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Abstract
We introduce the notion of reproducing kernel Banach spaces(RKBS) and study special semi-
inner-product RKBS by making use of semi-inner-products and the duality mapping. Properties of
an RKBS and its reproducing kernel are investigated. As applications, we develop in the framework
of RKBS standard learning schemes including minimal norm interpolation, regularization network,
support vector machines, and kernel principal component analysis. In particular, existence, unique-
ness and representer theorems are established.
Keywords: reproducing kernel Banach spaces, reproducing kernels, learning theory, semi-inner-
products, representer theorems

1. Introduction

Learning a function from its finite samples is a fundamental science problem. The essence in achiev-
ing this is to choose an appropriate measurement of similarities between elements inthe domain of
the function. A recent trend in machine learning is to use a positive definite kernel (Aronszajn, 1950)
to measure the similarity between elements in an input spaceX (Scḧolkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004; Vapnik, 1998; Xu and Zhang, 2007, 2009). SetNn := {1,2, . . . ,n}
for n ∈ N. A function K : X ×X → C is called apositive definite kernelif for all finite subsets
x := {x j : j ∈ Nn} ⊆ X the matrix

K[x] := [K(x j ,xk) : j,k∈ Nn] (1)

is hermitian and positive semi-definite. The reason of using positive definite kernels to measure
similarity lies in the celebrated theoretical fact due to Mercer (1909) that there is a bijective corre-
spondence between them andreproducing kernel Hilbert spaces(RKHS). An RKHSH on X is a
Hilbert space of functions onX for which point evaluations are always continuous linear function-
als. One direction of the bijective correspondence says that ifK is a positive definite kernel onX
then there exists a unique RKHSH on X such thatK(x, ·) ∈ H for eachx ∈ X and for all f ∈ H

andy∈ X
f (y) = ( f ,K(y, ·))H , (2)
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where(·, ·)H denotes the inner product onH . Conversely, ifH is an RKHS onX then there is a
unique positive definite kernelK onX such that{K(x, ·) : x∈ X} ⊆H and (2) holds. In light of this
bijective correspondence, positive definite kernels are usually calledreproducing kernels.

By taking f := K(x, ·) for x∈ X in Equation (2), we get that

K(x,y) = (K(x, ·),K(y, ·))H , x,y∈ X. (3)

ThusK(x,y) is represented as an inner product on an RKHS. This explains whyK(x,y) is able to
measure similarities ofx andy. The advantages brought by the use of an RKHS include: (1) the
inputs can be handled and explained geometrically; (2) geometric objects such as hyperplanes are
provided by the RKHS for learning; (3) the powerful tool of functionalanalysis applies (Schölkopf
and Smola, 2002). Based on the theory of reproducing kernels, many effective schemes have been
developed for learning from finite samples (Evgeniou et al., 2000; Micchelli et al., 2009; Scḧolkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). In particular, the widely
used regularized learning algorithm works by generating a predictor function from the training data
{(x j ,y j) : j ∈ Nn} ⊆ X×C as the minimizer of

min
f∈HK

∑
j∈Nn

L( f (x j),y j)+µ‖ f‖2
HK

, (4)

whereHK denotes the RKHS corresponding to the positive definite kernelK, L is a prescribed loss
function, andµ is a positive regularization parameter.

This paper is motivated from machine learning in Banach spaces. There are advantages of
learning in Banach spaces over Hilbert spaces. Firstly, there is essentially only one Hilbert space
once the dimension of the space is fixed. This follows from the well-known fact that any two Hilbert
spaces overC of the same dimension are isometrically isomorphic. By contrast, forp 6= q∈ [1,+∞],
Lp[0,1] and Lq[0,1] are not isomorphic, namely, there does not exist a bijective bounded linear
mapping between them (see, Fabian et al., 2001, page 180). Thus, compared to Hilbert spaces,
Banach spaces possess much richer geometric structures, which are potentially useful for developing
learning algorithms. Secondly, in some applications, a norm from a Banach space is invoked without
being induced from an inner product. For instance, it is known that minimizingabout theℓp norm
onRd leads to sparsity of the minimizer whenp is close to 1 (see, for example, Tropp, 2006). In the
extreme case thatϕ : Rd → [0,+∞) is strictly concave andµ > 0, one can show that the minimizer
for

min{ϕ(x)+µ‖x‖ℓ1 : x∈ Rd} (5)

has at most one nonzero element. The reason is that the extreme points on a sphere in theℓ1 norm
must lie on axes of the Euclidean coordinate system. A detailed proof of this result is provided
in the appendix. Thirdly, since many training data come with intrinsic structures that make them
impossible to be embedded into a Hilbert space, learning algorithms based on RKHS may not work
well for them. Hence, there is a need to modify the algorithms by adopting norms inBanach spaces.
For example, one might have to replace the norm‖ · ‖HK

in (4) with that of a Banach space.
There has been considerable work on learning in Banach spaces in the literature. References

Bennett and Bredensteiner (2000); Micchelli and Pontil (2004, 2007); Micchelli et al. (2003); Zhang
(2002) considered the problem of minimizing a regularized functional of theform

∑
j∈Nn

L(λ j( f ),y j)+φ(‖ f‖B), f ∈ B,
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whereB is Banach space,λ j are in the dualB∗, y j ∈ C, L is a loss function, andφ is a strictly
increasing nonnegative function. In particular, Micchelli et al. (2003)considered learning in Besov
spaces (a special type of Banach spaces). On-line learning in finite dimensional Banach spaces was
studied, for example, in Gentile (2001). Learning of anLp function was considered in Kimber and
Long (1995). Classifications in Banach spaces, and more generally in metric spaces were discussed
in Bennett and Bredensteiner (2000), Der and Lee (2007), Hein et al.(2005), von Luxburg and
Bousquet (2004) and Zhou et al. (2002).

The above discussion indicates that there is a need of introducing the notionof reproducing
kernel Banach spaces for the systematic study of learning in Banach spaces. Such a definition is
expected to result in consequences similar to those in an RKHS. A generalization of RKHS to non-
Hilbert spaces using point evaluation with kernels was proposed in Canu et al. (2003), although the
spaces considered there might be too general to have favorable properties of an RKHS. We shall
introduce the notion of reproducing kernel Banach spaces in Section 2,and a general construction
in Section 3. It will become clear that the lack of an inner product may causearbitrariness in the
properties of the associated reproducing kernel. To overcome this, we shall establish in Section 4
s.i.p. reproducing kernel Banach spaces by making use of semi-inner-products for normed vector
spaces first defined by Lumer (1961) and further developed by Giles (1967). Semi-inner-products
were first applied to machine learning by Der and Lee (2007) to develop hard margin hyperplane
classification in Banach spaces. Here the availability of a semi-inner-product enables us to study
basic properties of reproducing kernel Banach spaces and their reproducing kernels. In Section 5,
we shall develop in the framework of reproducing kernel Banach spaces standard learning schemes
including minimal norm interpolation, regularization network, support vectormachines, and kernel
principal component analysis. Existence, uniqueness and representer theorems for the learning
schemes will be proved. We draw conclusive remarks in Section 6 and include two technical results
in Appendix.

2. Reproducing Kernel Banach Spaces

Without specifically mentioned, all vector spaces in this paper are assumed tobe complex. LetX
be a prescribed input space. A normed vector spaceB is called aBanach space of functionson X
if it is a Banach space whose elements are functions onX, and for eachf ∈ B, its norm‖ f‖B in
B vanishes if and only iff , as a function, vanishes everywhere onX. By this definition,Lp[0,1],
1≤ p≤+∞, is not a Banach space of functions as it consists of equivalent classes of functions with
respect to the Lebesgue measure.

Influenced by the definition of RKHS, our first intuition is to define a reproducing kernel Banach
space (RKBS) as a Banach space of functions onX on which point evaluations are continuous linear
functionals. If such a definition was adopted then the first example that comes to our mind would
beC[0,1], the Banach space of continuous functions on[0,1] equipped with the maximum norm. It
satisfies the definition. However, since for eachf ∈C[0,1],

f (x) = δx( f ), x∈ [0,1],

the reproducing kernel forC[0,1] would have to be the delta distribution, which is not a function that
can be evaluated. This example suggests that there should exist a way of identifying the elements
in the dual of an RKBS with functions. Recall that two normed vector spacesV1 andV2 are said
to beisometricif there is a bijective linear norm-preserving mapping between them. We call such
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V1 andV2 an identificationof each other. We would like the dual spaceB∗ of an RKBSB on X
to be isometric to a Banach space of functions onX. In addition to this requirement, later on we
will find it very convenient to jump freely between a Banach space and its dual. For this reason, we
would like an RKBSB to bereflexivein the sense that(B∗)∗ = B. The above discussion leads to
the following formal definition.

Definition 1 A reproducing kernel Banach space(RKBS) on X is a reflexive Banach spaceB of
functions on X for whichB∗ is isometric to a Banach spaceB# of functions on X and the point
evaluation is continuous on bothB andB#.

Several remarks are in order about this definition. First, whetherB is an RKBS is independent
of the choice of the identificationB# of B∗. In other words, if the point evaluation is continuous
on some identificationB# then it is continuous on all the identifications. The reason is that any two
identifications ofB∗ are isometric. Second, an RKHSH onX is an RKBS. To see this, we set

H # := { f̄ : f ∈H } (6)

with the norm‖ f̄‖H # := ‖ f‖H , where f̄ denotes the conjugate off defined byf̄ (x) := f (x), x∈ X.
By the Riesz representation theorem (Conway, 1990), eachu∗ ∈H ∗ has the form

u∗( f ) = ( f , f0)H , f ∈H

for some uniquef0 ∈H and‖u∗‖H ∗ = ‖ f0‖H . We introduce a mappingι : H ∗ →H # by setting

ι(u∗) := f0.

Clearly, ι so defined is isometric fromH ∗ to H #. We conclude that an RKHS is a special RKBS.
Third, the identificationB# of B∗ of an RKBS is usually not unique. However, since they are
isometric to each other, we shall assume that one of them has been chosen for an RKBSB under
discussion. In particular, the identification ofH ∗ of an RKHSH will always be chosen as (6).
Fourth, for notational simplicity, we shall still denote the fixed identification ofB∗ by B∗. Let us
keep in mind that originallyB∗ consists of continuous linear functionals onB. Thus, when we shall
be treating elements inB∗ as functions onX, we actually thinkB∗ as its chosen identification. With
this notational convention, we state our last remark that ifB is an RKBS onX then so isB∗.

We shall show that there indeed exists areproducing kernelfor an RKBS. To this end, we
introduce for a normed vector spaceV the followingbilinear formonV ×V∗ by setting

(u,v∗)V := v∗(u), u∈V, v∗ ∈V∗.

It is called bilinear for the reason that for allα,β ∈ C, u,v∈V, andu∗,v∗ ∈V∗ there holds

(αu+βv,u∗)V = α(u,u∗)V +β(v,u∗)V

and
(u,αu∗ +βv∗)V = α(u,u∗)V +β(u,v∗)V .

Note that ifV is a reflexive Banach space then for any continuous linear functionalT onV∗ there
exists a uniqueu∈V such that

T(v∗) = (u,v∗)V , v∗ ∈V∗.
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Theorem 2 Suppose thatB is an RKBS on X. Then there exists a unique function K: X×X → C
such that the following statements hold.
(a) For every x∈ X, K(·,x) ∈ B∗ and

f (x) = ( f ,K(·,x))B , for all f ∈ B.

(b) For every x∈ X, K(x, ·) ∈ B and

f ∗(x) = (K(x, ·), f ∗)B , for all f ∗ ∈ B∗. (7)

(c) The linear span of{K(x, ·) : x∈ X} is dense inB, namely,

span{K(x, ·) : x∈ X} = B. (8)

(d) The linear span of{K(·,x) : x∈ X} is dense inB∗, namely,

span{K(·,x) : x∈ X} = B∗. (9)

(e) For all x,y∈ X
K(x,y) = (K(x, ·),K(·,y))B . (10)

Proof For everyx ∈ X, sinceδx is a continuous linear functional onB, there existsgx ∈ B∗ such
that

f (x) = ( f ,gx)B , f ∈ B.

We introduce a functioñK onX×X by setting

K̃(x,y) := gx(y), x,y∈ X.

It follows thatK̃(x, ·) ∈ B∗ for eachx∈ X, and

f (x) = ( f , K̃(x, ·))B , f ∈ B, x∈ X. (11)

There is only one function onX×X with the above properties. Assume to the contrary that there is
anotherG̃ : X×X → C satisfying{G̃(x, ·) : x∈ X} ⊆ B∗ and

f (x) = ( f ,G̃(x, ·))B , f ∈ B, x∈ X.

The above equation combined with (11) yields that

( f , K̃(x, ·)− G̃(x, ·))B = 0, for all f ∈ B, x∈ X.

Thus,K̃(x, ·)− G̃(x, ·) = 0 inB∗ for eachx∈ X. SinceB∗ is a Banach space of functions onX, we
get for everyy∈ X that

K̃(x,y)− G̃(x,y) = 0,

that is,K̃ = G̃.
Likewise, there exists a uniqueK : X×X → C such thatK(y, ·) ∈ B, y∈ X and

f ∗(y) = (K(y, ·), f ∗)B , f ∗ ∈ B∗, y∈ X. (12)
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Letting f := K(y, ·) in (11) yields that

K(y,x) = (K(y, ·), K̃(x, ·))B , x,y∈ X, (13)

and settingf ∗ := K̃(x, ·) in (12) ensures that

K̃(x,y) = (K(y, ·), K̃(x, ·))B , x,y∈ X.

Combining the above equation with (13), we get that

K̃(x,y) = K(y,x), x,y∈ X.

Therefore,K satisfies (a) and (b) as stated in the theorem. Equation (10) in (e) is provedby letting
f ∗ = K(·,y) in (7). To complete the proof, we shall show (c) only, since (d) can be handled in a
similar way. Suppose that (8) does not hold. Then by the Hahn-Banach theorem, there exists a
nontrivial functionalf ∗ ∈ B∗ such that

(K(x, ·), f ∗)B = 0, for all x∈ X.

We get immediately from (12) thatf ∗(x) = 0 for all x∈ X. SinceB∗ is a Banach space of functions
onX, f ∗ = 0 inB∗, a contradiction.

We call the functionK in Theorem 2 thereproducing kernel for the RKBSB. By Theorem
2, an RKBS has exactly one reproducing kernel. However, differentRKBS may have the same
reproducing kernel. Examples will be given in the next section. This results from a fundamental
difference between Banach spaces and Hilbert spaces. To explain this, we letW be a Banach space
andV a subset ofW such that spanV is dense inW . Suppose that a norm on elements ofV is
prescribed. IfW is a Hilbert space and an inner product is defined among elements inV, then the
norm extends in a unique way to spanV, and hence to the whole spaceW . Assume now thatW
is only known to be a Banach space andV∗ ⊆W ∗ satisfyingspanV∗ = W ∗ is given. Then even if
a bilinear form is defined between elements inV and those inV∗, the norm may not have a unique
extension to the whole spaceW . Consequently, although we have at hand a reproducing kernelK
for an RKBSB, the relationship (13), and denseness conditions (8), (9), we still can not determine
the norm onB.

3. Construction of Reproducing Kernels via Feature Maps

In this section, we shall characterize reproducing kernels for RKBS. The characterization will at the
same time provide a convenient way of constructing reproducing kernels and their corresponding
RKBS. For the corresponding results in the RKHS case, see, for example, Saitoh (1997), Scḧolkopf
and Smola (2002), Shawe-Taylor and Cristianini (2004) and Vapnik (1998).

Theorem 3 Let W be a reflexive Banach space with dual spaceW ∗. Suppose that there exists
Φ : X →W , andΦ∗ : X →W ∗ such that

spanΦ(X) =W , spanΦ∗(X) =W ∗. (14)
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ThenB := {(u,Φ∗(·))W : u∈W } with norm

‖(u,Φ∗(·))W ‖B := ‖u‖W (15)

is an RKBS on X with the dual spaceB∗ := {(Φ(·),u∗)W : u∗ ∈W ∗} endowed with the norm

‖(Φ(·),u∗)W ‖B∗ := ‖u∗‖W ∗

and the bilinear form

((u,Φ∗(·))W ,(Φ(·),u∗)W )B := (u,u∗)W , u∈W , u∗ ∈W ∗. (16)

Moreover, the reproducing kernel K forB is

K(x,y) := (Φ(x),Φ∗(y))W , x,y∈ X. (17)

Proof We first show thatB defined above is a Banach space of functions onX. To this end, we set
u∈W and assume that

(u,Φ∗(x))W = 0, for all x∈ X. (18)

Then by the denseness condition (14),(u,u∗)W = 0 for all u∗ ∈ W ∗, implying thatu = 0. Con-
versely, if u = 0 in W then it is clear that (18) holds true. These arguments also show that the
representeru ∈ W for a function(u,Φ∗(·))W in B is unique. It is obvious that (15) defines a
norm onB andB is complete under this norm. Therefore,B is a Banach space of functions onX.
Similarly, so isB̃ := {(Φ(·),u∗)W : u∗ ∈W ∗} equipped with the norm

‖(Φ(·),u∗)W ‖B̃ := ‖u∗‖W ∗ .

Define the bilinear formT onB× B̃ by setting

T((u,Φ∗(·))W ,(Φ(·),u∗)W ) := (u,u∗)W , u∈W , u∗ ∈W ∗.

Clearly, we have for allu∈W , u∗ ∈W ∗ that

|T((u,Φ∗(·))W ,(Φ(·),u∗)W )| ≤ ‖u‖W ‖u∗‖W ∗ = ‖(u,Φ∗(·))W ‖B ‖(Φ(·),u∗)W ‖B̃ .

Therefore, each function iñB is a continuous linear functional onB. Note that the linear mapping
u → (u,Φ∗(·))W is isometric fromW to B. As a consequence, functions iñB exhaust all the
continuous linear functionals onB. We conclude thatB∗ = B̃ with the bilinear form (16). Likewise,
one can show thatB is the dual ofB∗ by the reflexivity ofW . We have hence proved thatB is
reflexive with dualB∗.

It remains to show that point evaluations are continuous onB andB∗. To this end, we get for
eachx∈ X and f := (u,Φ∗(·))W , u∈W that

| f (x)| = |(u,Φ∗(x))W | ≤ ‖u‖W ‖Φ∗(x)‖W ∗ = ‖ f‖B‖Φ∗(x)‖W ∗ ,

which implies thatδx is continuous onB. By similar arguments, it is continuous onB∗. Combining
all the discussion above, we reach the conclusion thatB is an RKBS onX.

2747



ZHANG, XU AND ZHANG

For the functionK on X ×X defined by (17), we get thatK(x, ·) ∈ B andK(·,x) ∈ B∗ for all
x∈ X. It is also verified that forf := (u,Φ∗(·))W , u∈W

( f ,K(·,x))B = ((u,Φ∗(·))W ,(Φ(·),Φ∗(x))W )B = (u,Φ∗(x))W = f (x).

Similarly, for f ∗ := (Φ(·),u∗)W , u∗ ∈W ∗

(K(x, ·), f ∗)B = ((Φ(x),Φ∗(·))W ,(Φ(·),u∗)W )B = (Φ(x),u∗)W = f ∗(x).

These facts show thatK is the reproducing kernel forB and complete the proof.

We call the mappingsΦ,Φ∗ in Theorem 3 a pair offeature mapsfor the reproducing kernelK.
The spacesW , W ∗ are called the pair offeature spacesassociated with the feature maps forK.
As a corollary to Theorem 3, we obtain the following characterization of reproducing kernels for
RKBS.

Theorem 4 A function K: X×X → C is the reproducing kernel of an RKBS on X if and only if it
is of the form (17), whereW is a reflexive Banach space, and mappingsΦ : X →W , Φ∗ : X →W ∗

satisfy (14).

Proof The sufficiency has been shown by the last theorem. For the necessity, we assume thatK is
the reproducing kernel of an RKBSB onX, and set

W := B, W ∗ := B∗, Φ(x) := K(x, ·), Φ∗(x) := K(·,x), x∈ X.

By Theorem 2,W ,W ∗,Φ,Φ∗ satisfy all the conditions.

To demonstrate how we get RKBS and their reproducing kernels by Theorem 3, we now present
a nontrivial example of RKBS. SetX := R, I := [−1

2, 1
2], andp∈ (1,+∞). We make the convention

thatq is always the conjugate number ofp, that is,p−1+q−1 = 1. DefineW := Lp(I), W ∗ := Lq(I)
andΦ : X →W , Φ∗ : X →W ∗ as

Φ(x)(t) := e−i2πxt, Φ∗(x)(t) := ei2πxt, x∈ R, t ∈ I.

For f ∈ L1(R), its Fourier transformf̂ is defined as

f̂ (t) :=
Z

R

f (x)e−i2πxtdx, t ∈ R,

and its inverse Fourier transform̌f is defined by

f̌ (t) :=
Z

R

f (x)ei2πxtdx, t ∈ R.

The Fourier transform and the inverse Fourier transform can be defined on tempered distributions.
Since the Fourier transform is injective onL1(R) (see, Rudin, 1987, page 185), the denseness re-
quirement (14) is satisfied.
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By the construction described in Theorem 3, we obtain

B := { f ∈C(R) : suppf̂ ⊆ I, f̂ ∈ Lp(I)} (19)

with norm‖ f‖B := ‖ f̂‖Lp(I), and the dual

B∗ := {g∈C(R) : suppĝ⊆ I, ĝ∈ Lq(I)}

with norm‖g‖B∗ := ‖ǧ‖Lq(I). For eachf ∈ B andg∈ B∗, we have

( f ,g)B =
Z

I

f̂ (t)ǧ(t)dt.

The kernelK for B is given as

K(x,y) = (Φ(x),Φ∗(y))W =
Z

I

e−i2πxtei2πytdt =
sinπ(x−y)

π(x−y)
= sinc(x−y).

We check that for eachf ∈ B

( f ,K(·,x))B =
Z

I

f̂ (t)(K(·,x))ˇ(t)dt =
Z

I

f̂ (t)ei2πxtdt = f (x), x∈ R

and for eachg∈ B∗

(K(x, ·),g)B =
Z

I

(K(x, ·))ˆ(t)ǧ(t)dt =
Z

I

ǧ(t)e−i2πxtdt = g(x), x∈ R.

Whenp = q = 2,B reduces to the classical space of bandlimited functions.
In the above example,B is isometrically isomorphic toLp(I). As mentioned in the introduction,

Lp(I) with differentp are not isomorphic to each other. As a result, for different indicesp the spaces
B defined by (19) are essentially different. However, we see that they allhave the sinc function as
the reproducing kernel. In fact, if no further conditions are imposed on an RKBS, its reproducing
kernel can be rather arbitrary. We make a simple observation below to illustrate this.

Proposition 5 If the input space X is a finite set, then any nontrivial function K on X×X is the
reproducing kernel of some RKBS on X.

Proof Let K be an arbitrary nontrivial function onX×X. Assume thatX = Nm for somem∈ N.
Let d ∈ N be the rank of the matrixK[X] as defined by (1). By elementary linear algebra, there exist
nonsingular matricesP,Q∈ Cm×m such that the transpose(K[X])T of K[X] has the form

(K[X])T = P

[
Id 0
0 0

]
Q = P

[
Id
0

][
Id 0

]
Q, (20)

whereId is thed×d identity matrix. Forj ∈ Nm, let Pj be the transpose of thejth row of P

[
Id
0

]

andQ j the jth column of
[

Id 0
]
Q. Choose an arbitraryp∈ (1,+∞). Equation (20) is rewritten

as
K( j,k) = (Q j ,Pk)l p(Nd), j,k∈ Nm. (21)
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We setW := l p(Nd), W ∗ := lq(Nd) andΦ( j) := Q j , Φ∗( j) := Pj , j ∈ Nm. SinceP,Q are nonsin-
gular, (14) holds true. Also, we have by (21) that

K( j,k) = (Φ( j),Φ∗(k))W , j,k∈ Nm.

By Theorem 4,K is a reproducing kernel for some RKBS onX.

Proposition 5 reveals that due to the lack of an inner product, the reproducing kernel for a general
RKBS can be an arbitrary function onX×X. Particularly, it might be nonsymmetric or non-positive
definite. In order for reproducing kernels of RKBS to have desired properties as those of RKHS, we
may need to impose certain structures on RKBS, which in some sense are substitutes of the inner
product for RKHS. For this purpose, we shall adopt the semi-inner-product introduced by Lumer
(1961). A semi-inner-product possesses some but not all propertiesof an inner product. Hilbert
space type arguments and results become available with the presence of a semi-inner-product. We
shall introduce the notion of semi-inner-product RKBS.

4. S.i.p. Reproducing Kernel Banach Spaces

The purpose of this section is to establish the notion of semi-inner-product RKBS and study its prop-
erties. We start with necessary preliminaries on semi-inner-products (Giles, 1967; Lumer, 1961).

4.1 Semi-Inner-Products

A semi-inner-product on a vector spaceV is a function, denoted by[·, ·]V , from V ×V to C such
that for allx,y,z∈V andλ ∈ C

1. [x+y,z]V = [x,z]V +[y,z]V ,

2. [λx,y]V = λ[x,y]V , [x,λy]V = λ̄ [x,y]V ,

3. [x,x]V > 0 for x 6= 0,

4. (Cauchy-Schwartz)|[x,y]V |
2 ≤ [x,x]V [y,y]V .

The property that[x,λy]V = λ̄ [x,y]V was not required in the original definition by Lumer (1961).
We include it here for the observation by Giles (1967) that this property can always be imposed.

It is necessary to point out the difference between a semi-inner-product and an inner product. In
general, a semi-inner-product[·, ·]V does not satisfy the conjugate symmetry[x,y]V = [y,x]V for all
x,y∈V. As a consequence, there always existx,y,z∈V such that

[x,y+z]V 6= [x,y]V +[x,z]V .

In fact, a semi-inner-product is always additive about the second variable only if it degenerates to
an inner product. We show this fact below.

Proposition 6 A semi-inner-product[·, ·]V on a complex vector space V is an inner product if and
only if

[x,y+z]V = [x,y]V +[x,z]V , for all x,y,z∈V. (22)
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Proof Suppose thatV has a semi-inner-product[·, ·]V that satisfies (22). It suffices to show that for
all x,y∈V,

[x,y]V = [y,x]V . (23)

Setλ ∈ C. By the linearity on the first and the additivity on the second variable, we getthat

[x+λy,x+λy]V = [x,x]V +[λy,λy]V +λ[y,x]V + λ̄[x,y]V .

Since[z,z]V ≥ 0 for all z∈V, we must have

λ[y,x]V + λ̄[x,y]V ∈ R.

Choosingλ = 1 yields that Im[y,x]V = − Im [x,y]V . And the choiceλ = i results that Re[y,x]V =
Re[x,y]V . Therefore, (23) holds, which implies that[·, ·]V is an inner product onV.

It was shown in Lumer (1961) that a vector spaceV with a semi-inner-product is a normed space
equipped with

‖x‖V := [x,x]1/2
V , x∈V. (24)

Therefore, if a vector spaceV has a semi-inner-product, we always assume that its norm is induced
by (24) and callV an s.i.p. space. Conversely, every normed vector spaceV has a semi-inner-
product that induces its norm by (24) (Giles, 1967; Lumer, 1961). By the Cauchy-Schwartz in-
equality, ifV is an s.i.p. space then for eachx∈V, y→ [y,x]V is a continuous linear functional on
V. We denote this linear functional byx∗. Following this definition, we have that

[x,y]V = y∗(x) = (x,y∗)V , x,y∈V. (25)

In general, a semi-inner-product for a normed vector space may not beunique. However, a
differentiation property of the norm will ensure the uniqueness. We call anormed vector spaceV
Gâteaux differentiable if for all x,y∈V \{0}

lim
t∈R, t→0

‖x+ ty‖V −‖x‖V

t

exists. It is calleduniformly Fr échet differentiableif the limit is approached uniformly onS(V)×
S(V). Here,S(V) := {u∈V : ‖u‖V = 1} is the unit sphere ofV. The following result is due to Giles
(1967).

Lemma 7 If an s.i.p. space V is Ĝateaux differentiable then for all x,y∈V with x 6= 0

lim
t∈R, t→0

‖x+ ty‖V −‖x‖V

t
=

Re[y,x]
‖x‖V

. (26)

The above lemma indicates that a Gâteaux differentiable normed vector space has a unique
semi-inner-product. In fact, we have by (26) that

[x,y]V = ‖y‖V

(
lim

t∈R, t→0

‖y+ tx‖V −‖y‖V

t
+ i lim

t∈R, t→0

‖iy+ tx‖V −‖y‖V

t

)
, x,y∈V \{0}. (27)

2751



ZHANG, XU AND ZHANG

For this reason, ifV is a Ĝateaux differentiable normed vector space we always assume that it is
an s.i.p. space with the semi-inner-product defined as above. Interestedreaders are referred to the
appendix for a proof that (27) indeed defines an s.i.p.

We shall impose one more condition on an s.i.p. space that will lead to a Riesz representation
theorem. A normed vector spaceV is uniformly convex if for all ε > 0 there exists aδ > 0 such
that

‖x+y‖V ≤ 2−δ for all x,y∈ S(V) with ‖x−y‖V ≥ ε.

The spaceLp(Ω,µ), 1< p < +∞, on a measure space(Ω,F ,µ) is uniformly convex. In particular,
by the parallelogram law, any inner product space is uniformly convex. By a remark in Conway
(1990), page 134, a uniformly convex Banach space is reflexive. There is a well-known relationship
between uniform Fŕechet differentiability and uniform convexity (Cudia, 1963). It states that a
normed vector space is uniformly Fréchet differentiable if and only if its dual is uniformly convex.
Therefore, ifB is a uniformly convex and uniformly Fréchet differentiable Banach space then so
is B∗ sinceB is reflexive. The important role of uniform convexity is displayed in the next lemma
(Giles, 1967).

Lemma 8 (Riesz Representation Theorem) Suppose thatB is a uniformly convex, uniformly Fréchet
differentiable Banach space. Then for each f∈ B∗ there exists a unique x∈ B such that f= x∗,
that is,

f (y) = [y,x]B , y∈ B.

Moreover,‖ f‖B∗ = ‖x‖B .

The above Riesz representation theorem is desirable for RKBS. By Lemma 8and the discussion
right before it, we shall investigate in the next subsection RKBS which are both uniformly convex
and uniformly Fŕechet differentiable.

LetB be a uniformly convex and uniformly Fréchet differentiable Banach space. By Lemma 8,
x→ x∗ defines a bijection fromB toB∗ that preserves the norm. Note that thisduality mapping is
in general nonlinear. We callx∗ thedual elementof x. SinceB∗ is uniformly Fŕechet differentiable,
it has a unique semi-inner-product, which is given by

[x∗,y∗]B∗ = [y,x]B , x,y∈ B. (28)

We close this subsection with a concrete example of uniformly convex and uniformly Fŕechet
differentiable Banach spaces. Let(Ω,F ,µ) be a measure space andB := Lp(Ω,µ) for somep ∈
(1,+∞). It is uniformly convex and uniformly Fréchet differentiable with dualB∗ = Lq(Ω,µ). For
eachf ∈ B, its dual element inB∗ is

f ∗ =
f̄ | f |p−2

‖ f‖p−2
Lp(Ω,µ)

. (29)

Consequently, the semi-inner-product onB is

[ f ,g]B = g∗( f ) =

R

Ω f ḡ|g|p−2dµ

‖g‖p−2
Lp(Ω,µ)

.

With the above preparation, we shall study a special kind of RKBS which have desired proper-
ties.
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4.2 S.i.p. RKBS

Let X be a prescribed input space. We call a uniformly convex and uniformly Fréchet differentiable
RKBS onX an s.i.p. reproducing kernel Banach space(s.i.p. RKBS). Again, we see immedi-
ately that an RKHS is an s.i.p. RKBS. Also, the dual of an s.i.p. RKBS remains ans.i.p. RKBS. An
s.i.p. RKBSB is by definition uniformly Fŕechet differentiable. Therefore, it has a unique semi-
inner-product, which by Lemma 8 represents all the interaction betweenB andB∗. This leads to
a more specific representation of the reproducing kernel. Precisely, wehave the following conse-
quences.

Theorem 9 LetB be an s.i.p. RKBS on X and K its reproducing kernel. Then there exists a unique
function G: X×X → C such that{G(x, ·) : x∈ X} ⊆ B and

f (x) = [ f ,G(x, ·)]B , for all f ∈ B, x∈ X. (30)

Moreover, there holds the relationship

K(·,x) = (G(x, ·))∗, x∈ X (31)

and
f ∗(x) = [K(x, ·), f ]B , for all f ∈ B, x∈ X. (32)

Proof By Lemma 8, for eachx ∈ X there exists a functionGx ∈ B such thatf (x) = [ f ,Gx]B for
all f ∈ B. We defineG : X×X → C by G(x,y) := Gx(y), x,y∈ X. We see thatG(x, ·) = Gx ∈ B,
x∈ X, and there holds (30). By the uniqueness in the Riesz representation theorem, such a function
G is unique. To prove the remaining claims, we recall from Theorem 2 that the reproducing kernel
K satisfies for eachf ∈ B that

f (x) = ( f ,K(·,x))B , x∈ X. (33)

and
f ∗(x) = (K(x, ·), f ∗)B , x∈ X. (34)

By (25), (30) and (33), we have for eachx∈ X that

( f ,(G(x, ·))∗)B = [ f ,G(x, ·)]B = f (x) = ( f ,K(·,x))B , f ∈ B.

The above equation implies (31). Equation (25) also implies that

(K(x, ·), f ∗)B = [K(x, ·), f ]B .

This together with equation (34) proves (32) and completes the proof.

We call the unique functionG in Theorem 9 thes.i.p. kernelof the s.i.p. RKBSB. It coincides
with the reproducing kernelK whenB is an RKHS. In general, whenG = K in Theorem 9, we
call G ans.i.p. reproducing kernel. By (30), an s.i.p. reproducing kernelG satisfies the following
generalization of (3)

G(x,y) = [G(x, ·),G(y, ·)]B , x,y∈ X. (35)

We shall give a characterization of an s.i.p. reproducing kernel in terms of its corresponding feature
map. To this end, for a mappingΦ from X to a uniformly convex and uniformly Fréchet differen-
tiable Banach spaceW , we denote byΦ∗ the mapping fromX toW ∗ defined as

Φ∗(x) := (Φ(x))∗, x∈ X.
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Theorem 10 LetW be a uniformly convex and uniformly Fréchet differentiable Banach space and
Φ a mapping from X toW such that

spanΦ(X) =W , spanΦ∗(X) =W ∗. (36)

ThenB := {[u,Φ(·)]W : u∈W } equipped with
[
[u,Φ(·)]W , [v,Φ(·)]W

]

B

:= [u,v]W (37)

andB∗ := {[Φ(·),u]W : u∈W } with
[
[Φ(·),u]W , [Φ(·),v]W

]

B∗

:= [v,u]W

are uniformly convex and uniformly Fréchet differentiable Banach spaces. AndB∗ is the dual ofB
with the bilinear form

(
[u,Φ(·)]W , [Φ(·),v]W

)

B

:= [u,v]W , u,v∈W . (38)

Moreover, the s.i.p. kernel G ofB is given by

G(x,y) = [Φ(x),Φ(y)]W , x,y∈ X, (39)

which coincides with its reproducing kernel K.

Proof We shall show (39) only. The other results can be proved using arguments similar to those
in Theorem 3 and those in the proof of Theorem 7 in Giles (1967). Letf ∈ B. Then there exists a
uniqueu∈W such thatf = [u,Φ(·)]W . By (38), fory∈ X,

f (y) = [u,Φ(y)]W = ([u,Φ(·)]W , [Φ(·),Φ(y)]W )B = ( f , [Φ(·),Φ(y)]W )B .

Comparing the above equation with (33), we obtain that

K(·,y) = [Φ(·),Φ(y)]W . (40)

On the other hand, by (37), forx∈ X

f (x) = [u,Φ(x)]W = [[u,Φ(·)]W , [Φ(x),Φ(·)]W ]B ,

which implies that the s.i.p. kernel ofB is

G(x, ·) = [Φ(x),Φ(·)]W . (41)

By (40) and (41),
K(x,y) = G(x,y) = [Φ(x),Φ(y)]W ,

which completes the proof.

As a direct consequence of the above theorem, we have the following characterization of s.i.p.
reproducing kernels.
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Theorem 11 A function G on X×X is an s.i.p. reproducing kernel if and only if it is of the form
(39), whereΦ is a mapping from X to a uniformly convex and uniformly Fréchet differentiable
Banach spaceW satisfying (36).

Proof The sufficiency is implied by Theorem 10. For the necessity, suppose thatG is an s.i.p.
reproducing kernel for some s.i.p. RKBSB on X. We chooseW = B andΦ(x) := G(x, ·). Then
G has the form (39) by equation (35). Moreover, by (8), spanΦ(X) is dense inW . Assume that
spanΦ∗(X) is not dense inW ∗. Then by the Hahn-Banach theorem and Lemma 8, there exists a
nontrivial f ∈ B such that[Φ∗(x), f ∗]B∗ = 0, x∈ X. Thus, by (28) we get that

f (x) = [ f ,G(x, ·)]B = [ f ,Φ(x)]W = [Φ∗(x), f ∗]B∗ = 0, x∈ X.

We end up with a zero functionf , a contradiction. The proof is complete.

The mappingΦ and spaceW in the above theorem will be called afeature map andfeature
spaceof the s.i.p. reproducing kernelG, respectively.

By the duality relation (31) and the denseness condition (9), the s.i.p kernelG of an s.i.p. RKBS
B onX satisfies

span{(G(x, ·))∗ : x∈ X} = B∗. (42)

It is also of the form (35). By Theorem 11,G is identical with the reproducing kernelK for B if and
only if

span{G(x, ·) : x∈ X} = B. (43)

If B is not a Hilbert space then the duality mapping fromB to B∗ is nonlinear. Thus, it may not
preserve the denseness of a linear span. As a result, (43) would not follow automatically from
(42). Here we remark that for most finite dimensional s.i.p. RKBS, (42) implies(43). This is due
to the well-known fact that for alln∈ N, the set ofn×n singular matrices has Lebesgue measure
zero inCn×n. Therefore, the s.i.p. kernel for most finite dimensional s.i.p. RKBS is the same as the
reproducing kernel. Nevertheless, we shall give an explicit example to illustrate that the two kernels
might be different.

For eachp∈ (1,+∞) andn∈ N, we denote byℓp(Nn) the Banach space of vectors inCn with
norm

‖a‖ℓp(Nn) :=

(
∑

j∈Nn

|a j |
p
)1/p

, a = (a j : j ∈ Nn) ∈ Cn.

As pointed out at the end of Section 4.1,ℓp(Nn) is uniformly convex and uniformly Fréchet differ-
entiable. Its dual space isℓq(Nn). To construct the example, we introduce three vectors inℓ3(N3)
by setting

e1 := (2,9,1), e2 := (1,8,0), e3 := (5,5,3).

By (29), their dual elements inℓ
3
2 (N3) are

e∗1 =
1

(738)1/3
(4,81,1), e∗2 =

1

(513)1/3
(1,64,0), e∗3 =

1

(277)1/3
(25,25,9).

It can be directly verified that{e1,e2,e3} is linearly independent but{e∗1,e
∗
2,e

∗
3} is not. Therefore,

span{e1,e2,e3} = ℓ3(N3) (44)
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while
span{e∗1,e

∗
2,e

∗
3} $ ℓ

3
2 (N3). (45)

With the above preparations, we letN3 be the input space,Φ the function fromN3 to ℓ3(N3)
defined byΦ( j) = ej , j ∈ N3, andB the space of all the functionsΦu := [Φ(·),u]ℓ3(N3), u∈ ℓ3(N3),
onN3. By equation (44),

‖Φu‖ := ‖u‖ℓ3(N3), u∈ ℓ3(N3)

defines a norm onB. It is clear that point evaluations are continuous onB under this norm. Fur-
thermore, since the linear mappingΦu → u∗ is isometrically isomorphic fromB to ℓ

3
2 (N3), B is a

uniformly convex and uniformly Fréchet differentiable Banach space. By this fact, we obtain that
B is an s.i.p. RKBS with semi-inner-product

[Φu,Φv]B = [v,u]ℓ3(N3), u,v∈ ℓ3(N3). (46)

The above equation implies that the s.i.p. kernelG for B is

G( j,k) = [ek,ej ]ℓ3(N3), j,k∈ N3. (47)

Recall that the reproducing kernelK for B satisfies the denseness condition (8). Consequently, to
show thatG 6= K, it suffices to show that

span{G( j, ·) : j ∈ N3} $ B. (48)

To this end, we notice by (45) that there exists a nonzero elementv∈ ℓ3(N3) such that

[v,ej ]ℓ3(N3) = (v,e∗j )ℓ3(N3) = 0, j ∈ N3.

As a result, the nonzero functionΦv satisfies by (46) and (47) that

[G( j, ·),Φv]B = [Φej ,Φv]B = [v,ej ]ℓ3(N3) = 0, j ∈ N3,

which proves (48), and implies that the s.i.p. kernel and reproducing kernel forB are different. By
(45), this is essentially due to the reason that the second condition of (36) isnot satisfied.

4.3 Properties of S.i.p. Reproducing Kernels

The existence of a semi-inner-product makes it possible to study properties of RKBS and their re-
producing kernels. For illustration, we present below three of these properties.

4.3.1 NON-POSITIVE DEFINITENESS

An n× n matrix M over a number fieldF (C or R) is said to be positive semi-definite if for all
(c j : j ∈ Nn) ∈ Fn

∑
j∈Nn

∑
k∈Nn

c jckM jk ≥ 0.

We shall consider positive semi-definiteness of matricesG[x] as defined in (1) for an s.i.p. reproducing
kernelG onX.
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Let Φ : X →W be a feature map forG, that is, (39) and (36) hold. By properties 3 and 4 in the
definition of a semi-inner-product, we have that

G(x,x) ≥ 0, x∈ X (49)

and
|G(x,y)|2 ≤ G(x,x)G(y,y), x,y∈ X. (50)

Notice that if a complex matrix is positive semi-definite then it must be hermitian. Sincea semi-
inner-product is in general not an inner product, we can not expecta complex s.i.p. kernel to be
positive definite. In the real case, inequalities (49) and (50) imply thatG[x] is positive semi-definite
for all x ⊆ X with cardinality less than or equal to two. However,G[x] might stop being positive
semi-definite ifx contains more than two points. We shall give an explicit example to explain this
phenomenon.

Setp∈ (1,+∞) andW := ℓp(N2). We letX := R+ := [0,+∞) andΦ(x) = (1,x), x∈ X. Thus,

Φ∗(x) =
(1,xp−1)

(1+xp)
p−2

p

, x∈ X.

Clearly,Φ satisfies the denseness condition (36). The corresponding s.i.p. reproducing kernelG is
constructed as

G(x,y) = [Φ(x),Φ(y)]W =
1+xyp−1

(1+yp)
p−2

p

, x,y∈ X. (51)

Proposition 12 For the s.i.p. reproducing kernel G defined by (51), matrix G[x] is positive semi-
definite for allx = {x,y,z} ⊆ X if and only if p= 2.

Proof If p = 2 thenW is a Hilbert space. As a result,G is a positive definite kernel. Hence, for all
finite subsetsx ⊆ X, G[x] is positive semi-definite.

Assume thatG[x] is positive semi-definite for allx = {x,y,z} ⊆ X. Choosex := {0,1, t} where
t is a positive number to be specified later. Then we have by (51) that

G[x] =




1 22/p−1 1

(1+ t p)1−2/p

1 22/p 1+ t p−1

(1+ t p)1−2/p

1
1+ t

21−2/p

1+ t p

(1+ t p)1−2/p




.

Let M be the symmetrization ofG[x] given as

M =




1
1
2

+22/p−2 1
2

+
1

2(1+ t p)1−2/p

1
2

+22/p−2 22/p 1+ t

22−2/p
+

1+ t p−1

2(1+ t p)1−2/p

1
2

+
1

2(1+ t p)1−2/p

1+ t

22−2/p
+

1+ t p−1

2(1+ t p)1−2/p

1+ t p

(1+ t p)1−2/p




.
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Matrix M preserves the positive semi-definiteness ofG[x]. Therefore, its determinant|M| must be
nonnegative. Through an analysis of the asymptotic behavior of the component ofM ast goes to
infinity, we obtain that

|M| = −
t2

8

(
2

2
p −2

)2
+ϕ(t), t > 0,

whereϕ is a function satisfying that

lim
t→∞

ϕ(t)
t2 = 0.

Therefore,|M| being always nonnegative forces 2
2
p −2 = 0, which occurs only ifp = 2.

By Proposition 12, non-positive semi-definiteness is a characteristic of s.i.p. reproducing kernels
for RKBS that distincts them from reproducing kernels for RKHS.

4.3.2 POINTWISE CONVERGENCE

If fn converges tof in an s.i.p. RKBS with its s.i.p. kernelG then fn(x) converges tof (x) for any
x∈ X and the limit is uniform on the set whereG(x,x) is bounded. This follows from (30) and the
Cauchy-Schwartz inequality by

| fn(x)− f (x)| = |[ fn− f ,G(x, ·)]B | ≤ ‖ fn− f‖B
√

[G(x, ·),G(x, ·)]B =
√

G(x,x)‖ fn− f‖B .

4.3.3 WEAK UNIVERSALITY

Suppose thatX is metric space andG is an s.i.p. reproducing kernel onX. We say thatG is uni-
versal if G is continuous onX ×X and for all compact subsetsZ ⊆ X, span{G(x, ·) : x ∈ Z} is
dense inC(Z) (Micchelli et al., 2006; Steinwart, 2001). Universality of a kernel ensures that it can
approximate any continuous target function uniformly on compact subsets of the input space. This
is crucial for the consistence of the learning algorithms with the kernel. We shall discuss the case
whenX is itself a compact metric space. Here we are concerned with the ability ofG to approxi-
mate any continuous target function onX uniformly. For this purpose, we call a continuous kernel
G on a compact metric spaceX weakly universal if span{G(x, ·) : x ∈ X} is dense inC(X). We
shall present a characterization of weak universality. The results in thecases of positive definite
kernels and vector-valued positive definite kernels have been established respectively in Micchelli
et al. (2006) and Caponnetto et al. (2008).

Proposition 13 Let Φ be a feature map from a compact metric space X toW such that bothΦ :
X →W andΦ∗ : X →W ∗ are continuous. Then the s.i.p. reproducing kernel G defined by (39) is
continuous on X×X, and there holds in C(X) the equality of subspaces

span{G(x, ·) : x∈ X} = span{[u,Φ(·)]W : u∈W }.

Consequently, G is weakly universal if and only if

span{[u,Φ(·)]W : u∈W } = C(X).
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Proof First, we notice by

G(x,y) = [Φ(x),Φ(y)]W = (Φ(x),Φ∗(y))W , x,y∈ X

thatG is continuous onX×X. Similarly, for eachu∈W , [u,Φ(·)]W = (u,Φ∗(·))W ∈C(X). Now
since

G(x, ·) = [Φ(x),Φ(·)]W ∈ {[u,Φ(·)]W : u∈W },

we have the inclusion

span{G(x, ·) : x∈ X} ⊆ span{[u,Φ(·)]W : u∈W }.

On the other hand, letu∈W . By denseness condition (36), there exists a sequencevn ∈ span{Φ(x) :
x ∈ X} that converges tou. SinceG is continuous on the compact spaceX ×X, it is bounded.
Thus, by the property of pointwise convergence discussed before,[vn,Φ(·)]W converges inC(X) to
[u,Φ(·)]W . Noting that

[vn,Φ(·)]W ∈ span{G(x, ·) : x∈ X}, n∈ N,

we have the reverse inclusion

span{[u,Φ(·)]W : u∈W } ⊆ span{G(x, ·) : x∈ X},

which proves the result.

We remark that in the case thatW is a Hilbert space, the idea in the above proof can be applied
to show with less effort the main result in Caponnetto et al. (2008) and Micchelli et al. (2006), that
is, for each compact subsetZ ⊆ X

span{G(x, ·) : x∈ Z} = span{[u,Φ(·)]W : u∈W },

where the two closures are taken inC(Z). A key element missing in the Banach space is the
orthogonal decomposition in a Hilbert spaceW :

W = (spanΦ(Z))⊕Φ(Z)⊥, Z ⊆ X.

For a normed vector spaceV, we denote for eachA⊆V by A⊥ := {v∗ ∈V∗ : (a,v∗)V = 0, a∈ A},
and for eachB⊆ V∗, ⊥B := {a∈ V : (a,v∗)V = 0, v∗ ∈ B}. A Banach spaceW is in general not
the direct sum ofspanΦ(Z) and⊥Φ∗(Z). In fact, closed subspaces inW may not always have an
algebraic complement unlessW is isomorphic to a Hilbert space (see, Conway, 1990, page 94).

Universality and other properties of s.i.p. reproducing kernels will be treated specially in future
work. One of the main purposes of this study is to apply the tool of s.i.p. reproducing kernels to
learning in Banach spaces. To be precise, we shall develop in the framework of s.i.p. RKBS several
standard learning schemes.
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5. Representer Theorems for Standard Learning Schemes

In this section, we assume thatB is an s.i.p. RKBS onX with the s.i.p. reproducing kernelG defined
by a feature mapΦ : X →W as in (39). We shall develop in this framework several standard learning
schemes including minimal norm interpolation, regularization network, support vector machines,
and kernel principal component analysis. For introduction and discussions of these widely used
algorithms in RKHS, see, for example, Cucker and Smale (2002), Evgeniouet al. (2000), Micchelli
and Pontil (2005), Scḧolkopf and Smola (2002), Shawe-Taylor and Cristianini (2004) and Vapnik
(1998).

5.1 Minimal Norm Interpolation

The minimal norm interpolation is to find, among all functions inB that interpolate a prescribed set
of points, a function with the minimal norm. Letx := {x j : j ∈ Nn} be a fixed finite set of distinct
points inX and set for eachy := (y j : j ∈ Nn) ∈ Cn

Iy := { f ∈ B : f (x j) = y j , j ∈ Nn}.

Our purpose is to findf0 ∈ Iy such that

‖ f0‖B = inf{‖ f‖B : f ∈ Iy} (52)

provided thatIy is nonempty. Our first concern is of course the condition ensuring thatIy is
nonempty. To address this issue, let us recall the useful property of thes.i.p. reproducing kernel
G:

f (x) = [ f ,G(x, ·)]B = [G(·,x), f ∗]B∗ , x∈ X, f ∈ B. (53)

Lemma 14 The setIy is nonempty for anyy ∈ Cn if and only if Gx := {G(·,x j) : j ∈ Nn} is linearly
independent inB∗.

Proof Observe thatIy is nonempty for anyy ∈ Cn if and only if span{( f (x j) : j ∈ Nn) : f ∈ B} is
dense inCn. Using the reproducing property (53), we have for each(c j : j ∈ Nn) ∈ Cn that

∑
j∈Nn

c j f (x j) = ∑
j∈Nn

c j [ f ,G(x j , ·)]B =

[

∑
j∈Nn

c jG(·,x j), f ∗
]

B∗

.

Thus,

∑
j∈Nn

c j f (x j) = 0, for all f ∈ B

if and only if

∑
j∈Nn

c jG(·,x j) = 0.

This implies thatGx is linearly independent inB∗ if and only if span{( f (x j) : j ∈ Nn) : f ∈ B} is
dense inCn. Therefore,Iy is nonempty for anyy ∈ Cn if and only if Gx is linearly independent.

We next show that the minimal norm interpolation problem inB always has a unique solution
under the hypothesis thatGx is linearly independent. The following useful property of a uniformly
convex Banach space is crucial (see, for example, Istrǎţescu, 1984, page 53).
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Lemma 15 If V is a uniformly convex Banach space, then for any nonempty closed convex subset
A⊆V and any x∈V there exists a unique x0 ∈ A such that

‖x−x0‖V = inf{‖x−a‖V : a∈ A}.

Proposition 16 If Gx is linearly independent inB∗, then for anyy∈Cn there exists a unique f0 ∈ Iy

satisfying (52).

Proof By Lemma 14,Iy is nonempty. Note also that it is closed and convex. SinceB is uniformly
convex, by Lemma 15, there exists a uniquef0 ∈ Iy such that

‖ f0‖B = ‖0− f0‖B = inf{‖0− f‖B = ‖ f‖B : f ∈ Iy}.

The above equation proves the result.

We shall establish a representation of the minimal norm interpolatorf0. For this purpose, a
simple observation is made based on the following fact connecting orthogonality with best approx-
imation in s.i.p. spaces (Giles, 1967).

Lemma 17 If V is a uniformly Fŕechet differentiable normed vector space, then‖x+λy‖V ≥ ‖x‖V

for all λ ∈ C if and only if[y,x]V = 0.

Lemma 18 If Iy is nonempty then f0 ∈ Iy is the minimizer of (52) if and only if

[g, f0]B = 0, for all g ∈ I0. (54)

Proof Let f0 ∈ Iy. It is obvious thatf0 is the minimizer of (52) if and only if

‖ f0 +g‖B ≥ ‖ f0‖B , g∈ I0.

SinceI0 is a linear subspace ofB, the result follows immediately from Lemma 17.

The following result is of the representer theorem type. For the representer theorem in learning
with positive definite kernels, see, for example, Argyriou et al. (2008),Kimeldorf and Wahba (1971)
and Scḧolkopf et al. (2001).

Theorem 19 (Representer Theorem) Suppose that Gx is linearly independent inB∗ and f0 is the
solution of the minimal norm interpolation (52). Then there existsc = (c j : j ∈ Nn) ∈ Cn such that

f ∗0 = ∑
j∈Nn

c jG(·,x j). (55)

Moreover, a function of the form in the right hand side above is the solution if and only ifc satisfies

[
G(·,xk), ∑

j∈Nn

c jG(·,x j)

]

B∗

= yk, k∈ Nn. (56)
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Proof Note that (54) is equivalent tof ∗0 ∈ I0
⊥ and thatI0 = ⊥Gx. Therefore,f0 satisfies (54) if and

only if
f ∗0 ∈ (⊥Gx)

⊥.

Recall a consequence of the Hahn-Banach theorem that in a reflexiveBanach spaceB, for each
B⊆ B∗,

(⊥B)⊥ = spanB. (57)

By this fact, (55) holds true for somec∈ Cn.
Suppose thatf ∈ B is of the form f ∗ = ∑ j∈Nn

c jG(·,x j) wherec satisfies (56). Thenf ∗ ∈
spanGx. By (57), f ∗ satisfies (54). Furthermore, (56) implies that

f (xk) = [ f ,G(xk, ·)]B = [G(·,xk), f ∗]B∗ =

[
G(·,xk), ∑

j∈Nn

c jG(·,x j)

]

B∗

= yk, k∈ Nn. (58)

That is, f ∈ Iy. By Lemma 18,f = f0. On the other hand,f0 has the form (55). As shown in (58),
(56) is simply the interpolation condition thatf0(xk) = yk, k∈ Nn. Thus, it must be true. The proof
is complete.

Applying the inverse of the duality mapping to both sides of (55) yields a representation of
f0 in the spaceB. However, since the duality mapping is nonadditive unlessB is an RKHS, this
procedure in general does not result in a linear representation.

We conclude that under the condition thatGx is linearly independent, the minimal norm inter-
polation problem (52) has a unique solution, and finding the solution reduces to solving the system
(56) of equations aboutc ∈ Cn. The solutionc of (56) is unique by Theorem 19. Again, the dif-
ference from the result for RKHS is that (56) is often nonlinear aboutc since by Proposition 6 a
semi-inner-product is generally nonadditive about the second variable.

To see an explicit form of (56), we shall reformulate it in terms of the feature mapΦ from X to
W . LetB andB∗ be identified as in Theorem 10. Then (56) has the equivalent form

[
Φ∗(xk), ∑

j∈Nn

c jΦ∗(x j)

]

B∗

= yk, k∈ Nn.

In the particular case thatW = Lp(Ω,µ), p∈ (1,+∞) on some measure space(Ω,F ,µ), andW ∗ =
Lq(Ω,µ), the above equation is rewritten as

Z

Ω
Φ∗(xk) ∑

j∈Nn

c jΦ∗(x j)

∣∣∣∣ ∑
j∈Nn

c jΦ∗(x j)

∣∣∣∣
q−2

dµ= yk

∥∥∥∥ ∑
j∈Nn

c jΦ∗(x j)

∥∥∥∥
q−2

Lq(Ω,µ)

, k∈ Nn.

5.2 Regularization Network

We consider learning a predictor function from a finite sample dataz := {(x j ,y j) : j ∈ Nn} ⊆ X×C
in this subsection. The predictor function will yield from a regularized learning algorithm. Let
L : C×C → R+ be aloss functionthat is continuous and convex with respect to its first variable.
For eachf ∈ B, we set

Ez( f ) := ∑
j∈Nn

L( f (x j),y j) andEz,µ( f ) := Ez( f )+µ‖ f‖2
B ,
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whereµ is a positive regularization parameter. The predictor function that we learnfrom the sample
dataz will be the functionf0 satisfying

Ez,µ( f0) = inf{Ez,µ( f ) : f ∈ B}. (59)

One can always make this choice as we shall prove that the minimizer of (59) exists and is unique.

Theorem 20 There exists a unique f0 ∈ B satisfying (59).

Proof We first show the existence. Iff ∈ B satisfies‖ f‖2
B

> 1
µEz,µ(0) then

Ez,µ( f ) ≥ µ‖ f‖2
B > Ez,µ(0).

Thus

inf{Ez,µ( f ) : f ∈ B} = inf

{
Ez,µ( f ) : f ∈ B, ‖ f‖2

B ≤
1
µ
Ez,µ(0)

}
.

Let

e := inf

{
Ez,µ( f ) : f ∈ B, ‖ f‖2

B ≤
1
µ
Ez,µ(0)

}

and

A :=

{
f ∈ B : ‖ f‖2

B ≤
1
µ
Ez,µ(0)

}
.

Then, there exists a sequencefk ∈ A, k∈ N, such that

e≤ Ez,µ( fk) ≤ e+
1
k
. (60)

SinceB is reflexive,A is weakly compact, that is, we may assume that there existsf0 ∈ A such that
for all g∈ B

lim
k→∞

[ fk,g]B = [ f0,g]B . (61)

In particular, the choiceg := G(x j , ·), j ∈ Nn yields thatfk(x j) converges tof0(x j) ask→ ∞ for all
j ∈ Nn. Since the loss functionL is continuous about the first variable, we have that

lim
k→∞

Ez( fk) = Ez( f0).

Also, choosingg = f0 in (61) yields that

lim
k→∞

[ fk, f0]B = ‖ f0‖
2
B .

By the above two equations, for eachε > 0 there exists someN such that fork≥ N

Ez( f0) ≤ Ez( fk)+ ε

and
‖ f0‖

2
B ≤ ε‖ f0‖

2
B + |[ fk, f0]B | ≤ ε‖ f0‖

2
B +‖ fk‖B‖ f0‖B , if f0 6= 0.

If f0 = 0, then trivially we have

‖ f0‖B ≤ ε‖ f0‖B +‖ fk‖B .
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Combining the above three equations, we get fork≥ N that

Ez,µ( f0) ≤
1

(1− ε)2Ez,µ( fk)+ ε.

By (60) and the arbitrariness ofε, we conclude thatf0 is a minimizer of (59).
SinceL is convex with respect to its first variable and‖ · ‖2

B
is strictly convex,Ez,µ is strictly

convex onB. This implies the uniqueness of the minimizer.

In the rest of this subsection, we shall consider the regularization network in B, that is, the loss
functionL is specified as

L(a,b) = |a−b|2, a,b∈ C.

It is continuous and convex with respect to its first variable. Therefore, by Theorem 20, there is a
unique minimizer for the regularization network:

min
f∈B

∑
j∈Nn

| f (x j)−y j |
2 +µ‖ f‖2

B . (62)

We next consider solving the minimizer. To this end, we need the notion of strictconvexity of
a normed vector space. We call a normed vector spaceV strictly convex if whenever‖x+ y‖V =
‖x‖V +‖y‖V for somex,y 6= 0, there must holdy= λx for someλ > 0. Note that a uniformly convex
normed vector space is automatically strictly convex. The following result wasobserved in Giles
(1967).

Lemma 21 An s.i.p. space V is strictly convex if and only if whenever[x,y]V = ‖x‖V‖y‖V for some
x,y 6= 0 there holds y= λx for someλ > 0.

A technical result about s.i.p. spaces is required for solving the minimizer.

Lemma 22 Let V be a strictly convex s.i.p. space. Then for all u,v∈V

‖u+v‖2
V −‖u‖2

V −2Re[v,u]V ≥ 0.

Proof Assume that there existu,v∈V such that

‖u+v‖2
V −‖u‖2

V −2Re[v,u]V < 0.

Then we haveu,v 6= 0. We proceed by the above inequality and properties of semi-inner-products
that

‖u‖2
V = [u+v−v,u]V = [u+v,u]V − [v,u]V

= Re[u+v,u]V − Re[v,u]V ≤ |[u+v,u]V |− Re[v,u]V

≤ ‖u+v‖V‖u‖V −
‖u+v‖2

V −‖u‖2
V

2
.

The last inequality above can be simplified as

‖u+v‖2
V +‖u‖2

V ≤ 2‖u+v‖V‖u‖V .
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Thus, we must have

‖u+v‖V = ‖u‖V and[u+v,u]V = ‖u+v‖V‖u‖V .

Applying the strict convexity ofV and Lemma 21, we obtain thatu+v = u, namely,v = 0. This is
impossible.

Theorem 23 (Representer Theorem) Let f0 be the minimizer of (62). Then there exists somec∈ Cn

such that
f ∗0 = ∑

j∈Nn

c jG(·,x j). (63)

If Gx is linearly independent then the right hand side of the above equation is the minimizer if and
only if

µck +

[
G(·,xk), ∑

j∈Nn

c jG(·,x j)

]

B∗

= yk, k∈ Nn. (64)

Proof Let g∈ B. Define the functionφ : R → R by φ(t) := Ez,µ( f0 + tg), t ∈ R. We compute by
Lemma 7 that

φ′(t) = 2Re ∑
j∈Nn

g(x j)( f0(x j)−y j + tg(x j))+2µRe[g, f0 + tg]B .

Since f0 is the minimizer,t = 0 is the minimum point ofφ. Henceφ′(0) = 0, that is,

∑
j∈Nn

g(x j) f0(x j)−y j +µ[g, f0]B = 0, for all g∈ B.

The above equation can be rewritten as

∑
j∈Nn

[ f0(x j)−y jG(·,x j),g
∗]B∗ +µ[ f ∗0 ,g∗]B∗ = 0, for all g∈ B,

which is equivalent to
µ f∗0 = ∑

j∈Nn

y j − f0(x j)G(·,x j). (65)

Therefore,f ∗0 has the form (63).
If Gx is linearly independent thenf ∗0 = ∑ j∈Nn

c jG(·,x j) satisfies (65) if and only if (64) holds.
Thus, it remains to show that condition (65) is enough to ensure thatf0 is the minimizer. To this
end, we check that (65) leads to

Ez,µ( f0 +g)−Ez,µ( f0) = µ‖ f0 +g‖2
B −µ‖ f0‖

2
B −2µRe[g, f0]B + ∑

j∈Nn

|g(x j)|
2,

which by Lemma 22 is nonnegative. The proof is complete.

By Theorem 23, ifGx is linearly independent then the minimizer of (62) can be obtained by
solving (64), which has a unique solution in this case. Using the feature map,the system (64) has
the following form

µck +

[
Φ∗(xk), ∑

j∈Nn

c jΦ∗(x j)

]

B∗

= yk, k∈ Nn.

As remarked before, this is in general nonlinear aboutc.
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5.3 Support Vector Machines

In this subsection, we assume that all the spaces are over the fieldR of real numbers, and consider
learning a classifier from the dataz := {(x j ,y j) : j ∈ Nn} ⊆ X ×{−1,1}. We shall establish for
this task two learning algorithms in RKBS whose RKHS versions are well-known(Evgeniou et
al., 2000; Scḧolkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998; Wahba,
1999).

5.3.1 SOFT MARGIN HYPERPLANECLASSIFICATION

We first focus on the soft margin hyperplane classification by studying

inf

{
1
2
‖w‖2

W
+C‖ξ‖ℓ1(Nn) : w∈W , ξ := (ξ j : j ∈ Nn) ∈ Rn

+, b∈ R
}

(66)

subject to
y j([Φ(x j),w]W +b) ≥ 1−ξ j , j ∈ Nn.

Here,C is a fixed positive constant controlling the tradeoff between margin maximizationand train-
ing error minimization. If a minimizer(w0,ξ0,b0) ∈W ×Rn

+ ×R exists, the classifier is taken as
sgn([Φ(·),w0]W +b0).

Recall by Theorem 10 that functions inB∗ are of the form

f ∗ = [Φ(·),w]W , w∈W (67)

and
‖ f ∗‖B∗ = ‖w‖W .

Introduce the loss function

Lb(a,y) := max{1−ay−by,0}, (a,y) ∈ R×{−1,1}, b∈ R,

and the error functional onB∗,

Eb,z,µ( f ∗) := µ‖ f ∗‖2
B∗ + ∑

j∈Nn

Lb( f ∗(x j),y j), f ∗ ∈ B∗

whereµ := 1/(2C). Then we observe that (66) can be equivalently rewritten as

inf{Eb,z,µ( f ∗) : f ∗ ∈ B∗, b∈ R}. (68)

Whenb = 0, (68) is also called the support vector machine classification (Wahba, 1999).
If a minimizer( f ∗0 ,b0) ∈ B∗×R for (68) exists then by (67), the classifier followed from (66)

will be taken as sgn( f ∗0 +b0). It can be verified that for everyb∈ R, Lb is convex and continuous
with respect to its first variable. This enables us to prove the existence of minimizers for (68) based
on Theorem 20.

Proposition 24 Suppose that{y j : j ∈ Nn} = {−1,1}. Then there exists a minimizer( f ∗0 ,b0) ∈
B∗×R for (68). Moreover, the first component f∗

0 of the minimizer is unique.
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Proof The uniqueness off ∗0 follows from the fact thatEb,z,µ is strictly convex with respect to its
first variable. It remains to deal with the existence. Lete be the infimum (68). Then there exists a
sequence( f ∗k ,b∗k) ∈ B∗×R, k∈ N such that

lim
k→∞

Ebk,z,µ( f ∗k ) = e. (69)

Since{y j : j ∈ Nn} = {−1,1}, {bk : k ∈ N} is bounded onR. We may hence assume thatbk

converges to someb0 ∈ R. By Theorem 20, min{Eb0,z,µ( f ∗) : f ∗ ∈ B∗} has a unique minimizerf ∗0 .
The last fact we shall need is the simple observation that

max{1−ay−by,0}−max{1−ay−b′y,0} ≤ |b−b′| for all a,b,b′ ∈ R andy∈ {−1,1}.

Thus, we get for allk∈ N that

Eb0,z,µ( f ∗0 ) ≤ Eb0,z,µ( f ∗k ) ≤ Ebk,z,µ( f ∗k )+n|b0−bk|,

which together with (69) and lim
k→∞

bk = b0 implies that( f ∗0 ,b0) is a minimizer for (68).

Since the soft margin hyperplane classification (66) is equivalent to (68), we obtain by Proposi-
tion 24 that it has a minimizer(w0,ξ0,b0) ∈W ×Rn

+×R, where the first componentw0 is unique.
We shall prove a representer theorem forf ∗0 using the following celebrated geometric conse-

quence of the Hahn-Banach theorem (see, Conway, 1990, page 111).

Lemma 25 Let A be a closed convex subset of a normed vector space V and b a point in V that is
not contained in A. Then there exist T∈V∗ andα ∈ R such that

T(b) < α < T(a), for all a ∈ A.

Theorem 26 (Representer Theorem) Let f∗
0 be the minimizer of (68). Then f0 lies in the closed

convex conecoGz spanned by Gz := {y jG(x j , ·) : j ∈ Nn}, that is, there existλ j ≥ 0 such that

f0 = ∑
j∈Nn

λ jy jG(x j , ·). (70)

Consequently, the minimizer w0 of (66) belongs to the closed convex cone spanned by yjΦ(x j),
j ∈ Nn.

Proof Assume thatf0 /∈ coGz. By Lemmas 25 and 8, there existsg∈ B andα ∈ R such that for all
λ ≥ 0

[ f0,g]B < α < [λy jG(x j , ·),g]B = λy jg
∗(x j), j ∈ Nn.

Choosingλ = 0 above yields thatα < 0. Thatλy jg∗(x j) > α for all λ ≥ 0 impliesy jg∗(x j) ≥ 0,
j ∈ Nn. We hence obtain that

[ f0,g]B < 0≤ y jg
∗(x j), j ∈ Nn.

We choosef ∗ = f ∗0 + tg∗, t > 0. First, observe fromy jg∗(x j) ≥ 0 that

1−y j f ∗(x j) ≤ 1−y j f ∗0 (x j), j ∈ Nn. (71)
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By Lemma 7,

lim
t→0+

‖ f ∗0 + tg∗‖2
B∗ −‖ f ∗0‖

2
B∗

t
= 2[g∗, f ∗0 ]B∗ = 2[ f0,g]B < 0.

Therefore, there existst > 0 such that‖ f ∗‖2
B∗ < ‖ f ∗0‖

2
B∗ . This combined with (71) implies that

Eb,z,µ( f ∗) < Eb,z,µ( f ∗0 ) for everyb∈ R, contradicting the hypothesis thatf ∗0 is the minimizer.

To solve (68), by Theorem 26 one substitutes equation (70) into (68) to obtain a convex opti-
mization problem aboutλ j subject to the constraint thatλ j ≥ 0, j ∈ Nn.

5.3.2 HARD MARGIN HYPERPLANECLASSIFICATION

Consider in the feature spaceW the following hard margin classification problem

inf{‖w‖W : w∈W , b∈ R} (72)

subject to
y j([Φ(x j),w]W +b) ≥ 1, j ∈ Nn.

Provided that the minimizer(w0,b0) ∈W ×R exists, the classifier is sgn([Φ(·),w0]W +b0).
Hard margin classification in s.i.p. spaces was discussed in Der and Lee (2007). Applying

the results in our setting tells that ifb is fixed then (72) has a unique minimizerw0 and w0 ∈
co{y jΦ(x j) : j ∈ Nn}. As a corollary of Proposition 24 and Theorem 26, we obtain here that if
{y j : j ∈ Nn} = {−1,1} then (72) has a minimizer (w0, b0), wherew0 is unique and belongs to the
set co{y jΦ(x j) : j ∈ Nn}.

We draw the conclusion that the support vector machine classifications in thissubsection all
reduce to a convex optimization problem.

5.4 Kernel Principal Component Analysis

Kernel principal component analysis (PCA) plays a foundational role indata preprocessing for
other learning algorithms. We shall present an extension of kernel PCA for RKBS. To this end, let
us briefly review the classical kernel PCA (see, for example, Schölkopf and Smola, 2002; Schölkopf
et al., 1998).

Let x := {x j : j ∈ Nn} ⊆ X be a set of inputs. We denote byd(w,V) the distance fromw∈W

to a closed subspaceV of W . Fix m∈ N. For each subspaceV ⊆W with dimension dimV = m,
we define the distance fromV to Φ(x) as

D(V,Φ(x)) :=
1
n ∑

j∈Nn

(d(Φ(x j),V))2.

Suppose that{u j : j ∈ Nm} is a basis forV. Then for eachv∈W the best approximationv0 in
V of v exists. Assume thatv0 = ∑ j∈Nm

λ ju j , λ j ∈ C, j ∈ Nm. By Lemma 17, the coefficientsλ j ’s
are uniquely determined by

[
uk,v− ∑

j∈Nm

λ ju j

]

W

= 0, k∈ Nm. (73)
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In the case whenW is a Hilbert space, the system (73) of equations resulting from best approx-
imation is linear aboutλ j ’s. This enables us to construct a uniquem-dimensional subspaceV0 ⊆W

such that
D(V0,Φ(x)) = min{D(V,Φ(x)) : V ⊆W subspace, dimV = m}. (74)

Let T be the compact operator onW determined by

(Tu,v)W =
1
n ∑

j∈Nn

(u,Φ(x j))W (Φ(x j),v)W , u,v∈W . (75)

We letv j , j ∈Nm be the unit eigenvectors ofT corresponding to its firstm largest eigenvalues. Then
v j ’s form an orthonormal basis forV0 and are called theprincipal componentsof Φ(x). For each
x∈ X, ((Φ(x),v j)W : j ∈ Nm) ∈ Cm is its newfeature. Therefore, kernel PCA amounts to selecting
the new feature map fromX to Cm. The dimensionm is usually chosen to be much smaller than the
original dimension ofW . Moreover, by (74), the new features ofx are expected to become sparser
under this mapping.

The analysis of PCA in Hilbert spaces breaks in s.i.p. spaces where (73)is nonlinear. To tackle
this problem, we suggest using a class of linear functionals to measure the distance between two
elements inW . Specifically, we chooseB⊆W ∗ and set for allu,v∈W

dB(u,v) :=

(

∑
b∈B

|(u−v,b)W |2

)1/2

.

The idea is that ifdB(u,v) is small for a carefully chosen setB of linear functionals then‖u−v‖W
should be small, and vice versa. In particular, ifW is a Hilbert space andB is an orthonormal basis
for W thendB(u,v) = ‖u− v‖W . From the practical consideration, we shall use what we have at
hand, that is,Φ(x). Thus, we define for eachu,v∈W

dΦ(x)(u,v) :=

(

∑
j∈Nn

∣∣[u−v,Φ(x j)]W
∣∣2
)1/2

.

This choice of distance is equivalent to mappingX into Cn by

Φ̃(x) := ([Φ(x),Φ(x j)]W : j ∈ Nn), x∈ X.

Consequently, new features of elements inX will be obtained by applying the classical PCA to
Φ̃(x j), j ∈ Nn in the Hilbert spaceCn.

In our method the operatorT defined by (75) onCn is of the form

Tu=
1
n ∑

j∈Nn

(Φ̃(x j)
∗u)Φ̃(x j), u∈ Cn,

whereΦ̃(x j)
∗ is the conjugate transpose ofΦ̃(x j). One can see thatT has the matrix representation

Tu= Mxu, u∈ Cn, where

Mx :=
1
n
(G[x]∗G[x])T .
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Let λk, k∈ Nn, be the eigenvalues ofMx arranged in nondecreasing order. We find for eachk∈ Nm

the unit eigenvectorαk := (αk
j : j ∈ Nn) ∈ Cn corresponding toλk, that is,

Mxαk = λkαk.

Vectorsαk, k∈ Nm, form an orthonormal sequence. The new feature forx∈ X is hence

((Φ̃(x),αk)Cn : k∈ Nm) ∈ Cm.

We compute explicitly that

(Φ̃(x),αk)Cn = ∑
j∈Nn

αk
jG(x,x j), k∈ Nm.

We remark that unlike the previous three learning algorithms, the kernel PCApresented here only
makes use of the kernelG and is independent of the semi-inner-product onW . Thekernel trickcan
hence be applied to this algorithm.

6. Conclusion

We have introduced the notion of reproducing kernel Banach spaces and generalized the corre-
spondence between an RKHS and its reproducing kernel to the setting of RKBS. S.i.p. RKBS were
specially treated by making use of semi-inner-products and the duality mapping. A semi-inner-
product shares many useful properties of an inner product. These properties and the general theory
of semi-inner-products make it possible to develop many learning algorithms in RKBS. As illus-
tration, we discussed in the RKBS setting the minimal norm interpolation, regularization network,
support vector machines, and kernel PCA. Various representer theorems were established.

This work attempts to provide an appropriate mathematical foundation of kernel methods for
learning in Banach spaces. Many theoretical and practical issues are left for future research. An im-
mediate challenge is to construct a class of useful RKBS and the corresponding reproducing kernels.
By the classical theory of RKHS, a functionK is a reproducing kernel if and only if the finite matrix
(1) is always hermitian and positive semi-definite. This function property characterization brings
great convenience to the construction of positive definite kernels. Thus, we ask what characteristics
a function must possess so that it is a reproducing kernel for some RKBS. Properties of RKBS and
their reproducing kernels also deserve a systematic study. For the applications, we have seen that
minimum norm interpolation and regularization network reduce to systems of nonlinear equations.
Dealing with the nonlinearity requires algorithms specially designed for the underlying s.i.p. space.
On the other hand, support vector machines can be reformulated into certain convex optimization
problems. Finally, section 5.4 only provides a possible implementation of kernelPCA for RKBS.
We are interested in further careful analysis and efficient algorithms forthese problems. We shall
return to these issues in future work.
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Appendix A.

In this appendix, we provide proofs of two results stated in the previous sections of this paper. The
first one is about the minimization problem (5) in the introduction.

Proposition 27 If ϕ : Rd → [0,+∞) is strictly concave and µ> 0, then every minimizer of

min{ϕ(x)+µ‖x‖ℓ1 : x∈ Rd} (76)

has at most one nonzero element.

Proof Assume to the contrary thatx0 ∈ Rd is a minimizer of (76) with more than one nonzero
elements. Thenx0 is not an extreme points of the sphere{x∈ Rd : ‖x‖ℓ1 = ‖x0‖ℓ1}. In other words,
there exist two distinct vectorsx1,x2 ∈ Rd and someλ ∈ (0,1) such that

x0 = λx1 +(1−λ)x2 and‖x1‖ℓ1 = ‖x2‖ℓ1 = ‖x0‖ℓ1.

By the strict concavity ofϕ, we get that

ϕ(x0)+µ‖x0‖ℓ1 > λϕ(x1)+(1−λ)ϕ(x2)+µ‖x0‖ℓ1

= λ(ϕ(x1)+µ‖x1‖ℓ1)+(1−λ)(ϕ(x2)+µ‖x2‖ℓ1).

Therefore, we must have either

ϕ(x0)+µ‖x0‖ℓ1 > ϕ(x1)+µ‖x1‖ℓ1

or

ϕ(x0)+µ‖x0‖ℓ1 > ϕ(x2)+µ‖x2‖ℓ1.

Either case contradicts the hypothesis thatx0 is a minimizer of (76).

The second result confirms that (27) indeed defines a semi-inner-product.

Proposition 28 Let V be a normed vector space overC. If for all x,y ∈ V \ {0} the limit

lim
t∈R, t→0

‖x+ ty‖V −‖x‖V

t
exists then[·, ·]V : V ×V → C defined by

[x,y]V := ‖y‖V

(
lim

t∈R, t→0

‖y+ tx‖V −‖y‖V

t
+ i lim

t∈R, t→0

‖iy+ tx‖V −‖y‖V

t

)
if x,y 6= 0 (77)

and[x,y]V := 0 if x = 0 or y = 0 is a semi-inner-product on V.

2771



ZHANG, XU AND ZHANG

Proof First, we obtain forx 6= 0 that

[x,x]V = ‖x‖V

(
lim

t∈R, t→0

‖(1+ t)x‖V −‖x‖V

t
+ i lim

t∈R, t→0

‖(i + t)x‖V −‖x‖V

t

)

= ‖x‖2
V

(
lim

t∈R, t→0

|1+ t|−1
t

+ i lim
t∈R, t→0

|i + t|−1
t

)

= ‖x‖2
V(1+0) = ‖x‖2

V > 0.

(78)

We then deal with the remaining three conditions of a semi-inner-product. Clearly, they are true
if one of the arguments involved is the zero vector. Letx,y,z∈V \{0}. We start with the estimate:

Re[x+y,z]V = ‖z‖V lim
t∈R, t→0+

‖z+ tx+ ty‖V −‖z‖V

t

≤ ‖z‖V lim
t∈R, t→0+

‖ z
2 + tx‖V +‖ z

2 + ty‖V −‖z‖V

t

= ‖z‖V

(
lim

t∈R, t→0+

‖ z
2 + tx‖V −‖ z

2‖V

t
+ lim

t∈R, t→0+

‖ z
2 + ty‖V −‖ z

2‖V

t

)

= ‖z‖V

(
lim

t∈R, t→0+

‖z+2tx‖V −‖z‖V

2t
+ lim

t∈R, t→0+

‖z+2ty‖V −‖z‖V

2t

)
.

The above equation implies that

Re[x+y,z]V ≤ Re[x,z]V + Re[y,z]V . (79)

It can be easily verified that[−x,y]V = −[x,y]V . Replacingy with x+y, andx with −x in the above
equation yields that

Re[y,z]V ≤ Re[−x,z]V + Re[x+y,z]V = −Re[x,z]V + Re[x+y,z]V . (80)

Combining (79) and (80), we get that Re[x+y,z]V = Re[x,z]V + Re[y,z]V . Similar arguments lead
to that Im[x+y,z]V = Im [x,z]V + Im [y,z]V . Therefore,

[x+y,z]V = [x,z]V +[y,z]V . (81)

Next we see for allλ ∈ R\{0} that

[λx,y]V = ‖y‖V lim
t∈R, t→0

‖y+ tλx‖V −‖y‖V

t
= λ‖y‖V lim

t∈R, t→0

‖y+ tλx‖V −‖y‖V

λt
= λ[x,y]V .

It is also clear from the definition (77) that[ix,y]V = i[x,y]V . We derive from these two facts and
(81) for everyλ = α+ iβ, α,β ∈ R that

[λx,y]V = [αx+ iβx,y]V = [αx,y]V +[iβx,y]V = α[x,y]V + i[βx,y]V
= α[x,y]V + iβ[x,y]V = (α+ iβ)[x,y]V = λ[x,y]V .

(82)

We then proceed forλ ∈ C\{0} by (82) that

[x,λy]V = ‖λy‖V lim
t∈R, t→0

‖λy+ tx‖V −‖λy‖V

t
= ‖λy‖V |λ| lim

t∈R, t→0

‖y+ t x
λ‖V −‖y‖V

t

= |λ|2[
x
λ
,y]V =

|λ|2

λ
[x,y]V = λ [x,y]V .

(83)
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Finally, we find someλ ∈ C such that|λ| = 1 andλ[x,y]V = |[x,y]V |, and then obtain by (82) and
(77) that

|[x,y]V | = λ[x,y]V = [λx,y]V = ‖y‖V lim
t∈R, t→0+

‖y+ tλx‖V −‖y‖V

t

≤ ‖y‖V lim
t∈R, t→0+

‖y‖V + t‖λx‖V −‖y‖V

t
= ‖y‖V‖λx‖V = ‖x‖V‖y‖V .

By (78), the above inequality has the equivalent form

|[x,y]V | ≤ [x,x]1/2
V [y,y]1/2

V . (84)

Combining Equations (78), (81), (82), (83), and (84) proves the proposition.
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