
Tree Architecture Pattern Distributor: A Task Decomposition
Classification Approach

Victor M. O. Alves and George D. C. Cavalcanti

Abstract— Task decomposition is a widely used method to
solve complex and large problems. In this paper, it is proposed
a novel task decomposition approach, named Tree Architecture
Pattern Distributor (TreeArchPD), which is based on another
task decomposition technique, called Pattern Distributor. The
main idea is to design a tree architecture with many Distributors
instead of using only one Distributor as proposed by the original
technique. It is also proposed a new class grouping method
that aims to optimize the class selection for task decomposition.
Many experiments were done and they showed the effectiveness
of the proposed approaches.

MULTILAYERED feed-forward neural networks are
widely used in the literature to solve diverse prob-

lems. It is widely known that these networks present some
drawbacks when applied in real world problems. A common
drawback is the network size. Small networks cannot learn
the problem well, while large networks will lead to overfitting
and thus poor generalization [2].

Various approaches were proposed to tackle these draw-
backs, such as: pruning [3], regularization [4] and construc-
tive algorithms [5], [6], [7]. Using these approaches the
network size can be found in an automated way. How-
ever, there are real world problems that have many classes,
many patterns and/or many features. For these problems,
the approaches do not work satisfactory, because of the
complexity of the training. In other words, large networks
have a tendency to add internal interference into their input-
to-hidden layer weights [15].

One alternative is to divide a problem into a set of smaller
and simpler sub-problems, based on the divide-and-conquer
methods, instead of using a single and large network. Various
task decomposition methods have been proposed [8], [9],
[10], [11]. Based on Lu and Ito [10] approach, Guan and
Li [8] proposed the Output Parallelism (OP) method. Using
OP, a problem can be divided into several sub-problems, each
of which is composed by the whole input vector and a frac-
tion of the output vector. The responsibility of each module is
to produce a fraction of the output of the original problem [8].
Moreover, each module can be trained in parallel. However,
some drawbacks appear in these methods, such as: too much
time for training and manual class grouping.

Guan et al. [1] proposed a method called Pattern Distribu-
tor (PD). In this architecture there is a special module called
Distributor which was introduced in the network architecture
in order to improve the performance of the whole network.

Victor M. O. Alves and George D. C. Cavalcanti are with the Center
of Informatics (CIn), Federal University of Pernambuco (UFPE), Brazil,
{vmoa,gdcc}@cin.ufpe.br. Site: www.cin.ufpe.br/∼viisar

The Distributor works as a supervisor which makes high
level classifications. Each pattern that is given as input to the
Distributor is classified as belonging to one of the R modules.
And each module is responsible to classifier a subset of the
original classes of the problem. Therefore, when the number
of modules increases the work of the Distributor becomes
more difficult.

This paper proposes an approach to deal with the above
mentioned weakness of the PD method. The idea is to
create an automatic procedure to produce multiple Distributor
modules which are arranged in a tree structure. Doing this,
the original problem is divided into many sub-problems
and consequently the task performed by each module is
simplified. The proposed method is called TreeArchPD - Tree
Architecture Pattern Distributor.

One important part of the TreeArchPD is an automatic
procedure to group the classes. So, a novel approach to
grouping the classes, based on the confusion matrix, is
described. The proposed approach is compared with two
approaches described in [1]: crosstalk table and genetic
algorithm.

This paper is organized as follows. In Section I, some
related works are presented. In Section II, the proposed
method to find the best class grouping and the TreeArchPD
method are presented. Section III shows the experiments,
results and discussion. Finally, the conclusions are presented
in Section IV.

I. RELATED WORKS

Task decomposition approach is known in the literature
for quite some time. Anand et al. [9], in 1995, proposed
the use of a modular neural network, decomposing a K-
class problem into K 2-class sub-problems. Each K module
(representing one of K sub-problem) is trained to learn
only one sub-problem. However, each module is used in
the classification phase to discriminate patterns belonging to
other sub-problems. The final decision is made based on the
maximum rule.

Lu and Ito [10] proposed a method that divides a K-
class problem into C2

k 2-class sub-problems (C stands for
combinations or choices). But in this case the training is
done for each module, only with its sub-problem patterns. A
proposed method called min-max modular network was used
as a method to decompose the problem classes according to
its relations and to combine the K-modules responses.

Lu et al. [11] proposed an architecture that consists into
several cascade neural networks. Each network is responsible



for classification, but more roughly at the beginning and
gradually soften towards the end.

Fig. 1. Output Parallelism architecture with R modules.

Guan and Li [8] proposed a method named Output Par-
allelism (OP). In this method, a K-class problem is divided
into R sub-problems; see Fig. 1 for details. The notation used
by the author is the same one used in this paper. Suppose
a problem with 6 classes. If the problem is divided into
three sub-problems with 2 classes each, the notation used
to represent this configuration is {{class 1, class 2}, {class
3, class 4}, {class 5, class 6}}. Each module is trained with
the whole training set. When an unseen pattern is presented
into an OP network, it is processed by all the modules and
the final result is obtained by combining the results. This
method allows a parallel modular processing, optimizing the
training.

Fig. 2. Pattern Distributor architecture with R modules.

Guan et al. [1] modified the OP method, creating the
Pattern Distributor (PD) method. In the PD method, as well
as in the OP method, a K-class problem is divided into R
sub-problems. However, in this experiment another module
is added, called Distributor; see Fig. 2 for details. The
Distributor module is responsible for sending a pattern to the
corresponding module non-distributor (here called specialist).
Thus, in the PD method, after training, an unknown pattern
is processed by two modules: the Distributor and one of the
R specialists which is chosen by the Distributor. Based on
this fact, the authors proposed the Reduced Pattern Train-
ing (RPT) technique. It consists in training each specialist
module only with the patterns belonging to its sub-problem.

One drawback of these task decomposition methods is the
class grouping. Reliable and automatic methods are required
for the success of these methods. Guan et al. [1] indicated
two approaches to automate the class selection: crosstalk
table and genetic algorithm.

Crosstalk table uses Fisher linear discriminant to project
the pattern feature vectors into 1-D space. After that, the

distances between all patterns are computed. These distances
are arranged to form a table which is called crosstalk table.
Classes with the smaller distance are grouped.

Another alternative is to use a genetic algorithm to find
an optimal or a sub-optimal combination through evolution.
The authors proposed a specific chromosome to this problem;
details in [1].

Freitas et al. [12] defined manually the class grouping
using the confusion matrix (CM). In order to have the first
CM, they trained an ordinary single neural network. After
the analysis of the generated CM, the modular network was
designed.

II. NEW TASK DECOMPOSITION ARCHITECTURE

As has been briefly shown, the PD method presents a
weakness when the problem is large, i.e., a problem with
many classes. In this case, there are two possibilities: the
number R of modules can be large or small.

If the number R is small, the task of the Distributor is
much more simple. However, each module (specialist) has a
difficult problem to solve. Conversely, if R is a large number,
the Distributor has a big problem to solve. While the work of
the specialists is not complex. In both cases, an undesirable
fact emerges: the classification error increases.

Therefore, an investigation about how to find the best
number of modules, aiming to increase the accuracy rate of
the whole system, is of great importance. Two approaches
to perform this task were previously proposed in [1], as
presented in the end of Section I. However, the best one
is based on genetic algorithm, which is a very expensive
alternative, in terms of computational time. So, in the fol-
lowing Sections II-A and II-B are presented a new and
automatic class grouping for task decomposition and the
proposed TreeArchPD method, respectively.

A. Proposed Class Grouping Method

Before task decomposition, it is necessary to find the
optimal or sub-optimal class groups which aim to facilitate
the work of the Distributor and the work of the modules. So,
it was developed a new automatic method which extracts
information from the confusion matrices. Freitas et al. [12]
showed that it is possible to arrange the similar classes based
on the confusion caused by a classifier. Table I shows a
hypothetic confusion matrix of a 8-class problem. Note that
Class 1 and 3 are quite confused. And Class 2 and 6 have
confusion too. The same can be observed in other classes.
From this point of view, it is natural to say that Class 1 and
3 are similar. The same can be said to Class 2 and 6. Then,
basically, the method analyzes the most confused classes,
grouping them.

Inspired on this idea, an automatic method was developed.
For a confusion matrix CM , the distance matrix D is
calculated using Equation 1.

Di,j =
{

0, if i = j,
1− (nCMi,j + nCMj,i), otherwise. (1)



TABLE I
HYPOTHETIC CONFUSION MATRIX.

Predicted
Real 1 2 3 4 5 6 7 8

1 180 0 20 0 0 0 0 0
2 0 195 0 0 0 5 0 0
3 10 0 190 0 0 0 0 0
4 0 0 0 175 25 0 0 0
5 0 0 0 12 188 0 0 0
6 0 8 0 0 0 192 0 0
7 0 0 0 0 0 0 193 7
8 0 0 0 0 0 0 22 178

From Equation 1, i and j represent the confusion matrix
indexes. First of all, the matrix is normalized into [0 . . . 1]
interval. Each matrix element, CMi,j is divided by the sum
of its line, i.e., nCMi,j = CMi,j/

∑c
j=1 CMi,j , where c is

the number of columns. After that, the distance matrix D is
calculated according to the number of confusions per class.
Thus, when Di,j has a small value, this means that there is
a high probability of confusing classes i and j (i 6= j).

Fig. 3. A dendrogram generated based on the confusion matrix shown in
Table I.

Afterward, a hierarchical clustering algorithm is applied to
the distance matrix in order to group the most similar classes.
The algorithm used was Unweighted Pair Group Method with
Arithmetic Mean [13]. A dendrogram was generated based
on the confusion matrix (Table I), it is shown in Fig. 3.

B. Proposed Task Decomposition Architecture

Guan et al. [1] did a series of experiments which aimed to
demonstrate the Pattern Distributor method. In that work, the
authors suggested, as future work, to develop an architecture
in which two or more Distributors were arranged. Therefore,
the objective of this section is to show an extension of the
Pattern Distributor method that deals with more than one
Distributor.

The methodology to incorporate into the system more
Distributor modules is as follows. Suppose the same 8-class
problem showed in Section II-A. First, using the class de-
composition procedure proposed (Section II-A), the amount
of non-distributor modules (specialist modules) is determined
by the dendogram generated; see Fig. 4. Each rectangle in
this figure represents a module.

Fig. 4. Specialists modules organized by the class grouping algorithm.

Fig. 5. Specialists modules forming its fathers.

Considering each specialist as a leaf, the next step is to
group the specialist classes, forming a root for each pair; see
Fig. 5. This step is repeated for all modules and is based on
the dendrogram.

Fig. 6. Final architecture.

Only three layers are considered. So, the final step is to
combine all the intermediary roots into one big root, as can
be seen in Fig. 6.

This PD variation recalls a tree structure, so it is called
TreeArchPD. Then, any unseen pattern will be evaluate by,
not more than, 3 (three) modules. Algorithm 1 summarizes
the whole procedure of the TreeArchPD.

III. EXPERIMENTS AND DISCUSSION

In order to illustrate the efficiency of the proposed meth-
ods, two experiment were made. In the first one, the pro-
posed class grouping approach is evaluated. For comparison
purposes, two databases that were used in [1] were chosen.
In the second experiment, which aims to validate the pro-
posed TreeArchPD, two more databases were chosen. All
databases were obtained from the UCI Machine Learning
Repository [14].

All training method mentioned here use Resilient Back
propagation with learning rate = 0.1, maximum number of
epochs = 1000, and the number of hidden units was chosen



Algorithm 1 TreeArchPD
1: Evaluate the data set using an ordinary classifier (here,

a MLP was used);
2: From this evaluation a confusion matrix is obtained;
3: Normalize the confusion matrix values into [0 . . . 1]

interval:

nCMi,j = CMi,j/

c∑
j=1

CMi,j ,

where nCM is the normalized matrix and c is the
number of columns.

4: Calculate the distance matrix D, as stated in Equation 1:

Di,j =
{

0, if i = j,
1− (nCMi,j + nCMj,i), otherwise.

5: Matrix D is given as input to a hierarchical clustering
algorithm: Unweighted Pair Group Method with Arith-
metic Mean [13];

6: Based on the answer of the clustering algorithm, the
leaves of the TreeArchPD are created.

7: The most similar leaves are combined into groups, based
on the hierarchical clustering tree, forming its roots.

8: These roots are combined in a new and principal root. A
restriction: no more than three layers of modules must
be created;

9: All modules (PDs and Specialists) are trained indepen-
dently.

in preliminary tests, it ranges between 50 and 150. The best
configuration was chosen to this paper.

A. Databases

Four databases were used in this paper: Segmentation,
Letter, Optdigits and Vehicles. The main features of these
databases are described below.

1) Segmentation: This data set is formed by image seg-
mentation data. It consists of 18 inputs, 7 outputs and 2,310
patterns. In this paper, 1,155 training, 578 validation and 577
test patterns were used.

2) Letter: This data set presents character image features.
It consists of 16 inputs, 26 outputs and 20,000 patterns. In
this paper, 10,007 training, 5,029 validation and 4,964 test
patterns were used.

3) Optdigits: This data set presents numerical character
image features. It consists of 64 inputs, 10 outputs and 5,620
patterns. In this paper, 2,811 training, 1,418 validation and
1,391 test patterns were used.

4) Vehicles: This data set presents vehicles silhouette
features. It consists of 18 inputs, 4 outputs and 946 patterns.
In this paper, 473 training, 238 validation and 236 test
patterns were used.

The attributes of all databases were normalized into
[0 . . . 1] interval.

B. Class Grouping

The experiments described in this section show that the
proposed approach to perform class grouping is better or,
at least, equivalent to the Guan’s methods. Besides that, it
is important to mention that the proposed method is faster
than PD method, because of the simplicity of the modules.
It was used two databases: Segmentation and Letter. The
same databases were used in [1], where it was proposed two
approaches to find the best class clusters: genetic algorithm
and crosstalk table. These two approaches should be used for
comparison reasons.

The proposed method was used twice for each database,
with different number of groups. In the following subsec-
tions, the two experiments are described and compared with
the experiments found in [1].

1) Experiments with the Segmentation data: Two combi-
nations were obtained using the crosstalk based combination
of classes [1]: {{1,3,4,5}, {2,6}, {7}} and {{1,2,7}, {3,4},
{5,6}}. This class grouping reached 4.6187% and 5.39% of
classification error, respectively. Using a genetic algorithm,
it was obtained the combination [1]: {{1,3,4,5}, {6,7}, {2}}
and achieved 4.5321% of error rate.

Before using the proposed method, an ordinary Multilayer
Perceptron with 18 inputs, 7 outputs and one hidden layer
with 120 hidden units was trained. From the confusion
matrix, the proposed method obtained two combinations:
{{1,3,4,5}, {2,6,7}} and {{1,3,4,5}, {6,7}, {2}}. The sec-
ond combination was identical to the GA combination. The
combinations reached 5.3726% and 4.9567% of classification
error, respectively. The results are shown in Table II.

TABLE II
EVALUATING THE CLASS GROUPING STRATEGY - SEGMENTATION DATA

Error (%)
Grouping method Distributor Overall

Crosstalk-based 1 [1] 0.1040 4.6187
Crosstalk-based 2 [1] 4.7834 5.3900

GA-based [1] 0.0173 4.5321
Proposed (2 groups) 0.3986 5.3726
Proposed (3 groups) 0.0867 4.9567

From Table II, crosstalk-based 1 and 2 refer to the two
combinations generated by crosstalk table in [1]. GA-based
refer to combination obtained by Guan, using genetic algo-
rithm. Finally, the proposed method was used twice, with 2
and 3 groups. The Distributor Error is the error obtained only
in the Distributor module. The Overall error is the error of
the whole system.

Table II shows that apparently the GA-based method
presented the best rates. However, the proposed method (with
3 groups) obtained the same class grouping that the GA
method. In other words, the difference was how the modules
were trained, once they have the same class grouping. And it
is important to mention that the proposed method was faster
than the genetic algorithm. According to [1], the GA method
takes hours to execute. The proposed one takes few seconds.



2) Experiments with the Letter data: The
classes were manually grouped in [1], resulting in:
{{1,2,3,4,5,6,7}, {8,9,10,11,12,13,14}, {15,16,17,18,19,20},
{21,22,23,24,25,26}}, which yielded 15.855% of error.
Neither crosstalk-based or GA-based combination were
used.

TABLE III
EVALUATING THE CLASS GROUPING STRATEGY - LETTER DATA

Error (%)
Grouping method Distributor Overall

Manually (6 groups) [1] 12.1950 15.8550
Proposed (4 groups) 3.7893 13.5133
Proposed (6 groups) 7.7337 12.8223

Before using the proposed method, an ordinary Multilayer
Perceptron with 16 inputs, 26 outputs and one hidden
layer with 80 hidden units was trained. From the
confusion matrix, the proposed method created two class
combinations: {{2,3,4,5,7,8,10,11,12,14,15,17,18,19,24,26},
{6,9,16,20,25}, {13,21,22,23}, {1}} and
{{2,4,7,8,14,15,17,18}, {3,5,10,11,12,19,24,26}, {20,25},
{6,9,16}, {1}, {13,21,22,23}}. These combinations yielded,
respectively, 13.5133% and 12.8223% of classification error.
Table III shows the results.

For this data set, Guan did not used an automatic class
grouping. So, Table III only presents the results for the
manual selection of the classes. It is clear that the proposed
method outperforms the manual selection. The Distributor
error achieved lower error rates when 4 groups were used.
The explanation is the following: for 6 groups, the Distributor
module have to distinguish between 6 classes, rather than 4
classes, making it more susceptible to errors.

These two experiments showed the usefulness of the
proposed method. The results for the Segmentation data
were similar to the results found in [1], and the results for
the Letter data were better than the methods in [1]. Also,
the proposed method is faster than the genetic algorithm
approach.

C. Task Decomposition

The usefulness of the confusion matrix based method was
previously shown. This section describes the experiments
with the proposed PD method extension, named TreeArchPD.
Therefore, four databases are used and a comparison with the
original PD method is made.

To compare the PD method with the TreeArchPD method,
four experiments were made; details of the experiments
are exposed in the sections below. All the class grouping
processes were made using the confusion matrix method
described in Section II-A. All experiments were executed
10 times, varying weights initialization. Mean, standard
deviation and training time are presented. Note that the
training time does not take into account the class grouping
process and the training was done sequentially. In the result
tables, the final error rate is the overall error. The error rate

per module was obtained considering only the patterns that
arrived correctly to the modules.

Fig. 7. PD architecture used for the Segmentation data set. At the left, 2
specialist modules and at the right 3 specialists. Number “1” represents the
Distributor.

Fig. 8. TreeArchPD task decomposition architecture for Segmentation data
set.

1) Experiments with the Segmentation data: The first
experiment evaluates the performance of an ordinary MLP
in this data set. A MLP with 7 outputs and 120 hidden units
was used. Next, two architectures of PD method were used,
one with 2 specialist modules and another with 3 specialists,
both with 120 hidden units. Lastly, the TreeArchPD method
was used, also with 120 hidden units for each module. Figs. 7
and 8 depict the architectures used to the PD method and the
TreeArchPD method, respectively.

The class grouping for the PD method, with 2 specialists,
was: module 2 = {1,3,4,5} and module 3 = {2,6,7} (see Fig. 7
left). Using 3 specialists, the class grouping was: module 2
= {2}, module 3 = {6,7} and module 4 = {1,3,4,5} (see
Fig. 7 right). For the proposed method (see Fig. 8), the class
grouping was: module 2 = {1,3,4,5}, module 3 = {2,6,7},
module 4 = {1,3}, module 5 = {4,5}, module 6 = {2,6} and
module 7 = {7}.

TABLE IV
SEGMENTATION DATA RESULTS: CLASSIFICATION ERROR (%) AND

TRAINING TIME (SECONDS)

Method Error x(σ) Training time
MLP 6.7764 (0.8624) 114.00

PD (2 specialists) 5.3726 (0.7532) 151.52
PD (3 specialists) 4.9567 (0.6747) 116.73

TreeArchPD 5.3899 (0.6456) 173.26

Table IV shows the classification error and the training
time for all approaches. The standard deviations are shown
in brackets. Table V shows the classification error for each
module separately (see Figs. 7 and 8). For this data set, the



TABLE V
SEGMENTATION DATA RESULTS: MODULAR ERROR (%)

Module PD (2 spec.) PD (3 spec.) TreeArchPD
1 0.3986 0.0867 0.3640
2 8.8036 0 7.5319
3 0 0 0.7165
4 − 8.5781 8.8862
5 − − 8.9786
6 − − 1.0332
7 − − 0

PD method achieved a better absolute error rate than the
proposed method.

Fig. 9. TreeArchPD task decomposition architecture for Optdigits data set.

2) Experiments with the Optdigits data: For this data set,
a MLP with 80 hidden units and 10 outputs was trained.
The two configurations of the PD method were identical to
the Segmentation data (Fig. 7). However, each module was
trained with 80 units in the hidden layer. The TreeArchPD
method has 8 modules, with 80 hidden units each. Fig. 9
shows the proposed architecture for the TreeArchPD.

The two configurations of PD (see Fig. 7) pre-
sented, respectively, the following class grouping: {{5,7},
{1,2,3,4,6,8,9,10}} and {{2,8,9,10}, {1,3,4,6}, {5,7}}, rep-
resenting {{module 2}, {module 3}} and {{module 2},
{module 3}, {module 4}}, respectively. The TreeArchPD
class distribution was: module 2 = {2,8,9,10}, module 3 =
{1,3,4,6}, module 4 = {5,7}, module 5 = {2,8}, module 6 =
{9,10}, module 7 = {3,4} and module 8 = {1,6}.

Table VI shows the classification error (mean and standard
deviation) and training time (in seconds) for all the classifiers
evaluated. The isolated module classification error is shown
in Table VII.

TABLE VI
OPTDIGITS DATA RESULTS: CLASSIFICATION ERROR (%) AND

TRAINING TIME (SECONDS)

Method Error x(σ) Training time
MLP 5.4062 (0.4532) 50.00

PD (2 specialists) 5.2121 (0.4760) 79.00
PD (3 specialists) 5.1833 (0.2783) 53.54

TreeArchPD 4.7664 (0.4367) 61.91

TABLE VII
OPTDIGITS DATA RESULTS: MODULAR CLASSIFICATION ERROR (%)

Module PD (2 spec.) PD (3 spec.) TreeArchPD
1 0.6732 2.3580 2.1639
2 0.9284 4.0996 5.7767
3 5.4183 2.7098 2.1389
4 − 0.8436 4.7565
5 − − 9.1070
6 − − 3.9655
7 − − 2.3779
8 − − 3.5693

In Table VI, it is presented the error of the MLP, the
TreeArchPD and the two configurations of PD method. Note
that, for this data set, the proposed method outperforms the
other ones in terms of the accuracy rate. For training time, the
proposed one was faster than PD method with two specialists.

3) Experiments with the Vehicles data: For this data set,
a MLP with 50 hidden units and 4 outputs were used. This
data set has only 4 classes, for that reason, the PD method
and the TreeArchPD method had the same architecture. This
architecture is identical to the one shown in Fig. 7 at left.
The class distribution was: module 2 = {2,4} and module 3
= {1,3}. The classification error and the training time can
be observed in Table VIII. The modular error is shown in
Table IX.

TABLE VIII
VEHICLES DATA RESULTS: CLASSIFICATION ERROR (%) AND TRAINING

TIME (SECONDS)

Method Error x(σ) Training time
MLP 28.6893 (3.4663) 8.00

TreeArchPD 27.8155 (2.5073) 22.51

TABLE IX
VEHICLES DATA RESULTS: MODULAR CLASSIFICATION ERROR (%)

Module TreeArchPD
1 8.3495
2 45.1927
3 10.0773

The proposed method and the PD method have the same
structure, for this data set. They have the same classification
error, which is better than MLP. For problems with few
classes, the PD method is a specialization of the TreeArchPD.

4) Experiments with the Letter data: For this data set, a
MLP with 80 hidden units and 26 outputs was used. For
the PD method, it was used 4 and 6 specialist modules (see
Fig. 10); each module with 80 hidden units. For TreeArchPD,
motivated by the large number of classes, two configurations
were used. One configuration with no more than two leaves
for each intermediate layer node (Fig. 11 left) and other one
with more leaves per intermediate layer node (Fig. 11 right).

The classes distribution in the PD methods are presented
in Table X. For the TreeArchPD method, the distribution is
shown in Table XI.



Fig. 10. PD task decomposition architecture for Letter data set. Left, with
4 specialists. Right, with 6 specialists.

Fig. 11. TreeArchPD configurations for the Letter recognition problem.
Configuration 1 (left), with no more than two leaves into the intermediate
layer and Configuration 2 (right), with more leaves in the intermediate layer.

TABLE X
PD CLASS DISTRIBUTION FOR THE LETTER DATA.

Module PD (4 specialists) PD (6 specialists)
2 {2,3,4,5,7,8,10,11,12, {2,4,7,8,14,15,17,18}

14,15,17,18,19,24,26}
3 {6,9,16,20,25} {3,5,10,11,12,19,24,26}
4 {13,21,22,23} {20,25}
5 {1} {6,9,16}
6 - {1}
7 - {13,21,22,23}

The classification error, the standard deviation and the
training time are shown in Table XII. Table XIII and Ta-
ble XIV show the error per module.

Table XII shows that the PD and the TreeArchPD tech-
niques outperformed the ordinary MLP. Configuration 1 of
the proposed method presented the worst error rate, excepting
the MLP. One possible explanation relies on the fact that
there are a great number of modules in the intermediate layer
(see Fig. 11 left), and this may cause higher error rate in the
first module layer. However, TreeArchPD - Configuration 2
- presented similar classification error rate when compared
with the PD (6 specialists). Thus, given the low standard de-
viation, the proposed method (Configuration 2) has achieved
very good results for this data set.

TABLE XI
TREEARCHPD CLASS DISTRIBUTION FOR THE LETTER DATA.

Module TreeArchPD (conf. 1) TreeArchPD (conf. 2)
2 {5,19,24} {3,5,11,19,24}
3 {3,10,11,26} {1,2,10,12,18,26}
4 {2,12,18} {4,7,8,14,15,17}
5 {4,8,14} {6,9,16,20,25}
6 {7,15,17} {13,21,22,23}
7 {6,9,16} {19,24}
8 {13,20,23,25} {5}
9 {21,22} {3,11}

10 {1} {10,26}
11 {19,24} {12}
12 {5} {2,18}
13 {3,11} {1}
14 {10,26} {14}
15 {12} {4,8}
16 {2,18} {7,17}
17 {14} {15}
18 {4,8} {6,16}
19 {7,17} {9}
20 {15} {20,25}
21 {6,16} {13,23}
22 {9} {21,22}
23 {20,25} -
24 {13,23} -

TABLE XII
LETTER DATA RESULTS: CLASSIFICATION ERROR (%) AND TRAINING

TIME (SECONDS)

Method Error x(σ) Training time
MLP 18.0459 (0.5136) 969

PD (4 specialists) 13.5133 (0.5861) 1403
PD (6 specialists) 12.8223 (0.8221) 1356

TreeArchPD (conf. 1) 14.5870 (0.6507) 1225
TreeArchPD (conf. 2) 13.0077 (0.1969) 1461

TABLE XIII
LETTER DATA RESULTS: MODULAR CLASSIFICATION ERROR OF PD

METHOD (%)

Module PD (4 spec.) PD (6 spec.)
1 3.7893 7.7337
2 14.8679 8.9853
3 3.4352 6.1889
4 1.3630 1.4710
5 0 3.3124
6 − 0
7 − 2.1093

IV. CONCLUSIONS

Various task decomposition approaches have been devel-
oped to solve real world problems. These approaches use
divide-to-conquer methods to reduce the problem complexity.
Two examples of these task decomposition techniques are:
Output Parallelism [8] and Pattern Distributor [1]. To choose
the class grouping for the problem division, these articles
proposed the use of crosstalk table and genetic algorithm.
However, the genetic algorithm is very slow, as affirmed by
Guan et al. [1].

The contribution of this paper is twofold. First, a new



TABLE XIV
LETTER DATA RESULTS: MODULAR CLASSIFICATION ERROR OF THE

TREEARCHPD METHOD (%)

Module TreeArchPD (conf. 1) TreeArchPD (conf. 2)
1 12.8807 12.8807
2 20.8861 20.8861
3 11.8142 11.8142
4 18.9267 18.9267
5 16.5335 16.5335
6 19.4234 19.4234
7 6.4388 6.4388
8 9.5986 0
9 21.9918 9.5986

10 0 21.9918
11 15.0344 0
12 0 15.0344
13 9.3338 0
14 24.5333 0
15 0 9.3338
16 23.0862 24.5333
17 0 0
18 20.9698 23.0862
19 9.7123 0
20 0 20.9698
21 9.6602 9.7123
22 0 9.6602
23 11.0308 −
24 6.6642 −

method for class grouping was proposed which is based on
the confusion matrices. The experiments showed its effective-
ness. Second, an extension of the method proposed by Guan
was presented, called TreeArchPD. The experiments showed
that this extension outperformed the original PD method. In
terms of computational time, the proposed approach is faster
than other similar methods, especially when the training of
the modules is performed in parallel.

The experiments showed the viability of the class grouping
method and the TreeArchPD method. As future work, more
experiments and configurations for the TreeArchPD must be
evaluated.

ACKNOWLEDGMENTS

This work was supported in part by the Brazilian Na-
tional Research Council CNPq (Proc. 475911/2008-3) and
by FACEPE - Fundação de Amparo à Ciência e Tecnologia
do Estado de Pernambuco (Proc. APQ-0890-1.03/08).

REFERENCES

[1] S. U. Guan, C. Bao and T. Neo, Reduced Pattern Training Based on
Task Decomposition Using Pattern Distributor. IEEE Transactions on
Neural Networks, vol. 18, pp. 1738-1749, 2007.

[2] S. U. Guan, Q. Yinan, S. K. Tan and S. Li, Output partitioning of neural
networks. Neurocomputing, vol. 68, pp. 38-53, 2005.

[3] R. Reed, Pruning algorithm: a survey. IEEE Transactions on Neural
Networks, vol. 4, pp. 740-747, 1993.

[4] T. Poggio, F. Girosi, Regularization algorithms for leaning that are
equivalent to multi-layer networks. Science, vol. 247, pp. 978-982,
1990.

[5] T. Ash, Dynamic node creation in backpropagation networks. Connect.
Sci., vol. 1, pp. 365-375, 1989.

[6] L. Prechelt, Investigation of the CasCor family of learning algorithms.
Neural Networks, vol. 10, pp. 885-896, 1997.

[7] M. Lehtokangas, Modelling with constructive backpropagation. Neural
Networks, vol. 12, pp. 707-716, 1999.

[8] S. U. Guan and S. C. Li, Parallel growing and training of neural net-
works using output parallelism. IEEE Transactions on Neural Networks,
vol. 13, pp. 542-550, 2002.

[9] R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka, Efficient classi-
fication for multiclass problems using modular neural networks. IEEE
Transactions on Neural Networks, vol. 6, pp. 117-124, 1995.

[10] B. L. Lu and M. Ito, Task decomposition and module combination
based on class relations: A modular neural network for pattern classifi-
cation. IEEE Transactions on Neural Networks, vol. 10, pp. 1244-1256,
1999.

[11] B. L. Lu, H. Kita, and Y. Nishikawa, A multisieving neural-network
architecture that decomposes learning tasks automatically. Proc. IEEE
Conference on Neural Networks, Orlando, FL, pp. 1319-1324, 1994.

[12] C. A. O. Freitas, L. S. Oliveira, F. Bortolozzi and S. B. K. Aires,
Handwritten Character Recognition Using Nonsymmetrical Perceptaul
Zoning. International Journal of Pattern Recognition and Artificial
Intelligence, vol. 21, pp. 1-21, 2007.

[13] L. Kaufman and P. Rousseeuw, Finding Groups in Data. Wiley, 1990.
[14] Asuncion, A. and Newman, D. J., UCI Machine Learning Repository.

Irvine, CA: University of California, School of Information and Com-
puter Science, 2007.

[15] R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton, Adaptive
mixtures of local experts, Neural Computation, vol 3, pp. 7987, 1991.


