Nevertheless, it 
is interesting to compare the capacities of the three types of 
networks. We do this through simulations, and the results 
are shown in Table II. It is clear that each of the 3 networks 
under study is able to store 10 attractors comfortably. 
However as the the number of stored patterns increases, all 
networks experience problems with recall. Random 
networks, with their homogeneous connectivity, are able to 
store the most patterns, followed by SF networks. CP 
networks show the least memory capacity. The reason for 
this is that the much larger periphery of the CP network (400 
neurons), with its very sparse connectivity is unable to learn 
homogeneous patterns as easily as other two networks. As a 
future direction to increase capacity of CP networks, it 
would be interesting to study the network capacity for 
heterogeneous attractor patterns – where most activity (and 
thus learning) is concentrated in the core region. 

 

 

Avg. actual number of attractors stored Number of 
attractors to be 
stored Random Core-Periphery Scale-free 

10 10 10 10 

15 14.8 14.4 14.4 

20 18.6 9.6 11.4 

25 11.6 2.4 5.8 

30 2.6 0.2 0.6 
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D. Continuous switching  

All simulations used so far have used single trials where the 
network is initialized in an attractor, perturbed, and then 
observed until convergence (or for up to 50 steps). 
However, for the type of functionality described in Section 
I, an SyS network would operate within the flow of the 
larger system’s dynamics, with no possibility of artificial 
resets. To evaluate the relative performance of the three 
network architectures in this situation, we simulated them 
under the following protocol. The network is initialized in a 
particular attractor and allowed to run without resetting. 
Every 20 steps (termed a perturbation cycle), it is perturbed 
by either a random, network-wide perturbation or by a 
targeted core perturbation resembling a stored attractor. The 
number of bits perturbed is set to 55 (though qualitatively 
similar results are obtained with as few as 35 bits). The 
expected (desired) behavior is that the random perturbations 
should not be able to switch the network while the targeted 
ones should. 

Figure 8 shows the results for one network of each type, 
plotting the overlap of the network state with each of the 10 
stored patterns over all the perturbation cycles. The time 
points where the targeted perturbations were applied are 
labeled at the top of each graph, with Sk indicating a 
targeting of attractor number k. For each 20-step cycle, only 
the last step is plotted so that the final responses to all 
perturbations can be seen in sequence (otherwise, a 
relaxation period is visible after each perturbation). As can 
be seen, the CP network switched properly in 8 out of 20 
cases of targeted perturbation, with the remaining cases 
switching to spurious attractors. There were no switches to 
incorrect stored attractors. The random network never 
switched at all, since the perturbation used (80 bits) was 
insufficient to destabilize it. The SF network did switch in a 
few cases, but far less than the CP network. These results 
are consistent with those in Table I, and suggest that, while 
the CP network is far more suitable for SyS functionality 
than the SF model, further study is required to find truly 
reliable switching mechanisms. Informal experiments (not 
shown) suggest that cumulative rather than one-time 
perturbations may significantly increase reliability in all 
cases. 

VI.  CONCLUSION 

As hypothesized, the CP network architecture showed the 
required SyS behavior. Its performance in switching was 
found to be somewhat better than SF networks. It was 
marginally less stable against network-wide perturbations 
than Random networks, but stable enough to provide good 
SyS functionality. With respect to targeting, CP networks 
responded much better to the resemblance-based approach 
than SF or random networks, but targeting accuracy was still 
about 44%. This shows that the CP architecture is a 
promising one, and clearly demonstrates the effect of 

bimodal connectivity compared to power-law connectivity 
on the “rosust-yet-fragile” aspect of the network. 

 

Fig. 8. Continuous-switching performance for equivalent CP, Random and 
SF networks. Only the last step of each perturbation cycle of 20 steps is 
plotted. 

The CP network is limited in capacity compared to other 
two networks. It would be interesting to study the network 
behavior and capacity if heterogeneous binary attractor 
patterns are learned, with more activity concentrated in the 
core. Preliminary experiments indicate that this can improve 
performance dramatically. 
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The goal in this paper was to simply demonstrate the relative 
performance of CP, SF and Random networks. The CP 
networks simulated were not optimized with regard to core 
and periphery sizes or connectivities, and it may well be 
possible to obtain better performance. 

Other interesting directions to explore are whether CP or SF 
SyS networks might be suitable as connectionist models of 
decision-making based on cumulative recurrent activation, 
and if modular networks with multiple cores might provide 
an efficient architecture for complex neural information 
processing. 
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