
Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

Abstract: Recurrent neural networks functioning as associative
memories are often studied and optimized for recall quality
and capacity, with the focus primarily on the network’s
stability, i.e., convergence to stored attractors. However, the
ability of networks to switch between attractors in a controlled
way is also potentially a useful phenomenon. Networks that are
stable under most conditions, but can be switched by specific
stimuli may be used to model cognitive control and other time-
varying cognitive phenomena. Such networks, which we term
stable-yet-switchable (SyS) networks, are also of interest from
the networks perspective, and the SyS properties of scale-free
networks have been noted by researchers. In this paper, we
consider networks with bimodal connectivity – a core of
densely connected neurons and a larger periphery with sparser
connectivity – and compare their SyS performance with
random and scale-free recurrent neural networks. The results
show that core-periphery networks have much better SyS
performance than scale-free networks.

I. INTRODUCTION

Recurrent neural networks with embedded attractors are
widely used as models of associative memory [1], [2]. The
attractors stored in the networks are meaningful patterns of
neural activity (memories), which are recalled when the
network is allowed to relax from initial states similar to
these patterns, resulting in recall, pattern completion, noise
reduction, etc. The primary concerns in these networks are
convergence to the stored attractors from nearby initial
states and the stability of these stored attractors. Relatively
little attention has been focused on the destabilization of
attractors. However, from a functional perspective, a
network’s ability to switch out of its current attractive state
to another is of great significance. This is especially true in
cases where attractor networks are used to model cognitive
functions, many of which involve switching between
functional states [3]–[6]. In such networks, each stable state
represents a functional context. The network remains in the
state corresponding to the appropriate context regardless of
external stimuli, and switches to another stable state only
when a stimulus or internally generated signal indicates a

This work was supported by collaborative National Science Foundation

Human and Social Dynamics Program grants to Ali Minai (BCS-0728413),
which includes support from the Deputy Director of National Intelligence.

Subramoniam Perumal is with the Department of Computer Science,
University of Cincinnati, Cincinati, OH 45221-0030, USA (email:
subramoniam.p@gmail.com).

Ali A. Minai (corresponding author) is with the Department of Electrical
& Computer Engineering, University of Cincinnati, Cincinati, OH 45221-
0030, USA (phone: 513-556-4783; fax: 513-556-7326; e-mail:
Ali.Minai@uc.edu).

change of context. We term such behavior stable-yet-
switchable (SyS).
Figure 1 shows a simple instance where SyS behavior can be
useful. The processing network, P, responds to incoming
stimuli in a context-specific way (i.e., the same stimulus can
produce different responses in different contexts). The key
point is that context information is only transiently available
but must influence P over an arbitrarily long period until the
next context switch, i.e., it must be latched [7]. This
eliminates the use of approaches based on tapped delay lines
or decaying memory [8]–[12]. In the system shown here, the
Latching Network, L, performs this function. It recognizes a
context based on external stimulus and the current state of P
and switches to an attractor representing this context,
thereby projecting a context-specific bias on P and
influencing the flow of information through that system.
Thereafter, the attractor in L remains stable until a new
context is recognized, which triggers another switch. Thus,
L must have SyS behavior: It should be able to monitor the
stimulus and the state of P without switching in most cases,
but switch reliably when these indicate a new context.

Fig. 1. A simple architecture for context-sensitive neural processing. The P
network generates responses to incoming stimuli through complex recurrent
dynamics, while the L network detects changes of context and latches a
biasing signal for the duration of each context using attractors. The L
network is SyS.

Previous work in our lab has shown that the approach shown
in Figure 1 allows simple attractor networks using Hebbian
learning to perform complex temporal tasks with context
dependence [13]–[16], and may explain how context-
dependent place representations arise in the rodent
hippocampus [13], [17]. Subsequently, we have speculated
that this may be a general mechanism underlying context-
dependent functionality in the cortex [16], [18], [19], as well
as the regulation of gene expression during development
[20]. Such ideas are also implicit in models of behavioral
control based on switching mediated by the basal ganglia

Stable-yet-Switchable (SyS) Attractor Networks

Subramoniam Perumal and Ali A. Minai

2509

[21]–[26]. In the current paper, we focus on the SyS
functionality per se, and propose a simple method for
obtaining it in recurrent neural networks. Such networks
could form important components of larger cognitive
architectures. We only consider networks with bipolar
neurons, but networks of real-valued neurons with the
possibility of chaos are potentially also very interesting.

II. INHERENT SYS BEHAVIOR

The finite-state machine formalism has generally been used
to model controlled switching in neural networks [27], [28],
[12], and has been proposed as the basis of cognitive control
[27], [29], [30]. However, such models typically use error-
driven learning algorithms, which require long learning
periods and many iterations – both of which are biologically
implausible. It is thus interesting to consider whether certain
classes of simple recurrent networks are inherently capable
of producing SyS behavior based on a simple prescription.

One class of networks where SyS behavior is well-known
and well-studied are scale-free networks [31]. These
networks are characterized by a power-law distribution of
connectivity, i.e.,

 α−kpk ~ (1)

where pk is the probability that a node has k connections and
α is a parameter, typically between 2 and 3. In networks
with independent random connections between nodes, the
degree distribution is expected to be Poisson [32], which has
an exponentially decaying tail, implying that most nodes
have a similar “typical” connectivity. Almost all models of
recurrent neural networks have followed this prescription,
with a few recent exceptions [33]–[37]. The power-law
connectivity distribution with its lowly decaying tail (“fat
tail”) implies that a significant number of nodes have
exceptionally high connectivity, and serve as hub nodes,
binding the network together. It has been shown that scale-
free networks (also called power-law networks) are very
robust to random disruptions of their nodes because of the
strong integrity provided by the hubs, but are exceptionally
sensitive to disruptions of the hubs [38]. Recently, Bar-Yam
and Epstein [39] investigated the behavior of attractor
networks with scale-free connectivity, and found that
perturbations applied to the networks’ hub nodes were far
more disruptive than those applied to other nodes. In other
words, they found SyS behavior, which is a particular case
of the “robust-yet-fragile” characteristic seen in most
complex systems [40].

The results of [39] suggest that scale-free networks can be
used as the SyS block in the architecture of Figure 1.
However, a natural question to ask is whether there is some
architecture even better suited to provide SyS functionality.
Based on logical considerations, we hypothesized that
networks with a bimodal connectivity distribution

represented such an architecture. These networks – termed
core-periphery (CP) networks – have a relatively small
subset of densely connected nodes, called the core, with the
remaining nodes forming a sparsely connected periphery.
Networks with bimodal degree distributions have been
investigated for robustness, and found to be more robust
than scale-free networks [41], [42]. In this paper, we report
on a systematic comparison of random, scale-free and CP
networks with respect to the SyS property, which is defined
as follows:

Fig. 2. Connectivity distributions in the three network models: (a) CP
network; (b) Random network; (c) Scale-free network. All networks have
approximately the same number of total connections.

Given a N-node recurrent network with M stored attractors,
if the network has converged to any of its stored attractors:

1. The network should be robust, i.e., almost all state

perturbations up to size m < N should leave the network
in the same attractor.

2. The network should be switchable, i.e., a few specific
perturbations of the same size should switch it reliably
to other stored attractors.

2510

3. The switching should be targetable, i.e., the same
switching perturbation should always lead to the same
attractor independent of network state.

Strictly speaking, condition 3 is not necessary for the SyS
property, but is essential for it to be useful.

III. MODELS AND METHODS

A. The network model

The Core-Periphery (CP) network consists of a small core
sub-network, and a much larger periphery sub-network.
Each core neuron is connected to every other core neuron,
and also to some periphery neurons. Each periphery neuron
is very sparsely connected to other periphery neurons, and to
a few core neurons. The connections between any two
neurons i and j are symmetric i.e. wij = wji, where wij is the
weight from neuron j to neuron i.

The result is a sparse network with a bimodal distribution of
node degree. The hypothesis is that these networks would
provide the needed stable-yet-switchable functionality:
perturbations targeted at the highly-connected core neurons
will cause switching while random perturbations that are
spread across the whole network would not destabilize the
current attractor. In this report, we use 500-neuron networks,
with 100 neurons in the core and 400 in the periphery. The
connectivity levels are: core-core: 100%; periphery-
periphery: 8.5%; core-periphery: 20%.

The state of each neuron can either be 1 or -1, and all
neurons are updated synchronously. This means that the
network can sometimes converge to a period-2 cycle instead
of a fixed points, but the results are qualitatively similar to
those obtained for the asynchronous update case, which is
more complicated to simulate. A threshold activation
function is used to determine the activation state of neurons,
and is given by:

 (2)

where xi(t) is the net input to neuron i at time t given by:

))1(()(
1

−=∑
=

txfWtx j

N

j
iji

 (3)

where f (xj(t-1)) is the activation function of neuron j at time
t-1, N is the number of neurons, Wij is the weight from
neuron j to neuron i.

B. Attractor patterns

Homogeneous, unbiased attractor patterns are used for all
simulations. Each neuron has equal probability of being
active i.e., having an activation state of 1, in each attractor,
and the number of 1s and -1s in a pattern are equal. Since
the core comprises the significant neurons responsible for
switching, care is taken to see that each core neuron is active

in approximately the same number of attractors to achieve
parity of significance among core neurons. In the periphery,
the neurons are chosen randomly for activation. Storing
orthogonal attractor patterns reduces the effect of spurious
attractors, so the patterns are made as orthogonal as
possible.

C. Learning rule

A Hebbian learning rule is used to learn the attractor
patterns by setting the weights between neurons.
Mathematically the rule is given by:

 ,
1

1
∑

=

=
p

k

k
j

k
iij δδ

N
W (4)

where Wij is the weight from neuron j to neuron i, N is the
number of neurons, p is the number of stored patterns, and
δi

k is the activation of neuron i for pattern k.

D. Network dynamics and output

With synchronous update, a network started from an initial
condition could settle into one of four situations: 1) a stored
attractor close to the initial state of the network; 2) a distant
stored attractor; 3) a spurious attractor; or 4) a period-2
cyclic attractor. We allow 50 time steps for the network to
converge after each perturbation, which defines a single
cycle of the network..

Upon convergence, the final state of the network is
determined by comparing the network output to each of the
stored attractors using overlap metric given by:

 (5)

where z is a stored pattern and y is the network’s final state.

The overlap is a number between -1 and 1, with value 1 if
both patterns are same; 0 if the number of similar bits is
equal to the number of dissimilar bits; and -1 if all bits are
dissimilar. It must be noted that since the stored attractors
are approximately orthogonal to each other the overlap
measure between any two stored attractors is approximately
0. Since small recall errors of a few bits are unavoidable
with sparse-connectivity [1], an overlap of 0.94 or above is
considered to indicate sufficient recall. This means that, for
a network of size 500 neurons, an error of up to 15 bits is
considered acceptable.

IV. NETWORK PARAMETERS

Functionally, the core represents the sensitive part of the
network, while the periphery is the insensitive part.
Perturbations targeted at the core have network-wide impact
and cause switching, while those spread across the whole
network primarily affect the periphery and do not have
much impact overall, leaving the network stable.





<
≥

=
0)(1

0)(1
))((

tx,-

tx,
txf

i

i
i

).(
1

),(yz
N

yz =ϕ

2511

Fig. 3 shows the stability of a 500 neuron (100 core, 400
periphery) network to perturbations of different sizes. The
network has 10 stored attractors. Three cases are shown: a)
Perturbation directed only at the core; b) Perturbation
directed only at the periphery; and c) Perturbation spread
uniformly over the entire network.

Figure 3(a) shows that perturbing slightly more than 50
neurons in the core (i.e., half the core) is enough to
destabilize the attractor in some cases, and perturbing the
entire core guarantees such destabilization. In contrast,
Figure 3(c) shows that a perturbation of more than 175
neurons is needed to produce any destabilization for
network-wide perturbations, and a 250-neuron perturbation
is needed to guarantee switching. Figure 3(b) shows that the
periphery by itself is even more stable. Thus, the CP
network clearly shows the first two criteria for SyS
behavior, as listed in Section II. The issue of targeting will
be addressed below.

Fig. 3. Stable-yet-switchable behavior in CP networks. For each trial, the
network is started in a stored attractor and a fraction of neurons is perturbed
(flipped to complementary values). The figure shows the overlap of the
network’s final state with the initial attractor. The graphs are: (a)
perturbation is applied only to the core; (b) perturbation is applied only to
the periphery; (c) perturbation applied randomly across the network. X
indicates the point where the network starts to destabilize. Each data point is
averaged over 100 trials – ten with reach stored attractor as the initial state.

V. COMPARISON WITH OTHER NETWORK MODELS

A. Comparison with Scale-free (SF) networks

Since SyS behavior has previously been investigated in
scale-free networks [39], we compare it with that seen in the
equivalent CP network. The number of connections for the
CP network and SF network are kept approximately equal.
Since the CP network core size is 100, the 100 most
connected neurons of SF network are considered its core.
The switching performances of Core-Periphery and Scale-
free networks are compared in Figure 4 for random
perturbations directed only at the core. It can be seen that

even for perturbation of the entire core (0.2 on the x-axis)
SF networks do not switch reliably, and larger perturbations
are needed to guarantee switching. In contrast, CP networks
switch reliably for perturbations of slightly less than the size
of the core. These results are not unexpected because the
core (defined as the 100 most connected neurons) accounts
for many more connections in CP networks than in SF
networks.

Fig. 4. Comparison of stability between CP and Scale-free networks for
core-only perturbations. The x-axis represents the fraction of total neurons
perturbed, and the y-axis the average overlap of final network state with the
initial attractor. (a) CP network; (b) Scale-free network. Each data point is
averaged over 100 trials.

Figure 5 shows more detailed results on what happens when
core neurons in SF and CP networks are perturbed
randomly. The networks are started in each of the 10 stored
attractors and 1000 random core perturbations are applied in
each case, giving a total of 10,000 trials. The state of the
network is then checked after 50 iterations. Figure 5(a)
shows the percentage of trials that settled in stored attractors
other than the initial one. The first important observation is
that this number is rather small for both networks, indicating
that random perturbations – even focused in the core – do
not usually cause switches to other stored attractors. This
means that the perturbations needed for reliable targeted
switching between stored attractors will require careful
construction through learning or heuristic specification (see
below). The second important observation is that CP
networks are far more amenable to desirable switching than
SF networks, which makes the former more promising as
SyS networks. The primary reason for this disparity is
shown by Figure 5(b): In the SF networks, most random
core perturbations of size 85 or 90 (out of 100 core neurons)
actually fail to destabilize the initial attractor. Larger
perturbations do destabilize it, but much less so than for CP
networks, where even a perturbation of size 80 causes
switching 80% of the time, and in all cases for perturbations
of size 95 or 100. This confirms the results shown in Figure
4, and again shows that CP networks are more switchable
than SF networks. Figure 5(c) shows the percentage of trials
where the networks switched to spurious attractors or to
period 2 cycles (because of synchronous update). Here,

2512

another interesting pattern is seen. While the CP network
has a large number of such undesirable switches for all
perturbation levels, the SF network has much fewer at the 85
and 90 neuron levels. However, this is only because the
latter networks are not switching at all, and when they do
switch in response to larger perturbations, the fraction of
undesirable switches becomes similar to that for CP
networks. Finally, Figure 5(d) shows the number of possible
switches to stored attractors that are actually seen in the
10,000 trials. 9 such switches are possible from each initial
attractors, giving a total of 90. The fraction of these that are
actually seen is rather low for both networks, though far
lower for SF networks. This means that the switches shown
in Figure 5(a) are, in fact, not broadly spread out, but go
only to a small fraction of stored attractors, further
reinforcing the need for an efficient mechanism that can
target all attractors from all others. Overall, the data in
Figure 5 shows that, while both CP and SF networks show
only a limited degree of desirable switching in response to
random core perturbations, CP networks show much more
promise for useful SyS behavior. The key, then, is to
leverage this promise by finding appropriate perturbations
for all desirable switches, and to minimize undesirable ones.
The latter objective has to do with reducing spurious
attractors, which we do not address in this paper (see [43],
[44] for possible approaches). We do propose an approach
for reliable targeting, as described next.

Targeted switching comparison: The perturbations used in
the results discussed above were all random, and the focus
was simply on considering stability vs. switching. However,
it is also important that the switching be targetable, i.e.,
directed at specific target attractors. For this, it is important
to develop a rule for choosing specific perturbations for
particular target attractors. One naturally intuitive rule is to
apply perturbations that make a fraction of the core resemble
the corresponding bits in the target attractor. We call this
resemblance-based targeting. This approach was tested for
CP and SF networks and the results are shown in Table I.
Each of the 10 attractors was used as the initial condition,
and perturbations applied to switch it to each of the other 9
stored attractors – making a total of 90 trials per simulation.
The data presented is averaged over 10 such simulations.
The incorrect switches can be to stored or spurious
attractors, or to 2-cycles due to synchronous updating.

From Table I it can be seen that for SF networks, 76.94% of
trials remained stable in the initial attractor itself, with only
4.44% cases switching successfully. For CP networks,
switching success with resemblance is 42.5%. The
remaining trials mostly settled in spurious/cyclic attractors
(46.95%) ,with a small percentage stable in the initial
attractor itself (10.55%). While these results still do not
indicate sufficiently reliable switching, they are a huge
improvement over those seen for random core perturbations
(Figure 5). Subsequent simulations with continuous
switching rather than discrete trials show similar
performance in that more natural situation.

Fig. 5. Comparison of CP and SF networks. The data presented is average
over 1000 trials for each of the 10 attractors with the simulation parameters
obtained earlier. Subplots: (a) - percentage of trials settling in another stored
attractor for varying perturbation from 85-100 core neurons; (b) -
percentage of trials settling in initial stored attractor for varying perturbation
from 85-100 core neurons; (c) - percentage of trials settling in spurious
attractor/2-step cycle for varying perturbation from 85-100 core neurons; (d)
- percentage of total attractors switches covered with varying random
perturbations from 85-100 core neurons.

2513

TABLE I
COMPARISON OF RESEMBLANCE-BASED TARGETING

PERFORMANCE BETWEEN CP AND SF NETWORKS

TABLE II
CAPACITY COMPARISON BETWEEN RANDOM, CP AND SF

NETWORKS

Quantity measured CP SF

Percentage of trials with correct switches 42.5 4.44

Percentage of trials stable in initial attractor 10.55 76.94

Percentage of trials with incorrect switches 46.95 18.62

B. Comparison with Random networks

Fig. 6. Comparison between CP and Random networks for stability against
network-wide random perturbations. The X-axis represents the fraction of
total neurons perturbed, and the y-axis the average overlap of network
outputs with the initial attractor. Graph (a) shows data for CP networks, and
graph (b) for random networks.

Random networks are not really expected to show SyS
behavior, but do provide a benchmark for stability in
response to network-wide perturbations. For useful SyS
performance, the stability of the CP network to such
perturbations should be similar to that of random networks.
This was tested by applying network-wide random
perturbations to both CP and Random networks with
approximately equal number of total connections. From
Figure 6, it can be seen that both networks behave in a
similar way as perturbation increases. The CP network
destabilizes from the initial attractor approximately for the
same perturbation as the Random network.

Fig. 7 compares the CP and Random networks for the
percentage of total trials (1000 trials/attractor) that stay in
the initial attractor for perturbation of 180 to 230 neurons,
which is the range where destabilization begins to occur.
The graph shows that Random networks are stable for a
somewhat larger fraction of trials compared to CP networks,
for same perturbation level, which is as expected. However,
it is worth noting that this difference is small.

Fig. 7. Comparison of CP and Random networks showing the percentage of
trials that remain stable in the initial attractor. The data presented is average
over 1000 trials for each of the 10 attractors. As perturbation increases, both
networks become less stable, with the CP networks slightly more so.

 C. Capacity Analysis

A fully-connected Hopfield network with N neurons can
store approximately 0.14N patterns [2]. However with
sparse connectivity, the capacity of the network is expected
to decrease. For this reason we stored only 10 patterns for
our simulations with 500 neuron networks. Nevertheless, it
is interesting to compare the capacities of the three types of
networks. We do this through simulations, and the results
are shown in Table II. It is clear that each of the 3 networks
under study is able to store 10 attractors comfortably.
However as the the number of stored patterns increases, all
networks experience problems with recall. Random
networks, with their homogeneous connectivity, are able to
store the most patterns, followed by SF networks. CP
networks show the least memory capacity. The reason for
this is that the much larger periphery of the CP network (400
neurons), with its very sparse connectivity is unable to learn
homogeneous patterns as easily as other two networks. As a
future direction to increase capacity of CP networks, it
would be interesting to study the network capacity for
heterogeneous attractor patterns – where most activity (and
thus learning) is concentrated in the core region.

Avg. actual number of attractors stored Number of
attractors to be
stored Random Core-Periphery Scale-free

10 10 10 10

15 14.8 14.4 14.4

20 18.6 9.6 11.4

25 11.6 2.4 5.8

30 2.6 0.2 0.6

2514

D. Continuous switching

All simulations used so far have used single trials where the
network is initialized in an attractor, perturbed, and then
observed until convergence (or for up to 50 steps).
However, for the type of functionality described in Section
I, an SyS network would operate within the flow of the
larger system’s dynamics, with no possibility of artificial
resets. To evaluate the relative performance of the three
network architectures in this situation, we simulated them
under the following protocol. The network is initialized in a
particular attractor and allowed to run without resetting.
Every 20 steps (termed a perturbation cycle), it is perturbed
by either a random, network-wide perturbation or by a
targeted core perturbation resembling a stored attractor. The
number of bits perturbed is set to 55 (though qualitatively
similar results are obtained with as few as 35 bits). The
expected (desired) behavior is that the random perturbations
should not be able to switch the network while the targeted
ones should.

Figure 8 shows the results for one network of each type,
plotting the overlap of the network state with each of the 10
stored patterns over all the perturbation cycles. The time
points where the targeted perturbations were applied are
labeled at the top of each graph, with Sk indicating a
targeting of attractor number k. For each 20-step cycle, only
the last step is plotted so that the final responses to all
perturbations can be seen in sequence (otherwise, a
relaxation period is visible after each perturbation). As can
be seen, the CP network switched properly in 8 out of 20
cases of targeted perturbation, with the remaining cases
switching to spurious attractors. There were no switches to
incorrect stored attractors. The random network never
switched at all, since the perturbation used (80 bits) was
insufficient to destabilize it. The SF network did switch in a
few cases, but far less than the CP network. These results
are consistent with those in Table I, and suggest that, while
the CP network is far more suitable for SyS functionality
than the SF model, further study is required to find truly
reliable switching mechanisms. Informal experiments (not
shown) suggest that cumulative rather than one-time
perturbations may significantly increase reliability in all
cases.

VI. CONCLUSION

As hypothesized, the CP network architecture showed the
required SyS behavior. Its performance in switching was
found to be somewhat better than SF networks. It was
marginally less stable against network-wide perturbations
than Random networks, but stable enough to provide good
SyS functionality. With respect to targeting, CP networks
responded much better to the resemblance-based approach
than SF or random networks, but targeting accuracy was still
about 44%. This shows that the CP architecture is a
promising one, and clearly demonstrates the effect of

bimodal connectivity compared to power-law connectivity
on the “rosust-yet-fragile” aspect of the network.

Fig. 8. Continuous-switching performance for equivalent CP, Random and
SF networks. Only the last step of each perturbation cycle of 20 steps is
plotted.

The CP network is limited in capacity compared to other
two networks. It would be interesting to study the network
behavior and capacity if heterogeneous binary attractor
patterns are learned, with more activity concentrated in the
core. Preliminary experiments indicate that this can improve
performance dramatically.

2515

The goal in this paper was to simply demonstrate the relative
performance of CP, SF and Random networks. The CP
networks simulated were not optimized with regard to core
and periphery sizes or connectivities, and it may well be
possible to obtain better performance.

Other interesting directions to explore are whether CP or SF
SyS networks might be suitable as connectionist models of
decision-making based on cumulative recurrent activation,
and if modular networks with multiple cores might provide
an efficient architecture for complex neural information
processing.

ACKNOWLEDGMENT

This research builds on ideas developed in collaboration
with Simona Doboli, whose contribution is gratefully
acknowledged.

REFERENCES
[1] J.J. Hopfield, "Neural networks and physical systems with emergent

collective computational abilities", Proc. Natl. Acad. Sci. USA, vol.
79, pp. 2554-2558, 1982.

[2] D.J. Amit, Modeling Brain Function. New York: Cambridge
University Press, 1989.

[3] J. Fuster, Cortex and Mind: Unifying Cognition. New York: Oxford
University Press, 2003.

[4] G.M. Edelman and G. Tononi, A Universe of Consciousness: How
Matter Becomes Imagination, New York: Basic Books, 2000.

[5] G. Tononi, G.M. Edelman and O. Sporns, “Complexity and
Coherency: integrating information in the brain,” Trends in Cog. Sci.,
vol. 2, pp. 474-484, 1998.

[6] H. Imamizu, T. Koroda, T. Yoshioka and M. Kawato. “Functional
magnetic resonance imaging examination of two modular architectures
for switching multiple internal models,” J. Neurosci., vol. 24, pp.
1173-1181, 2004.

[7] Y. Bengio, P. Simard and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans. on
Neural Networks, vol. 5, pp. 157-166, 1994.

[8] H. Sompolinsky and I. Kanter, “Temporal association in asymmetric
neural networks,”, Phys. Rev. Lett., vol. 57, pp. 2861-2864, 1986.

[9] D.L. Wang and M.A. Arbib, “Complex temporal sequence learning
based on short-term memory”, Proc. of the IEEE, vol. 78, pp. 1536-
1543, 1990.

[10] M. Reiss and J.G. Taylor, “Storing temporal sequences,” Neural
Networks, vol. 4, pp. 773-787, 1991.

[11] T.M. Heskes and S. Gielen, “retrieval of pattern sequences at variable
speeds in a neural network,” Neural Networks, vol. 5, pp. 145-152,
1992.

[12] R. Sun and C.L. Giles (eds), Sequence Learning: Paradigms,
Algorithms, and Applications. New York: Springer, 2001.

[13] A.A. Minai and P.J. Best, “Encoding spatial context: a hypothesis on
the function of the dentate gyrus-hilus system,” in Proc. IJCNN,
Anchorage, AL, May 1998, pp 587-592.

[14] S. Doboli and A.A. Minai, “Latent attractor selection for variable
length episodic context stimuli with distractors,” in Proc. IJCNN,
Portland, OR, July 2003, pp. 1643-1648.

[15] S. Doboli and A.A. Minai, “Using latent attractors to discern temporal
order,” in Proc. IJCNN, Budapest, Hungary, July 2004.

[16] S. Doboli and A.A. Minai, “Latent attractors: A general paradigm for
context-dependent neural computation,” in Trends in Neural
Computation, K. Chen and L. Wang, Eds. New York: Springer Verlag,
pp 135-169.

[17] S. Doboli, A.A. Minai, and P.J. Best, “Latent attractors: a model for
context-dependent place representations in the hippocampus,” Neural
Computation, vol. 12, pp.1003-1037, 2000

[18] S. Doboli, A.A. Minai and V.R. Brown, “Adaptive dynamic
modularity in a connectionist model of context-dependent idea
generation,” in Proc. IJCNN, Orlando, FL, August 2007.

[19] L.R. Iyer, A.A. Minai, S. Doboli and V.R. Brown, “Modularity and
self-organized functional architectures in the brain,” Proc. 7th Int.
Conf. on Complex Sys., Boston, MA, October 2007.

[20] A. Ghanem and A.A. Minai. “A Modular gene regulatory network
model of ontogenesis,” in Proc. 7th Int. Conf. on Complex Sys.,
Boston, MA, October 2007.

[21] J.C. Houk and S.P. Wise, “Distributed modular architectures linking
basal ganglia, cerebellum, and cerebral cortex: their role in planning
and controlling action,” Cerebral Cortex, vol. 5, pp. 95-110, 1995

[22] J.C. Houk, “Agents of the mind,” Biol. Cybern., vol. 92, pp. 427-437,
2005.

[23] A.M. Graybiel, “Building action repertoires: memory and learning
functions of the basal ganglia,” Curr. Opinion in Neurobiology, vol. 5,
733-741, 1995.

[24] A.M. Graybiel, “The basal ganglia and chunking of action
repertoires,” Neurobiology of Learning and Memory, vol. 70, 119-
136, 1998.

[25] T.E. Hazy, M.J. Frank and R.C. O’Reilly “ Banishing the
homunculus: making working memory work,” Neuroscience, vol. 139,
105-118, 2006.

[26] R.C. O’Reilly and M.J. Frank, “Making working memory work: a
computational model of learning in the prefrontal cortex and basal
ganglia,” Neural Computation, vol. 18, 283-328, 2006.

[27] J.L. Elman, “Finding structure in time,” Cognitive Sci., vol. 14, pp.
179-211.

[28] A. Cleeremans, D. Servan-Schreiber and J. McClelland, “Finite-state
automata and simple recurrent networks,” Neural Computation, vol. 1,
pp. 372-381, 1989.

[29] B. Ans, Y. Coiton, J.C. Gilhodes and J.-L. Velay, “A neural network
model for temporal sequence learning and motor programming,”,
Neural Networks, vol. 7, pp. 1461-1476, 1994.

[30] M. Botvinick and D.C. Plaut, “Doing without schema hierarchies: a
recurrent connectionist approach to normal and impaired routine
sequential action,” Psych. Rev., vol. 111, pp. 395-429, 2004.

[31] A.-L. Barabasi and R. Albert, “The emergence of scaling in random
networks,” Science, vol. 286, pp. 509-512, 1999.

[32] B. Bollobas, Random Graphs, London: Academic Press, 1985.
[33] J.W. Bohland and A.A. Minai, “Ef£cient associative memory using

small-world architecture,” Neurocompuing, vol. 38-40, pp. 489-496,
2001.

[34] O. Sporns and G. Tononi, “Classes of network connectivity and
dynamics,” Complexity, vol. 7, pp. 28-38, 2002.

[35] O. Sporns, D.R. Chialvo, M. Kaiser and C.C. Hilgetag, “Organization,
development and function of complex brain networks,” Trends in Cog.
Sci., vol. 8, pp. 418-425, 2004.

[36] N. Davey, S.P. Hunt and R.G. Adams, “High capacity recurrent
associative memories,” Neurocomputing, vol. 62, pp. 459-491, 2004.

[37] O. Sporns, G. Tononi and G.M. Edelman, “Theoretical neuroanatomy:
relating anatomical and functional connectivity in graphs and cortical
connection matrices,” Cerebral Cortex, vol. 10, pp. 127-141, 2000.

[38] R. Albert, H. Jeong and Al.-L. Barabasi, “Error and attack tolerance of
complex networks,” Nature, vol. 406, pp. 378-382, 2000.

[39] Y. Bar-Yam and I. R. Epstein, “Response of complex networks to
stimuli,” Proc. Natl. Acad. Sci. USA, vol. 101, pp. 4341-4345, 2004.

[40] J.M. Carlson and J. Doyle, “Highly optimized tolerance: robustness
and design in complex systems,” Phys. Rev. Lett. Vol. 84, pp. 2529-
2532, 2000.

[41] G. Paul, T. Tanizawa, S. Havlin and H.E. Stanley, “Optimization of
robustness of complex networks,” Eur. Phys. Journal B, vol. 38, pp.
197-191, 2004.

[42] A.X.C.N. Valente, A. Sarkar and H.A. Stone, “Two-peak and three-
peak optimal complex networks,” Phys. Rev. Lett., vol. 92, p. 118702,
2004.

[43] G. Athithan and C. Dasgupta, “On the problem of spurious patterns in
neural associative models,” IEEE Trans. on Neural Networks, vol. 8,
pp.1483-1491, 1997.

[44] A. V. Robins and S. J. R. Mccallum, “A robust method for
distinguishing between learned and spurious attractors,” Neural
Networks, vol. 17, pp. 313-326, 2004.

2516

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

