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Abstract— This paper presents an extensive evaluation of
reservoir computing for the case of classification problems that
do not depend on time. We discuss how it is possible to adapt the
reservoir approach to learning for the case of static classification
problems. Then we present a set of experiments against K-PLS,
MLP with entropic cost function and LS-SVM showing that this
approach is quite competitive and has the advantage of having
only one parameter to be chosen.

I. INTRODUCTION

Recurrent neural networks (RNNs) have a wide range of
applications, typically in time dependent problems such as
speech recognition, time series prediction, robot control, etc.

Jaeger [1] and Maas [2] introduced two types of RNNs,
echo state networks (ESNs) and liquid state machines
(LSMs), respectively, that have an important distinction re-
garding traditional RNNs: only a linear output layer needs to
be adjusted. This simplifies greatly the task of learning and
it has been shown in the last years that these reservoir [3]
approaches are very powerful and achieve excellent results
in several time domain tasks [4], [5], [6].

estáticos In this paper we discuss a way to adapt the
reservoir approach such that it can be used to solve static
pattern recognition problems traditionally solved by SVMs,
MLPs, and other non-recurrent learning machines.

In fact there is at least one example of the use of a
reservoir approach to deal with such static problems, in
this case it was the digit recognition problem of the USPS,
presented in [7]. But the authors converted the non-time
dependent problem into a time dependent one to be able to
use the traditional reservoir approach. Although this was an
intelligent approach, it may not be easy to adapt it to other
static problems. Our approach does not need the recoding
of the data into a time dependent problem: it works directly
with the static patterns.

The key characteristics of a neural network based on
reservoir computing can be summarized as follows: 1) The
weights from input to hidden layer are from a uniform
random distribution and in our case we did use an additional
bias node in the input layer; 2) The reservoir is sparsely
connected and the weights are sampled from a uniform
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random distribution, but such that the min and the max of this
distribution is chosen to ensure that all the complex eigenval-
ues fall within the unit circle; 3) The reservoir neurons utilize
a transfer function, in our case the traditional sigmoidal
transfer function, but contrary to traditional recurrent neural
networks we let the dynamics settle first before applying the
transfer function; 4) The reservoir layer can be considered
as a sparsely connected Hopfield layer; 5) The output layer
weights are the only ones that must be found by training and
this can be done with a linear solver.

We present a set of experiments that show that this
approach is competitive with the traditional ones and has the
advantage of only needing the adjustment of one parameter.
Variations can be used that do not need any parameters,
but they achieve poorer performances. We compare our
proposed approach of reservoir computing for static pattern
classification with Kernel Partial Least Squares (K-PLS) [8],
Least Squares Support Vector Machines (LS-SVMs) [9] and
Multi Layer Perceptrons (MLPs) with entropic cost functions
[10].

The paper is organized as follows: the next section dis-
cusses the reservoir approach to learning. Section 3 explains
how can this approach be used on static classification prob-
lems. The experiments are presented in section 4 and the
final section contains the conclusions.

II. RESERVOIR COMPUTING

Both Echo State Networks (ESN) and Liquid State Ma-
chines (LSM) are examples of reservoir computing. This
paper uses the ESN approach with analog neurons.

The idea behind the reservoir approach is to use a large
set of neurons (typically more than 100) to give ‘a rich set
of dynamics to combine from‘ [1]. The model has also input
and output layers but only the latter is adjusted in the training
phase.

The output from the reservoir layer can be considered
as an unsupervised nonlinear data transformation. The big
advantage of reservoir computing is that training is now
restricted to finding the output weights.

The output or last layer of the neural network could be
trained with a delta rule, or could be solved directly with a
linear model such as standard multivariate regression, ridge
regression, or partial least squares. In our case we used partial
least squares (PLS) to determine the weights of the second
layer. PLS requires that one parameter has to be specified, the
number of latent variables (which is similar to the number
of principal components in the case of principal component
analysis).



Fig. 1. Representation of a reservoir network. Large circles are the neurons.
The middle (blue) layer is the reservoir. Dashed connections are optional
(and not used in this paper).

Figure 1 presents the general scheme of a reservoir net-
work. Notice that the reservoir is the big layer, there can be
connections directly from the input to the output layers and
there can also be feedback connections from the output to the
reservoir and to itself. Inside the reservoir, there are feedback
connections since the neurons are randomly connected to
each other. These connections are typically sparse.

For the most simple case (the only recurrent connections
are in the reservoir), we can write the state x(t+ 1) of a N
neurons reservoir at time t + 1, of an ESN with K inputs
and L outputs, as:

x(t+ 1) = f(Wx(t) +W inu(t+ 1)) (1)

where f(·) is the reservoir nonlinear activation function, W
is the N × N reservoir weight matrix, W in is the N × K
input weight matrix and u(t+ 1) is the input data.

The L-dimensional network output is given by

y(t) = g(W outx(t)) (2)

where g(·) is the output linear activation function and W out

is a L×N output weight matrix. We consider g(·) to be the
identity function.

The way to use a reservoir network is: 1) create the
random reservoir connections with a particular degree of
connectivity; 2) create the input and output weight matrices;
3) feed the training data into the network and save the
reservoir states for each input; 4) after having showed the
complete training set to the network, find the output weights
using a linear solver, given the state of the reservoir and the
desired target for each input signal; 5) with the trained output
layer the network can be used in test mode.

The size of the reservoir, N , and the sparsity of the con-
nections within the reservoir are meta-parameters that usually
are not critical. It was found that 200 reservoir neurons with

10% sparsity provides a rather robust performance, provided
that the largest eigenvalues fall within the unit circle, and
cover a significant fraction of the unit circle.

The spectral radius of the reservoir matrix should be
smaller than 1 to ensure that the network possesses the
‘echo state property’ [1], that is, that the state is eventually
(after an appropriate number of iterations) only dependent
of the input data and not on the initial network state. This
property makes the initial state irrelevant and we set it to zero
(x(0) = 0). The input weight matrix can be initialized with
small values: we use random weights in [−1, 1]. The weights
from input to hidden layer were done with a bias input
and uniform random connections in [−1, 1]. No connections
between input layer and output layer were utilized. Similarly,
there are no feedback connections from the output layer to
previous layers. Only the reservoir layer contains recurrent
connections.

III. RESERVOIR COMPUTING FOR STATIC
CLASSIFICATION PROBLEMS

The traditional use of reservoir computing has been to
solve time dependent problems. We now discuss the adap-
tation necessary to use the reservoir approach on static
classification problems.

and can be shown to the network in any order.
The index t in the equations is only used to distinguish

between different patterns and no longer represents time.
To ‘break’ the recurrent dependence of the state on time t

on the previous state (t− 1) we propose the use of reservoir
stabilization. The way this works is the following: keep each
input signal present in the network input until the outputs
of the reservoir neurons have almost no change. During
stabilization the output layer is ignored.

The state equation is iterated (upper index) until x(t+ 1)
does not change significantly. Notice that we do not use the
activation function here.

x(t+ 1)(i) = Wx(t)(i−1) +W inu(t+ 1) (3)

Figure 2 presents the output of the first 20 neurons of a
reservoir during stabilization, for a spectral radius of 0.99.
The values shown were passed through a sigmoid function
for display purposes. It can be seen that the outputs oscillate
but eventually stabilize. These final values are the ones
considered as the state for the adaptation of the output layer.

The time it takes to stabilize the state of the reservoir
neurons depends on the spectral radius: the larger it gets (up
to 1) the longer it takes for the dynamics to settle. Figure 3
shows the same outputs as in figure 2 (all other things being
equal) but using a reservoir with a spectral radius of 0.55.
The stabilization occurs within about 20 iterations as before
it took around 800. The importance of the dynamics is still
not clear to us.

The final output layer weight adjustment can be done in
several ways. Since the problem is a linear one, we can use
a simple linear solver, thus no actual parameters need to be
adjusted. We found that a more powerful solver can improve



Fig. 2. Output of the first 20 neurons of a reservoir during stabilization.
The X axis represents the number of stabilization iterations. Spectral radius
of 0.99.

Fig. 3. Output of the first 20 neurons of a reservoir during stabilization.
The X axis represents the number of stabilization iterations. Spectral radius
of 0.55.

the results and in this paper we present results of the reservoir
approach for static classification problems using PLS.

IV. EXPERIMENTS

We performed 25 experiments on different classification
benchmark datasets (see Table I) that are challenging, non-
linear, and generally accessible and frequently cited in the
literature. In the case of reservoir computing the linear solver
used the classical Partial Least Squares or PLS method
as discussed in [11]. PLS has the advantage of being a
robust linear equation solver where just one parameter (the
number of latent variables) needs to be determined. We
also calculated classification results with two other powerful
traditional nonlinear classification methods: Kernel Partial
Least Squares (K-PLS) [8] and Least Squares SVMs or LS-
SVMs [9]. We also included the classification results for
state-of the art neural networks with entropic error metrics as
reported in the Ph.D. dissertation by Luís Silva [10]. It would
be worthwhile to present other error metrics besides overall
classification rates such as the balanced error ratio and the

Fig. 4. Haykin(2000,20) consists of 2000 unbalanced cartoon spiral data,
with 400 data in the positive class and 1600 data in the negative class [12].

Adjusted Rand Index (ARI), but we decided not to so in
this study because the results in [10] only provide overall
classification rates.

The checkerboard data and the Haykin data are less con-
ventional and deserve a brief explanation. We generated three
checkerboard benchmark data binary classification problems
as indicated by Check4x4(200,50), Check2x2(200,50) and
Check4x4(1000,20). The 4x4 or 2x2 indicated whether we
are dealing with a 2x2 or a 4x4 checkerboard. The additional
info between brackets indicates the total number of data and
the ratio of samples between the total number of data and
the positive class. For example Check4x4(1000,20) indicates
that we generated 1000 random data on a 4x4 checkerboard
with 200 data in the positive class and 800 data in the
negative class. Similarly, Haykin(2000,20) refers to 2000
binary unbalanced cartoon spiral data [12], where there are
400 positive samples and 1600 negative samples as shown
in figure 4.

All the input patterns were first standardized (i.,e., the
features are scaled by subtracting their average and dividing
by their standard deviation). After the reservoir outputs were
stabilized we did a second standardization for the reservoir
neuron outputs before applying the PLS model. Note also
that while applying the PLS model the target outputs are
also standardized.

While we found that 12 is generally a robust first guess for
the number of latent variables, the number of latent variables
was tuned first for the best performance on the training data
only.

We used the same reservoir weights for all the classifica-
tion benchmark cases reported in the paper.

All the results reported in table I provide classification
results based on 100 experiments for each dataset with a
random 50/50 split of the data for the training and test



Fig. 5. Complex eigenvalues for a reservoir with 200 neurons, 10%
connectivity and weights selected from a uniform random distribution in
[−0.23, 0.23].

sets. The reservoir results were obtained for a reservoir
with 200 neurons, with 10% of recurrent connections chosen
uniformly from a [−0.23, 0.23] uniform distribution. All
experiments were performed with identical reservoir weights.
We did experiment with other reservoir settings as well,
and the results are qualitatively similar, provided that the
radius of the complex eigenvalues is large enough, but
within the unit circle and we will report on these findings
in further publications. The complex eigenvalues for the
reservoir settings corresponding to table I are shown in figure
5.

The best results for each method are presented in bold
underlined script. The first column of table I indicates the
dataset and the reference for the data if the data can’t be
downloaded directly from the UCI data repository [13], the
second column indicates the number of classes and whether
the data distributions in the various classes are balanced or
not balanced. The columns with headings RES1 and RES2
are the results from reservoir computing.

The number of latent variables for the RES1 results is
always held fixed to 12, while the number of latent variables
in the RES2 results is indicated in the column with as header
LV2. The K-PLS classification results used a radial basis
function (RBF) or Gaussian kernel are reported in the column
headed K-PLS and the required parameter settings are the
number of latent variables and the Gaussian Kernel Parzen
window as reported in the column with as header LV, σ.
The PLS and K-PLS methods for multi-class classification
problems are performed in an orthogonal multi-output rep-
resentation if the classes are categorical, otherwise a single
output mode was used for multi-class classification problems.
For the least squares support vector machine results we used
an RBF kernel with the same kernel setting as was applied
for the K-PLS method. In this case we tuned λ = 1/C with

an heuristic formula reported in [14], according to

λ = min
{

1; 0.05
( n

200

) 3
2
}

(4)

The above formula n is the number of patterns. Past
experiments have shown that above formula is generally
quite robust and provides a close to optimal performance.
We did check for the smaller datasets whether hand-tuning
the regularization penalty factor, λ, would lead to a superior
performance over the other classification methods.

Note that for the Haykin(2000,20) and for the credit data
we actually indicated a tie between reservoir computing and
K-PLS, because the balanced error (not shown in table),
which is actually more meaningful than the overall classifi-
cation rate for unbalanced data, showed a better performance
for reservoir computing. Note also that all LS-SVM results
are for a single output mode representation for multi-class
classification problems and that the results for non-ordinal
multi-class classification problems are therefore generally
inferior and reported in brackets. We proceeded in this
way, because or LS-SVM software is geared for binary
classification problems and regression problems, and cannot
handle multiple output classification.

From the results reported in table I we see that there often
is no clear statistically significant difference between the
different methods and that the results of reservoir computing
with a linear solver for the second layer compares very
favorably with the other nonlinear classification methods.

V. CONCLUSIONS

This paper presented an extensive experimental evaluation
of a reservoir approach to the classification of static patterns.
We discussed a way to use the reservoir recurrent network
for problems that do not depend on time. The main advan-
tage of the proposed approach is that it has a competitive
performance relative to well established methods and only
needs the adjustment of a single parameter.

The results on 25 commonly used benchmark data clearly
show that reservoir computing for static pattern classifica-
tions presents a viable alternative to other popular nonlinear
classification methods. The reservoir computing system can
be considered as a neural network with a sparsely connected
recurrent Hopfield layer which trains in an unsupervised
mode.

The innovation of our reservoir computing approach for
static pattern recognition is to let the transients settle before
applying a sigmoid transfer function. The weights of the
second layer of the neural network are determined by a linear
partial least squares method, where the number of latent
variables is the only variable that needs to be tuned. Note
also that for all 25 classification problem the same reservoir
weights were used in the hidden layer.

We are currently studying the effect of changes in the
reservoir size, sparsness and spectral radius on the classi-
fication performance.



Dataset # classes # data # variables RES1 LV1 RES2 LV2 Silva[10] K-PLS LS-SVM LV, σ
CHD2 [13] 2U 303 13 75.571 12 82.143 1 83.33 80.441 80.901 3,20
Check2x2(200,50) 2B 200 2 93.430 12 94.000 20 92.84 94.370 94.190 5,0.3
Check4x4(200,50) 2B 200 2 59.050 12 75.170 40 79.40 80.770 80.580 5,0.2
Check4x4(1000,20) 2U 1000 2 81.864 12 92.840 55 - 94.642 94.702 5,0.2
Credit [13] 2U 690 15 84.565 12 86.249 3 - 86.461 84.565 5,7
CTG16 [15] 10U 2162 23 66.258 12 74.914 50 84.50 55.169 (27.139) 5,1
Fischer’s iris [13] 3B 150 4 94.613 12 97.333 5 - 96.507 96.907 5,5
Haykin(500,50) [12] 2B 500 2 94.188 12 96.252 35 - 96.106 95.860 5,0.2
Haykin(2000,20) [12] 2U 500 2 87.104 12 91.016 35 - 96.760 96.420 5,0.2
Ionosphere [13] 2U 351 34 91.875 12 92.286 6 88.50 94.858 96.571 5,3
Liver [13] 2U 345 6 70.286 12 72.571 6 70.32 71.347 69.714 5,4
Mushroom [13] 2U 8124 26 99.459 12 99.916 5 - 99.568 99.996 12,2
Olive [16] 9U 572 8 92.731 12 95.227 15 94.62 92.427 (85.759) 9,2
PB12 [17] 4B 608 2 92.928 12 92.898 20 92.90 92.645 (24.980) 5,1
Pima Diabetes [13] 2U 768 8 73.021 12 79.286 4 76.82 76.794 76.628 5,5
Sonar [13] 2U 208 60 74.260 12 76.048 7 79.18 84.548 84.346 5,5
Spam [13] 2U 4601 57 93.286 12 93.429 15 93.35 92.111 92.947 5,5
Synthetic Ripley[18] 2B 1250 5 90.725 12 89.248 5 - 89.288 89.560 5,2
Thyroid [13] 3U 215 5 96.429 12 97.143 15 96.75 96.744 91.184 5,1
Tic Tac Toe [13] 2U 958 9 75.560 12 76.733 5 - 97.962 66.543 20,10
Titanic Survival [19] 2U 2201 3 78.429 12 76.000 5 - 77.619 67.599 5,100
Vehicle [13] 4U 846 18 76.466 12 77.544 20 81.93 79.187 (65.173) 20,20
Vowel [20] 11B 990 10 55.941 12 87.521 50 88.47 96.733 (59.547) 20,1.5
WDBC [13] 2U 569 30 97.143 12 96.143 20 97.44 96.469 95.714 5,3
Wine [13] 3U 178 13 97.617 12 97.865 7 98.05 97.157 97.506 5,3

TABLE I
EXPERIMENT RESULTS ON 25 DATASETS. RES1 AND RES2 ARE OBTAINED WITH THE RESERVOIR. BEST RESULTS ARE BOLD UNDERLINED. SEE TEXT

FOR DETAILS.
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