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Abstract

We introduce the notion of reproducing kernel Banach spéR&®BS) and study special semi-
inner-product RKBS by making use of semi-inner-products thie duality mapping. Properties of
an RKBS and its reproducing kernel are investigated. Asiegiibns, we develop in the framework
of RKBS standard learning schemes including minimal nort@rjpolation, regularization network,
support vector machines, and kernel principal componealysis. In particular, existence, unique-
ness and representer theorems are established.

Keywords: reproducing kernel Banach spaces, reproducing kerneals)itey theory, semi-inner-
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1. Introduction

Learning a function from its finite samples is a fundamental science probleeneSsence in achiev-
ing this is to choose an appropriate measurement of similarities between elenthetsladmain of
the function. A recent trend in machine learning is to use a positive definitelg\ronszajn, 1950)
to measure the similarity between elements in an input s§d8eltblkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004; Vapnik, 1998; Xu and Zhang, 2007, 20@®tN, := {1,2,...,n}
for ne N. A functionK : X x X — C is called apositive definite kerndf for all finite subsets
X :={X;: j € Np} C X the matrix

K{x] = [K(Xj,%) : j,k e Np] Q)

is hermitian and positive semi-definite. The reason of using positive defiaiteels to measure
similarity lies in the celebrated theoretical fact due to Mercer (1909) that ihex bijective corre-
spondence between them amgroducing kernel Hilbert spacdfRKHS). An RKHS# on X is a
Hilbert space of functions oK for which point evaluations are always continuous linear function-
als. One direction of the bijective correspondence says th@isfa positive definite kernel oK
then there exists a unique RKH& on X such thatk (x,-) € # for eachx € X and for allf € H
andy € X

f(y):(va(yv))}[v (2)
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where(-,-)4 denotes the inner product off. Conversely, if is an RKHS onX then there is a
unique positive definite kern&l on X such thafK(x,-) : xe X} C # and (2) holds. In light of this
bijective correspondence, positive definite kernels are usually aaiferdducing kernels

By taking f := K(x,-) for x € X in Equation (2), we get that

K(va) = (K(X7')7K(ya ))}[a Xy e X. (3)

ThusK(x,y) is represented as an inner product on an RKHS. This explaingdhyy) is able to
measure similarities of andy. The advantages brought by the use of an RKHS include: (1) the
inputs can be handled and explained geometrically; (2) geometric objettasuryperplanes are
provided by the RKHS for learning; (3) the powerful tool of functioaahlysis applies (Séitkopf

and Smola, 2002). Based on the theory of reproducing kernels, miatyivd schemes have been
developed for learning from finite samples (Evgeniou et al., 2000; Mit&tal., 2009; Scblkopf

and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998)patticular, the widely
used regularized learning algorithm works by generating a predictotitumfrom the training data
{(Xj,yj) : ] € Np} € X x C as the minimizer of

min 'S L(f(x),y;)+ Ml fl3, 4
f€}4<jean (F(x)), i) + M 5 4)

where# denotes the RKHS corresponding to the positive definite kétnélis a prescribed loss
function, anduis a positive regularization parameter.

This paper is motivated from machine learning in Banach spaces. Themdaantages of
learning in Banach spaces over Hilbert spaces. Firstly, there is edlgentily one Hilbert space
once the dimension of the space is fixed. This follows from the well-knowirttiat any two Hilbert
spaces ovet of the same dimension are isometrically isomorphic. By contrasp $6g € [1, +oo],
LP[O,1] and L9]0,1] are not isomorphic, namely, there does not exist a bijective bounded linea
mapping between them (see, Fabian et al., 2001, page 180). Thus,rednpailbert spaces,
Banach spaces possess much richer geometric structures, whichearigtly useful for developing
learning algorithms. Secondly, in some applications, a norm from a Bapach s invoked without
being induced from an inner product. For instance, it is known that minimeoayit the/P norm
onRY |eads to sparsity of the minimizer wheris close to 1 (see, for example, Tropp, 2006). In the
extreme case that: RY — [0, +) is strictly concave ang > 0, one can show that the minimizer
for

min{@ (x) + px||2 : x € R} (5)

has at most one nonzero element. The reason is that the extreme pointsharais the’> norm
must lie on axes of the Euclidean coordinate system. A detailed proof of guét ie provided
in the appendix. Thirdly, since many training data come with intrinsic structuegsriake them
impossible to be embedded into a Hilbert space, learning algorithms basedHf RKy not work
well for them. Hence, there is a need to modify the algorithms by adopting norf@iach spaces.
For example, one might have to replace the ngrrh,, in (4) with that of a Banach space.

There has been considerable work on learning in Banach spaces in thaitite References
Bennett and Bredensteiner (2000); Micchelli and Pontil (2004, 20@icchelli et al. (2003); Zhang
(2002) considered the problem of minimizing a regularized functional oficitme

3 LO(Dy)+ @l flla). feB
J€Rn
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where B is Banach space\; are in the dualB*, y; € C, L is a loss function, ang is a strictly
increasing nonnegative function. In particular, Micchelli et al. (20f8)sidered learning in Besov
spaces (a special type of Banach spaces). On-line learning in finite donehBanach spaces was
studied, for example, in Gentile (2001). Learning ofl&function was considered in Kimber and
Long (1995). Classifications in Banach spaces, and more generally iic spEces were discussed
in Bennett and Bredensteiner (2000), Der and Lee (2007), Hein €@05), von Luxburg and
Bousquet (2004) and Zhou et al. (2002).

The above discussion indicates that there is a need of introducing the wbtfeproducing
kernel Banach spaces for the systematic study of learning in Banachssp8uch a definition is
expected to result in consequences similar to those in an RKHS. A gengoalighRKHS to non-
Hilbert spaces using point evaluation with kernels was proposed in Gahu(2003), although the
spaces considered there might be too general to have favorabletmems an RKHS. We shall
introduce the notion of reproducing kernel Banach spaces in SectamdZa general construction
in Section 3. It will become clear that the lack of an inner product may carstariness in the
properties of the associated reproducing kernel. To overcome thishalleestablish in Section 4
s.i.p. reproducing kernel Banach spaces by making use of semi-inmguqis for normed vector
spaces first defined by Lumer (1961) and further developed by Qi&7]. Semi-inner-products
were first applied to machine learning by Der and Lee (2007) to devel@prhargin hyperplane
classification in Banach spaces. Here the availability of a semi-inner-gprredables us to study
basic properties of reproducing kernel Banach spaces and theadraging kernels. In Section 5,
we shall develop in the framework of reproducing kernel Banachespstandard learning schemes
including minimal norm interpolation, regularization network, support vectachines, and kernel
principal component analysis. EXxistence, uniqueness and repnetieedeems for the learning
schemes will be proved. We draw conclusive remarks in Section 6 andlenthw technical results
in Appendix.

2. Reproducing Kernel Banach Spaces

Without specifically mentioned, all vector spaces in this paper are assurbedctumplex. LeX
be a prescribed input space. A normed vector sgiaiecalled aBanach space of functionon X
if it is a Banach space whose elements are functionX,ocand for eachf € B, its norm||f||z in
B vanishes if and only iff, as a function, vanishes everywhereXnBy this definition,LP[0, 1],
1< p <+, is not a Banach space of functions as it consists of equivalent slas&enctions with
respect to the Lebesgue measure.

Influenced by the definition of RKHS, our first intuition is to define a repidg kernel Banach
space (RKBS) as a Banach space of functionX am which point evaluations are continuous linear
functionals. If such a definition was adopted then the first example thatsctomaur mind would
beCJ0, 1], the Banach space of continuous functiong@u| equipped with the maximum norm. It
satisfies the definition. However, since for edch C[0, 1],

f(x) = &(f), xe[0,1],

the reproducing kernel f&[0, 1] would have to be the delta distribution, which is not a function that
can be evaluated. This example suggests that there should exist a waytifiyidg the elements
in the dual of an RKBS with functions. Recall that two normed vector spdcesdV, are said
to beisometricif there is a bijective linear norm-preserving mapping between them. We il su
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V1 andV, anidentificationof each other. We would like the dual spaBé of an RKBS‘B on X

to be isometric to a Banach space of functionsXonin addition to this requirement, later on we
will find it very convenient to jump freely between a Banach space and &k 8or this reason, we
would like an RKBS3 to bereflexivein the sense thatB*)* = B. The above discussion leads to
the following formal definition.

Definition 1 A reproducing kernel Banach spacgRKBS) on X is a reflexive Banach spagef
functions on X for whichB* is isometric to a Banach spacg” of functions on X and the point
evaluation is continuous on both and 3.

Several remarks are in order about this definition. First, whebhisran RKBS is independent
of the choice of the identificatio®” of B*. In other words, if the point evaluation is continuous
on some identificatior” then it is continuous on all the identifications. The reason is that any two
identifications ofB* are isometric. Second, an RKH% on X is an RKBS. To see this, we set

H = {f:fecH) (6)

with the norm|| f|| ,+ := || f|| 5r, wheref denotes the conjugate fdefined byf (x) := f(x), x € X.
By the Riesz representation theorem (Conway, 1990), each*/* has the form

U*(f) = (f7 fO).‘]—[a fedH
for some uniqueo € # and||u*|| . = || fo|| 5. We introduce a mapping. #* — H* by setting
L(u*) := fo.

Clearly,1 so defined is isometric from{* to #*. We conclude that an RKHS is a special RKBS.
Third, the identification3” of B* of an RKBS is usually not unique. However, since they are
isometric to each other, we shall assume that one of them has been cboaerRKBS3B under
discussion. In particular, the identification 8f* of an RKHS # will always be chosen as (6).
Fourth, for notational simplicity, we shall still denote the fixed identificatiorBofoy B*. Let us
keep in mind that originallyB* consists of continuous linear functionals 8nThus, when we shall
be treating elements iB* as functions orx, we actually thinkB* as its chosen identification. With
this notational convention, we state our last remark th@tig an RKBS onX then so isB*.

We shall show that there indeed existseproducing kernefor an RKBS. To this end, we
introduce for a normed vector spaéahe followingbilinear formonV x V* by setting

(U, Vv )y :=Vv'(u), ueV, v- eVv=.
It is called bilinear for the reason that for all3 € C, u,v € V, andu*,v* € V* there holds
(ou+Bv,u")y = a(u,u")y +B(vu’)y

and
(u,ou* + BV )y = a(u,u)y + B(u,v')y.

Note that ifV is a reflexive Banach space then for any continuous linear functiowalV* there
exists a unique € V such that
TV)=(uVv)y, V-eV™.
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Theorem 2 Suppose thaB is an RKBS on X. Then there exists a unique functiolXkk X — C
such that the following statements hold.
(a) For every xe X, K(-,x) € B* and

f(x) = (f,K(-,x))5, forall f € B.
(b) For every xe X, K(x,-) € B and
f*(x) = (K(x,-), f")g, forall f* e B*. (7)
(c) The linear span ofK(x,-) : x € X} is dense inB, namely,
span{K(x,-) :xe X} = B. (8)
(d) The linear span ofK(-,x) : x € X} is dense inB*, namely,
span{K(-,x) : xe X} = B". 9)

(e) Forall x,y € X
K(Xay) = (K(X7)7K(ay))$ (10)

Proof For everyx € X, sincedy is a continuous linear functional dB, there existg)x € B* such
that

f(x)=(f,ox)3, fe€B.
We introduce a functioi on X x X by setting

K(Xay) = gx(y), X\ye X.
It follows thatK (x,-) € B* for eachx € X, and
f(x) = (f,K(X,-)),B, feB, xeX. (11)

There is only one function oK x X with the above properties. Assume to the contrary that there is
anotherG: X x X — C satisfying{G(x,-) : x e X} C B* and

f(x)=(f,G(x,-))s, feB, xeX.
The above equation combined with (11) yields that
(f,K(x,-) = G(x,-)) =0, forall f € B, xe X.

Thus,K(x,-) — G(x,-) = 0 in B* for eachx € X. SinceB* is a Banach space of functions ¥nwe
get for everyy € X that N 3
K(xy) —G(xy) =0,

thatis,K = G.
Likewise, there exists a unigue: X x X — C such thaK(y,-) € B,y € X and

f*(y) = (K(v.-), f")s, f7€B", yeX. (12)
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Letting f := K(y,-) in (11) yields that

K(y,X) = (K(ya ')’ K(X,-))g;, X,y € X, (13)

and settingf* := K(x,-) in (12) ensures that
R(xy) = (K(y,).K(X.)z: %y EX.
Combining the above equation with (13), we get that
K(xy) =K(y,X), xyeX.

Therefore K satisfies (a) and (b) as stated in the theorem. Equation (10) in (e) is goguetting
f*=K(-,y) in (7). To complete the proof, we shall show (c) only, since (d) can belled in a
similar way. Suppose that (8) does not hold. Then by the Hahn-Banaoheth, there exists a
nontrivial functionalf* € B* such that

(K(x,-), f*)g =0, forall xe X.

We get immediately from (12) thdt(x) = O for all x € X. SinceB* is a Banach space of functions
onX, f*=0in B*, a contradiction. |

We call the functiorK in Theorem 2 theeproducing kernel for the RKBSB. By Theorem
2, an RKBS has exactly one reproducing kernel. However, diffdRi¢BS may have the same
reproducing kernel. Examples will be given in the next section. ThidteeBom a fundamental
difference between Banach spaces and Hilbert spaces. To explaiwéHet 7/ be a Banach space
andV a subset ofi/ such that spavi is dense in7/. Suppose that a norm on elementsvofs
prescribed. If is a Hilbert space and an inner product is defined among elemevigiien the
norm extends in a unique way to spanand hence to the whole spa¢#. Assume now thatV/
is only known to be a Banach space andC W* satisfyingsparvV* = W* is given. Then even if
a bilinear form is defined between element¥iand those iV*, the norm may not have a unique
extension to the whole spad#’. Consequently, although we have at hand a reproducing ki€rnel
for an RKBSB, the relationship (13), and denseness conditions (8), (9), we stillaathetermine
the norm on3.

3. Construction of Reproducing Kernels via Feature Maps

In this section, we shall characterize reproducing kernels for RKBS characterization will at the
same time provide a convenient way of constructing reproducing kerndlghair corresponding
RKBS. For the corresponding results in the RKHS case, see, for exa@giteh (1997), Sdhikopf
and Smola (2002), Shawe-Taylor and Cristianini (2004) and Vapni@§)L9

Theorem 3 Let W be a reflexive Banach space with dual spad&. Suppose that there exists
®: X — W, andd* : X — W* such that

Spard(X) = W, spard*(X) = w*. (14)
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ThenB := {(u,®*(-))q : uc W} with norm

1(U, @7())apll3 = [[ullaw (15)

is an RKBS on X with the dual spag& := {(®(-),u*), : u* € W*} endowed with the norm
(), U ) gyl g == [|U*][ gy
and the bilinear form
(U, ")) g, (P(), U )gp) 3 = (U, U ) gy, UE W, U € W™ (16)
Moreover, the reproducing kernel K f&# is
K(XY) := (®(X), P*(y)) g, Xy €EX. 17

Proof We first show thatB defined above is a Banach space of function¥Xoiio this end, we set
u € W and assume that
(u,®*(x))qy =0, forallxe X. (18)

Then by the denseness condition (14),u*),, = 0 for all u* € W*, implying thatu = 0. Con-
versely, ifu= 0 in 7/ then it is clear that (18) holds true. These arguments also show that the
representeu € W for a function (u,®*(-))4y in B is unique. It is obvious that (15) defines a
norm on‘B and B is complete under this norm. Therefo® s a Banach space of functions &n
Similarly, s0 isB := {(®(-),u*)4y : U* € W*} equipped with the norm

(@), u) gl = (U [l gp--
Define the bilinear fornT on B x B by setting
T((u, D" () gp, (P(-),U")gp) := (U, U ) gy, UE W, U € W,
Clearly, we have for alli € W, u* € W* that

T D)) s (PC),u) )| < ([ullap U gy = [[(U, D7)l s [[(PC),U7)apll 3

Therefore, each function i8 is a continuous linear functional aB. Note that the linear mapping
u— (u,®*(-))qy is isometric from7/ to B. As a consequence, functions # exhaust all the
continuous linear functionals @B. We conclude thaB* = B with the bilinear form (16). Likewise,
one can show thaB is the dual of8* by the reflexivity of . We have hence proved th@tis
reflexive with dualB*.

It remains to show that point evaluations are continuou$and3*. To this end, we get for
eachx € X andf := (u,®*(-))4y, U € W that

O] = [(U, @ 00) g | < [[ullan[|®* O lap- = 151" (X) [ 99

which implies thady is continuous orB. By similar arguments, it is continuous @i. Combining
all the discussion above, we reach the conclusiondhiatan RKBS onX.
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For the functionK on X x X defined by (17), we get th&(x,-) € B andK(-,x) € B* for all
x € X. ltis also verified that forf := (u, ®*()) 4, ue W

(£, K(x))3 = (U, @7())gp, (B(), @ (X)) g) 3 = (U, P*(X)) g = F(X).
Similarly, for f*:= (d(-),u*) 4y, u* € W*
(K(%-), 1)z = ((P(X), @7(-)) gy, (P(), U ) ) 3 = (P(X), U") g = £7(X).

These facts show thé#t is the reproducing kernel faB and complete the proof. |

We call the mapping®, ®* in Theorem 3 a pair dieature mapsfor the reproducing kernd{.
The spacegV, W* are called the pair dfieature spacesassociated with the feature maps for
As a corollary to Theorem 3, we obtain the following characterization afoeycing kernels for
RKBS.

Theorem 4 A function K: X x X — C is the reproducing kernel of an RKBS on X if and only if it
is of the form (17), wher@// is a reflexive Banach space, and mappidgsX — W, ®*: X — W*
satisfy (14).

Proof The sufficiency has been shown by the last theorem. For the necessiggsime tha is
the reproducing kernel of an RKBB on X, and set

W =B, W =3B, &) :=K(x,-), ®*(x):=K(-x), xeX.

By Theorem 2/, W*, &, ®* satisfy all the conditions. [ ]

To demonstrate how we get RKBS and their reproducing kernels by &me®rwe now present

a nontrivial example of RKBS. S&t:= R, I:= [-3, ], andp € (1,+). We make the convention

thatq is always the conjugate numbergfthat is,p~! +q~* = 1. DefineW := LP(I), W* := L4(I)
and®d : X — W, ®*: X — W* as
D(x)(t) := e 2™ ¥ (x)(t) := ™ xeR, tel

For f € LY(R), its Fourier transfornf is defined as

f(t) = /R f(x)e 2™dx, t e R,
and its inverse Fourier transforinis defined by

f(t):= /R f(x)€?™dx, teR.
The Fourier transform and the inverse Fourier transform can beediefin tempered distributions.

Since the Fourier transform is injective @A(R) (see, Rudin, 1987, page 185), the denseness re-
quirement (14) is satisfied.
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By the construction described in Theorem 3, we obtain
B:={f eC(R): suppf C I, f e LP(I)} (19)
with norm||f || := || f||Le(r), and the dual
B*:={geC(R): suppgC I, g LYD)}

with norm||g||3- := ||d||La(r). For eachf € B andg € B*, we have

(.9 = [ fnaat

The kerneK for B is given as

K%)= (@0, () = & 22t = ST _ ging(xy)
1 T(X—Y)
We check that for each ¢ B
@_/f dt—/f (t)e2™dt = f(x), xR
and for eacly € B*
(K(x,-),g)@:/(K( dt_/g )e 2™t — g(x), x€R.
I

Whenp =g =2, B reduces to the classical space of bandlimited functions.

In the above examples is isometrically isomorphic taP(I). As mentioned in the introduction,
LP(T) with differentp are notisomorphic to each other. As a result, for different indictee spaces
B defined by (19) are essentially different. However, we see that théyedl the sinc function as
the reproducing kernel. In fact, if no further conditions are imposedoRIBS, its reproducing
kernel can be rather arbitrary. We make a simple observation below to iteigtia.

Proposition 5 If the input space X is a finite set, then any nontrivial function K or X is the
reproducing kernel of some RKBS on X.

Proof Let K be an arbitrary nontrivial function oX x X. Assume thaX = Ny, for somem € N.
Letd € N be the rank of the matriK [X] as defined by (1). By elementary linear algebra, there exist
nonsingular matriceB, Q € C™™ such that the transpo$&[X])T of K[X] has the form

wxp"=p| & 0 ]e=p| 4|l 0l (20)

wherelq is thed x d identity matrix. Forj € Ny, let P be the transpose of th¢h row of P { Ig ]

andQj the jth column of[ lg O } Q. Choose an arbitrarg € (1,+). Equation (20) is rewritten
as

K(i,K) = (Qj; Ripvg)s J,KE Nim. (21)
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We setW = IP(Ng), W* :=19(Ngy) and®(j) := Qj, ®*(j) := P}, j € Nm. SinceP,Q are nonsin-
gular, (14) holds true. Also, we have by (21) that

K(J,K) = (@(j), " (k) gp; |,k E N

By Theorem 4K is a reproducing kernel for some RKBS ¥n |

Proposition 5 reveals that due to the lack of an inner product, the regrapkernel for a general
RKBS can be an arbitrary function etix X. Particularly, it might be nonsymmetric or non-positive
definite. In order for reproducing kernels of RKBS to have desiregrties as those of RKHS, we
may need to impose certain structures on RKBS, which in some sense atitusessf the inner
product for RKHS. For this purpose, we shall adopt the semi-innaitmt introduced by Lumer
(1961). A semi-inner-product possesses some but not all propeftess inner product. Hilbert
space type arguments and results become available with the presencenifimnge-product. We
shall introduce the notion of semi-inner-product RKBS.

4. S.i.p. Reproducing Kernel Banach Spaces

The purpose of this section is to establish the notion of semi-inner-protiBSRNd study its prop-
erties. We start with necessary preliminaries on semi-inner-products (E%68; Lumer, 1961).

4.1 Semi-Inner-Products

A semi-inner-product on a vector spac¥ is a function, denoted by, Jy, fromV xV to C such
that for allx,y,ze V andA € C

1. X+VY.2dv = [X,2v +[Y,2Zv,
2. Y = A Vv, XAyl = A XY,
3. [X,xJy >0 forx=#0,

4. (Cauchy-Schwartz)x, ylv| < [x,Xv[y, Ylv-

The property thalx, Ayly = A [X, Y]y was not required in the original definition by Lumer (1961).
We include it here for the observation by Giles (1967) that this properabsays be imposed.

Itis necessary to point out the difference between a semi-inner-gradd an inner product. In
general, a semi-inner-produfet-Jy does not satisfy the conjugate symmettyy]y = [y, x]v for all
X,y € V. As a consequence, there always exjstz € V such that

X Y+2Zv # [XYv+[X Zv.

In fact, a semi-inner-product is always additive about the secoridblaronly if it degenerates to
an inner product. We show this fact below.

Proposition 6 A semi-inner-product,-Jy on a complex vector space V is an inner product if and

only if
X y+2v = [XYlv +[x, 2y, forall x,y,ze V. (22)
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Proof Suppose that has a semi-inner-produgt -]y that satisfies (22). It suffices to show that for
allx,yeV,

[Xv y]V = [yv X]V- (23)
SetA € C. By the linearity on the first and the additivity on the second variable, wehgét

X+ MY, X+ Al = [ Xv + Ay Ayl + ALy, Xy + A% Yiv-
Since|z Zy > 0 for all z€ V, we must have
Aly.Xlv +Ax v € R.

ChoosingA = 1 yields that Imy,xly = —Imx,y]v. And the choice\ =i results that Rgy, Xy =
Re[x,ylv. Therefore, (23) holds, which implies that-)y is an inner product oW. [ |

It was shown in Lumer (1961) that a vector sp®o&ith a semi-inner-product is a normed space

equipped with
X[l == [x X% xeV. (24)

Therefore, if a vector spadé has a semi-inner-product, we always assume that its norm is induced
by (24) and calV ans.i.p.space Conversely, every normed vector spatéas a semi-inner-
product that induces its norm by (24) (Giles, 1967; Lumer, 1961). ByGhuchy-Schwartz in-
equality, ifV is an s.i.p. space then for eaxk V, y — [y,Xy is a continuous linear functional on
V. We denote this linear functional by. Following this definition, we have that

[X7 y]V = yk(x) = (va*)Vv XYEV. (25)

In general, a semi-inner-product for a normed vector space may nohiee. However, a
differentiation property of the norm will ensure the uniqueness. We aatirened vector spacé
Gateaux differentiableif for all x,y € V \ {0}

. X —|Ix
i Xyl =[xy
teR,t—0 t

exists. Itis callediniformly Fr échet differentiableif the limit is approached uniformly o§(V) x
S(V). Here,SV) :={ueV :||u|ly =1} is the unit sphere of . The following result is due to Giles
(1967).

Lemma 7 If an s.i.p. space V is &eaux differentiable then for all ¥ € V with x# 0

. tyllv — R
i Xty =Xl Rely.x) )
teR,t—0 t [|X[lv

The above lemma indicates that @&t@aux differentiable normed vector space has a unique
semi-inner-product. In fact, we have by (26) that

[x,y]v_uyyv( im Wy = ly X =l

teR,t—0 t teR,t—0 t

> , x,yeV\{0}. (27)
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For this reason, i¥/ is a Gateaux differentiable normed vector space we always assume that it is
an s.i.p. space with the semi-inner-product defined as above. Intereatdets are referred to the
appendix for a proof that (27) indeed defines an s.i.p.
We shall impose one more condition on an s.i.p. space that will lead to a Riesseaftion
theorem. A normed vector spa¥eis uniformly convex if for all € > 0 there exists & > 0 such
that
Ix+yllv <2—3forallx,ye S(V)with |[x—y|ly > &.

The spacé.P(Q,u), 1 < p < +o, on a measure spa¢@, 7, ) is uniformly convex. In particular,
by the parallelogram law, any inner product space is uniformly convgxa Bemark in Conway
(1990), page 134, a uniformly convex Banach space is reflexiver€elil a well-known relationship
between uniform Fechet differentiability and uniform convexity (Cudia, 1963). It states tha
normed vector space is uniformlyé&ahet differentiable if and only if its dual is uniformly convex.
Therefore, ifB is a uniformly convex and uniformly Echet differentiable Banach space then so
is B* sinceB is reflexive. The important role of uniform convexity is displayed in thet texma
(Giles, 1967).

Lemma 8 (Riesz Representation Theorem) Supposegtiat uniformly convex, uniformly Echet
differentiable Banach space. Then for eack 8* there exists a unique & B such that f= x*,
that is,

f(y) = [yax]’37 ye B.
Moreover,|| f|| g = ||X|| 3-

The above Riesz representation theorem is desirable for RKBS. By Lerandht8e discussion
right before it, we shall investigate in the next subsection RKBS which atte imiformly convex
and uniformly Fechet differentiable.

Let B be a uniformly convex and uniformly Echet differentiable Banach space. By Lemma 8,
X — X* defines a bijection fronB to B* that preserves the norm. Note that tisality mapping is
in general nonlinear. We calt thedual elementof x. Since®* is uniformly Fiechet differentiable,
it has a unique semi-inner-product, which is given by

XY s =[V.X5, xy€EB. (28)

We close this subsection with a concrete example of uniformly convex anoromyf Fréchet
differentiable Banach spaces. L&, 7,1) be a measure space asdt= LP(Q, ) for somep €
(1,+00). It is uniformly convex and uniformly Fchet differentiable with duas* = L(Q, ). For
eachf € B, its dual element iB* is

flf|P-2

*_

(29)
M
Consequently, the semi-inner-productBris
. fg[g|P2d
.l = g(f) = 121997
9P

With the above preparation, we shall study a special kind of RKBS whieé Hesired proper-
ties.
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4.2 S.ip.RKBS

Let X be a prescribed input space. We call a uniformly convex and unifornéigtet differentiable
RKBS onX ans.i.p. reproducing kernel Banach spacgs.i.p. RKBS). Again, we see immedi-
ately that an RKHS is an s.i.p. RKBS. Also, the dual of an s.i.p. RKBS remaiss.pnRKBS. An
s.i.p. RKBSB is by definition uniformly Fechet differentiable. Therefore, it has a unique semi-
inner-product, which by Lemma 8 represents all the interaction bet@eamd B*. This leads to

a more specific representation of the reproducing kernel. Preciselyaveethe following conse-
qguences.

Theorem 9 Let B be an s.i.p. RKBS on X and K its reproducing kernel. Then there exists aeuniq
function G: X x X — C such that{G(x,-) : xe X} C B and

f(x)=[f,G(x,-)]g, forall f e B, xeX. (30)
Moreover, there holds the relationship
K(,%) = (G(x,-))", x€X (31)
and
f*(x) = [K(x,-), f]g, forall f e B, xeX. (32)

Proof By Lemma 8, for eaclx € X there exists a functiof®y € B such thatf (x) = [f,Gx]4 for
all f € B. We defineG: X x X — C by G(x,y) := Gx(y), X,y € X. We see thaG(x,-) = Gy € B,
x € X, and there holds (30). By the uniqueness in the Riesz representatioarthesnich a function
G is unigue. To prove the remaining claims, we recall from Theorem 2 thatfireducing kernel
K satisfies for eacli € B that

f(x):(va('vx))T;v xeX. (33)
and

f*<X>:<K(X,-),f*)@7 xe X. (34)
By (25), (30) and (33), we have for eagle X that

(f7 (G(Xv ))*)@ = [f7G(X7 )]i? = f(X) = (f7K('7X))$7 feB.

The above equation implies (31). Equation (25) also implies that

(K(Xa ')a f*)B = [K(X7')7 f]%

This together with equation (34) proves (32) and completes the proof. |

We call the unique functio® in Theorem 9 thes.i.p. kernelof the s.i.p. RKBSB. It coincides
with the reproducing kerndl when B is an RKHS. In general, whe@ = K in Theorem 9, we
call G ans.i.p. reproducing kernel By (30), an s.i.p. reproducing kern@lsatisfies the following
generalization of (3)

G(va) = [G(X")’G(yv')]’ﬂ’ X,y € X. (35)
We shall give a characterization of an s.i.p. reproducing kernel in tefitsaprresponding feature
map. To this end, for a mappirg from X to a uniformly convex and uniformly Echet differen-
tiable Banach spac#’/, we denote byb* the mapping fronX to * defined as

d*(x) == (P(x))*, xeX.
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Theorem 10 Let W be a uniformly convex and uniformly &het differentiable Banach space and
® a mapping from X tai/ such that

spard(X) = W, spard*(X) = W, (36)
ThenB := {[u,P(-)]4 : ue W} equipped with

[[u,¢<->]w, v ¢<~>]w] =l (37)

and B* := {[®(-),U]qy : u€ W} with

(00t OO | = vy

are uniformly convex and uniformly &chet differentiable Banach spaces. ABidis the dual ofB
with the bilinear form

([uﬁ(-)}w,w(-),v]w) = UV, UvE W, (38)

B

Moreover, the s.i.p. kernel G @ is given by
G(Xay) = [q)(x)aq)(y>]‘l/l/a Xye X7 (39)
which coincides with its reproducing kernel K.

Proof We shall show (39) only. The other results can be proved using argarsienilar to those
in Theorem 3 and those in the proof of Theorem 7 in Giles (1967).fletB. Then there exists a
uniqueu € W such thatf = [u, ®(-)]4y. By (38), fory € X,

F(Y) = [ @W)]ap = ([P gy [P), DY) 5 = (£, [DC), DY) ).
Comparing the above equation with (33), we obtain that
K(,y) = [@(), 2(Y)] - (40)
On the other hand, by (37), fare X
F(X) = [u, ®(X)] 9 = [[U, P()] g9, [P(X), P()] ] 5
which implies that the s.i.p. kernel df is

G(x,) = [@(X), ()] gp- (41)
By (40) and (41),

which completes the proof. |

As a direct consequence of the above theorem, we have the followingotdazation of s.i.p.
reproducing kernels.
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Theorem 11 A function G on Xx X is an s.i.p. reproducing kernel if and only if it is of the form
(39), where® is a mapping from X to a uniformly convex and uniformleéhet differentiable
Banach spacé/ satisfying (36).

Proof The sufficiency is implied by Theorem 10. For the necessity, supposétigman s.i.p.
reproducing kernel for some s.i.p. RKB&on X. We choosel = B and®(x) := G(X,-). Then

G has the form (39) by equation (35). Moreover, by (8), spéX) is dense in/. Assume that
spard®*(X) is not dense inW*. Then by the Hahn-Banach theorem and Lemma 8, there exists a
nontrivial f € B such thaf®*(x), f*]- = 0,x € X. Thus, by (28) we get that

f(x) =[f,G(x,-)]g = [f,P(X)] 4y = [P*(X), f*]5- =0, x€X.

We end up with a zero functioh, a contradiction. The proof is complete. |

The mapping® and spacel/’ in the above theorem will be calledfeature map andfeature
spaceof the s.i.p. reproducing kern€@, respectively.
By the duality relation (31) and the denseness condition (9), the s.i.p Kéwfedn s.i.p. RKBS
B on X satisfies
span{ (G(x,-))* : xe X} = B~ (42)

Itis also of the form (35). By Theorem 1@, is identical with the reproducing kerni€lfor 3B if and
only if
span{G(x,-) :xe X} = B. (43)

If B is not a Hilbert space then the duality mapping fréo B* is nonlinear. Thus, it may not
preserve the denseness of a linear span. As a result, (43) wouldlloet Butomatically from
(42). Here we remark that for most finite dimensional s.i.p. RKBS, (42) impfids This is due
to the well-known fact that for alh € N, the set ofn x n singular matrices has Lebesgue measure
zero inC™", Therefore, the s.i.p. kernel for most finite dimensional s.i.p. RKBS is tine s the
reproducing kernel. Nevertheless, we shall give an explicit example strdle that the two kernels
might be different.

For eachp € (1,+) andn € N, we denote byP(N,) the Banach space of vectors@ with
norm

1/p
Al = ( ) |a,-\p) Cac(a:jeNnecn
j€Np

As pointed out at the end of Section 4¢2(Np) is uniformly convex and uniformly Ecchet differ-
entiable. Its dual space #(Ny). To construct the example, we introduce three vector$(iNs)
by setting

e :=(291), e:=(1,8,0), e3:=(5,5,3).

By (29), their dual elements ifp (N3) are

1 1 1
g =—-—-(4811), = —--(1,640), = ———-(25,25,9).
1 (738)1/3( ) ) )7 2 (513)1/3( ) ) )7 3 (277>1/3( y ) )

It can be directly verified thafte;, &5, €3} is linearly independent by, €5, €} is not. Therefore,

span{er, e, €3} = (3(N3) (44)
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while ,
Span{eiezv%*} g 02 (N3) (45)

With the above preparations, we g be the input spacep the function fromN3 to ¢3(N3)
defined by®(j) = ej, j € N3, andB the space of all the functiorsy, := [®(-), U] 5(y,), U € /3(N3),
onN3. By equation (44),

1Pul| = lull vy U € £3(Ng)

defines a norm omB. It is clear that point evaluations are continuous®nnder this norm. Fur-
thermore, since the linear mappidg, — u* is isometrically isomorphic fronB to E%(N3), Bisa
uniformly convex and uniformly Fchet differentiable Banach space. By this fact, we obtain that
B is an s.i.p. RKBS with semi-inner-product

[®y, D5 = [VUlsyg), U,V E P(N3). (46)
The above equation implies that the s.i.p. ke@ébr B is
G(J)k) = [Q(7ej]£3(N3)7 J7k€ N3' (47)

Recall that the reproducing kerni€lfor B satisfies the denseness condition (8). Consequently, to
show thaiG # K, it suffices to show that

span{G(j,-) : j € Na} & B. (48)
To this end, we notice by (45) that there exists a nonzero elemerit(N3z) such that
[V.&j] @) = (V.€]) g =0, ] €Na.
As a result, the nonzero functigh, satisfies by (46) and (47) that
[G(],"), By]g = [Pe;, Py]3 = [V, €]]3ny;) = O, ] €Ng,

which proves (48), and implies that the s.i.p. kernel and reproducingekfar B are different. By
(45), this is essentially due to the reason that the second condition of (3&)satisfied.

4.3 Properties of S.i.p. Reproducing Kernels

The existence of a semi-inner-product makes it possible to study prapeft®KBS and their re-
producing kernels. For illustration, we present below three of thegeepies.

4.3.1 NON-POSITIVE DEFINITENESS
An n x n matrix M over a number field" (C or R) is said to be positive semi-definite if for all
(Cj:j€eNy el
z CitkMjk > 0.
jeNy keN,

We shall consider positive semi-definiteness of mati@esas defined in (1) for an s.i.p. reproducing
kernelG on X.
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Letd: X — 9 be a feature map fdg, that is, (39) and (36) hold. By properties 3 and 4 in the
definition of a semi-inner-product, we have that

G(x,x) >0, xe X (49)

and
IG(x,Y) > < G(X,X)G(Y,y), X,y€ X. (50)

Notice that if a complex matrix is positive semi-definite then it must be hermitian. Sirsegni-
inner-product is in general not an inner product, we can not expecmplex s.i.p. kernel to be
positive definite. In the real case, inequalities (49) and (50) imply@&pdtis positive semi-definite
for all x C X with cardinality less than or equal to two. Howev&ix] might stop being positive
semi-definite ifx contains more than two points. We shall give an explicit example to explain this
phenomenon.

Setp € (1,4) and W :=¢P(Ny). We letX := R, :=[0,40) andd(x) = (1,x), x € X. Thus,

(1)

(%) = o
(1+x0)"%

X e X.

Clearly, ® satisfies the denseness condition (36). The corresponding s.i.plueprg kernelG is

constructed as

1
GxY) = (D). D)y = P xyex. (51)
(1+yP) »

Proposition 12 For the s.i.p. reproducing kernel G defined by (51), matrix|Gs positive semi-
definite for allx = {x,y,z} C X if and only if p= 2.

Proof If p=2then7/ is a Hilbert space. As a resufg is a positive definite kernel. Hence, for all
finite subsets C X, G[X] is positive semi-definite.

Assume thaG|x] is positive semi-definite for akt = {x,y,z} C X. Choosex := {0,1,t} where
t is a positive number to be specified later. Then we have by (51) that

_ 1 .
/p-1 -
12 (1+tP)1-2/p
14tP1
— /p =T
G[X] 1 22 (1+tp)172/p
1+t 1+tP

21-2/p (1+tp)172/p ]

Let M be the symmetrization dB[x| given as

[ 1 1 1 -
1 =y 92/p-2 s, L
2" 2" 2(1+tP)1-2/p
_ 1. o2 2/p 1+t 14+tP-1
- 2"* ? oz2p * 2(1+tP)1-2/p
1 1 1+t 14tP-1 1+tP
| 2 + 2(1+tP)1-2/p  22-2/p * 2(14tP)1-2/p m
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Matrix M preserves the positive semi-definitenes&pf]. Therefore, its determinaf¥l| must be
nonnegative. Through an analysis of the asymptotic behavior of the canpofM ast goes to
infinity, we obtain that

t2

. (2% —2)2+¢(t), t>0,

M| = —

whereg is a function satisfying that

(1)
lim =5 =0.

Therefore|M| being always nonnegative forces 2 2 — 0, which occurs only ifp = 2. |

By Proposition 12, non-positive semi-definiteness is a characteristic ofepnpducing kernels
for RKBS that distincts them from reproducing kernels for RKHS.

4.3.2 POINTWISE CONVERGENCE

If fn converges td in an s.i.p. RKBS with its s.i.p. kern& then f,(x) converges td (x) for any
x € X and the limit is uniform on the set whe€x,x) is bounded. This follows from (30) and the
Cauchy-Schwartz inequality by

[f0(}) = F ()| = [[fo— F,G(x, )]sl < [Ifa— Fllzv/[G(x,),G(X, )]s = /GO X)| fn — 5.

4.3.3 WEAK UNIVERSALITY

Suppose thaX is metric space an@ is an s.i.p. reproducing kernel o We say that is uni-
versal if G is continuous orX x X and for all compact subsets C X, span{G(x,-) : X € Z} is
dense irC(2) (Micchelli et al., 2006; Steinwart, 2001). Universality of a kernel easuhat it can
approximate any continuous target function uniformly on compact subktte mput space. This
is crucial for the consistence of the learning algorithms with the kernel. \Akk discuss the case
whenX is itself a compact metric space. Here we are concerned with the abik@ytofapproxi-
mate any continuous target function ¥runiformly. For this purpose, we call a continuous kernel
G on a compact metric spacéweakly universalif span{G(x,-) : x € X} is dense irC(X). We
shall present a characterization of weak universality. The results inabes of positive definite
kernels and vector-valued positive definite kernels have been estblisspectively in Micchelli
et al. (2006) and Caponnetto et al. (2008).

Proposition 13 Let ® be a feature map from a compact metric space Xosuch that bothd :
X — W and®* : X — W* are continuous. Then the s.i.p. reproducing kernel G defined by (39) is
continuous on X X, and there holds in (X) the equality of subspaces

span{G(X,-) : x € X} =span{ [u, P(-)]q4y :ue Wh.

Consequently, G is weakly universal if and only if

span{[u, @(-)]gy s u e W} =C(X).
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Proof First, we notice by

G(xy) = [®(X), D(Y)]3 = (P(X), P*(Y))w, XY € X

thatG is continuous orX x X. Similarly, for eachu € W, [u,®(-)]4y = (U, P*()) 4y € C(X). Now
since

G(X,) = [®(X), P(-)]gp € {[u, P()]gp :u € W},
we have the inclusion
span{G(x,-) 1 x € X} Cspar{ [u, P(-)]q4y :ue Wh.

On the other hand, lete 7. By denseness condition (36), there exists a sequerespan{ d(X) :

x € X} that converges to. SinceG is continuous on the compact spaXex X, it is bounded.
Thus, by the property of pointwise convergence discussed béire®,-)],,, converges irc(X) to

[u,®(-)]4y. Noting that

Vi, P(-)]qp € span{G(x,-) : x€ X}, neN,
we have the reverse inclusion
span{ [u, P(-)]qy :ue W} CspanG(x,-) : x € X},

which proves the result. |

We remark that in the case th@ is a Hilbert space, the idea in the above proof can be applied
to show with less effort the main result in Caponnetto et al. (2008) and Miiceh al. (2006), that
is, for each compact subsstC X

SPAN(G(x, ) : X € 2} = Span[u, B(-)]ay s u € W},

where the two closures are taken@iZ). A key element missing in the Banach space is the
orthogonal decomposition in a Hilbert spaté:

W = (spard(z)) e (2)", ZCX.

For a normed vector spadk we denote for eacA C V by At := {v* € V*: (a,v*)y =0, ac A},
and for eaclB C V*, *B:={acV : (a,v*)y =0, v* € B}. A Banach spacé/ is in general not
the direct sum okpar®(z) and +®*(Z). In fact, closed subspaces i’ may not always have an
algebraic complement unles#’ is isomorphic to a Hilbert space (see, Conway, 1990, page 94).

Universality and other properties of s.i.p. reproducing kernels will eédespecially in future
work. One of the main purposes of this study is to apply the tool of s.i.p.depmg kernels to
learning in Banach spaces. To be precise, we shall develop in the fraineis.i.p. RKBS several
standard learning schemes.
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5. Representer Theorems for Standard Learning Schemes

In this section, we assume thAtis an s.i.p. RKBS oiX with the s.i.p. reproducing kerné defined

by a feature mag : X — W asin (39). We shall develop in this framework several standard learning
schemes including minimal norm interpolation, regularization network, stigpotor machines,
and kernel principal component analysis. For introduction and dismsssf these widely used
algorithms in RKHS, see, for example, Cucker and Smale (2002), Evgehau(2000), Micchelli

and Pontil (2005), Sdilkopf and Smola (2002), Shawe-Taylor and Cristianini (2004) andhMap
(1998).

5.1 Minimal Norm Interpolation

The minimal norm interpolation is to find, among all function®nhat interpolate a prescribed set
of points, a function with the minimal norm. L&t.= {x; : j € Ny} be a fixed finite set of distinct
points inX and set for eachi := (yj: j € Ny) € C"

Ly:={feB:1(x))=Yyj, € Nn}.
Our purpose is to findg € I, such that
[follz = inf{|[f[|5: f ek} (52)

provided thatZ, is nonempty. Our first concern is of course the condition ensuring Ahét
nonempty. To address this issue, let us recall the useful property afithereproducing kernel
G:

f(X) = [faG(Xf)]@ = [G('7X)7 f*]3*7 X€X, feB. (53)

Lemma 14 The setly is nonempty for any € C" if and only if G, := {G(-,x;) : j € Np} is linearly
independent irB*.

Proof Observe thafy is nonempty for any € C" if and only if spa{(f(xj):j € Ny): f € B}is
dense inC". Using the reproducing property (53), we have for eggh j € N,) € C" that

Y cif(x) =3 ¢lf,G(xj, )]s = [Z CjG(‘an),f*] :
5

j€Np j€NR j€Nn
Thus,
> ¢if(x))=0, forall fes
j€NR
if and only if
Y ¢iG(-x)) =0.
j€Ny

This implies thatGy is linearly independent i8* if and only if spar{(f(xj):jeNy): f e B}is
dense inC". Therefore,J, is nonempty for any € C" if and only if Gy is linearly independent

We next show that the minimal norm interpolation problenBimlways has a unique solution
under the hypothesis th@i is linearly independent. The following useful property of a uniformly
convex Banach space is crucial (see, for examplejtksscu, 1984, page 53).
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Lemma 15 If V is a uniformly convex Banach space, then for any nonempty closegxsubset
A CYV and any x V there exists a unique A such that

x—Xo|lv = inf{[|x—ally : ac A}.

Proposition 16 If Gy is linearly independent itB*, then for anyy € C" there exists a uniquey £ I,
satisfying (52).

Proof By Lemma 14,1, is nonempty. Note also that it is closed and convex. SiBdguniformly
convex, by Lemma 15, there exists a unidfges 1, such that

[Ifoll = 10— follg = inf{[|0—fllz = [ fll5: f € L}.

The above equation proves the result. |

We shall establish a representation of the minimal norm interpol@tof~or this purpose, a
simple observation is made based on the following fact connecting orthlitgomigh best approx-
imation in s.i.p. spaces (Giles, 1967).

Lemma 17 IfV is a uniformly Féchet differentiable normed vector space, thiena-Ay|lv > ||X||v
for all A € C if and only if[y,xJy = 0.

Lemma 18 If Iy is nonempty thengfc I is the minimizer of (52) if and only if
9, fo]g =0, forallge I. (54)
Proof Let fg € I. Itis obvious thatfy is the minimizer of (52) if and only if

[fo+9lls > |Ifoll3, g€ lo.

Sincely is a linear subspace df, the result follows immediately from Lemma 17. |

The following result is of the representer theorem type. For the repierstheorem in learning
with positive definite kernels, see, for example, Argyriou et al. (200B)eldorf and Wahba (1971)
and Scllkopf et al. (2001).

Theorem 19 (Representer Theorem) Suppose thatisGlinearly independent irB* and f is the
solution of the minimal norm interpolation (52). Then there exists(c; : j € N,) € C" such that

fo = z CiG(-, Xj). (55)
jE€NR

Moreover, a function of the form in the right hand side above is the solutiamdifoaly ifc satisfies

|:G(',Xk), % CjG(-,Xj):| =Yk, ke Np. (56)
JENR B
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Proof Note that (54) is equivalent tj € I+ and thatly = +Gy. Therefore f satisfies (54) if and
only if
f§ € (FGx)*.
Recall a consequence of the Hahn-Banach theorem that in a ref@aivach spaces, for each
B C B,
(+B)* = sparB. (57)

By this fact, (55) holds true for sormec C".
Suppose thaf € B is of the form f* = ¥ ;. ¢;jG(-,Xj) wherec satisfies (56). Therf* ¢
sparGy. By (57), f* satisfies (54). Furthermore, (56) implies that

F00) = 11,600 s = (G0 4. o = [ 6000, § 66(-x)| = kel (59
JERNR *

Thatis,f € Iy. By Lemma 18,f = fo. On the other handip has the form (55). As shown in (58),
(56) is simply the interpolation condition th&f(x) = Yk, k € Nn. Thus, it must be true. The proof
is complete. |

Applying the inverse of the duality mapping to both sides of (55) yields a septation of
fo in the spaceB. However, since the duality mapping is nonadditive unt8ds an RKHS, this
procedure in general does not result in a linear representation.

We conclude that under the condition tl@g is linearly independent, the minimal norm inter-
polation problem (52) has a unique solution, and finding the solution reda®lving the system
(56) of equations abowt € C". The solutionc of (56) is unique by Theorem 19. Again, the dif-
ference from the result for RKHS is that (56) is often nonlinear aleaihce by Proposition 6 a
semi-inner-product is generally nonadditive about the second variable

To see an explicit form of (56), we shall reformulate it in terms of the featoapd from X to
W. Let B and‘B* be identified as in Theorem 10. Then (56) has the equivalent form

[(D*(xk), > qu)*(Xj):| =Yk, keNp.
JENR B*

In the particular case that’ = LP(Q, ), p € (1,+) on some measure spad, 7, ), andW* =

L9(Q, ), the above equation is rewritten as

q-2
du=yk

q-2
, ke Ny,
LI(Q.1)

L7003 e (x)

jeNn

> GiPi(x))

jeNn

2 CiP(x)

jeNn

5.2 Regularization Network

We consider learning a predictor function from a finite sample data{(x;,yj) : j € Nn} C X x C

in this subsection. The predictor function will yield from a regularized legyralgorithm. Let
L:CxC — R, be aloss functiorthat is continuous and convex with respect to its first variable.
For eachf € B, we set

E(f) = 'ZN L(F(x)),yj) and Ezy(f) := Ex() + W 1|5,
J€Nn
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wherep is a positive regularization parameter. The predictor function that we teamthe sample
dataz will be the functionfy satisfying

Eru(fo) =Inf{E,,(T): f € B}. (59)
One can always make this choice as we shall prove that the minimizer of(i5€j end is unique.
Theorem 20 There exists a unique) £ ‘B satisfying (59).

Proof We first show the existence. ffe B satisfies| f||7 > ﬁfw(O) then

Eo() 2 W f5 > Ezu(0)-

Thus 1
inf{E,,(f): feB}= inf{zw(f) fesd, |fI5< ufw(O)}.
Let 1
e:= inf{fw(f) feB, |5 < uzz,u(O)}
and

1
A::{f €B: \|f||§3§ufz7u(0)}.

Then, there exists a sequeniges A, k € N, such that

SinceB is reflexive A is weakly compact, that is, we may assume that there efgstsA such that
forallge B

lim [, dJ = [fo, - (61)

In particular, the choicg := G(xj,-), ] € Np yields thatfy(x;) converges tdo(x;) ask — oo for all
j € Nj. Since the loss function is continuous about the first variable, we have that

lim 5(f) = £(fo).

Also, choosingy = fg in (61) yields that
lim [y, fol = | foll3-

By the above two equations, for eagh- 0 there exists somd such that fok > N
E.(fo) < E(fk) +¢€

and
1foll% < el foll % +[fi. folsl < &l foll% + Il fll sl foll s, if fo#0.
If fo =0, then trivially we have

ol < €[ fol | + [ fil| »-
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Combining the above three equations, we gekforN that

1
Z:Z.H( fQ) S szu( fk) +€
By (60) and the arbitrariness ef we conclude thatg is a minimizer of (59).
Since L is convex with respect to its first variable affd||3 is strictly convex,Z,, is strictly
convex onB. This implies the uniqueness of the minimizer. |

In the rest of this subsection, we shall consider the regularization rletwe®, that is, the loss
function L is specified as
L(a,b)=]a—b%, abeC.

It is continuous and convex with respect to its first variable. Therefor&heorem 20, there is a
unique minimizer for the regularization network:

i f(xi) —vyil? f1l2. 62
qg%%d (xj) =y~ + [ |3 (62)

We next consider solving the minimizer. To this end, we need the notion of stmvexity of
a normed vector space. We call a normed vector spastictly convex if whenever||x+y|v =
IXIlv + ||yllv for somex,y # 0, there must holgt = Ax for someA > 0. Note that a uniformly convex
normed vector space is automatically strictly convex. The following resultolasrved in Giles
(1967).

Lemma 21 An s.i.p. space V is strictly convex if and only if whenéxgrly = ||x||v||y|lv for some
X,y # O there holds y= Ax for some\ > 0.

A technical result about s.i.p. spaces is required for solving the minimizer.
Lemma 22 LetV be a strictly convex s.i.p. space. Then for all@ VvV
lu+ VG — [lullg —2Refv,uly > 0.
Proof Assume that there existv € V such that
lu+Vv[G — [lul}; —2Refv,uly < 0.

Then we havel, v # 0. We proceed by the above inequality and properties of semi-inneugisod
that
Ui = [u+v—wvuy = [u+vuy —[vuy
= Re[u+v,uly — Re[v,uly < |[u+V,uly| — Re[v,uly
~ NuvIG —[Jullg
> .

< [lu+vivlullv
The last inequality above can be simplified as

2 2
Ju+VI[G +ully < 2[u+Viiv(lullv.
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Thus, we must have
Ju+Vvv = [lullv and[u+v,uly = [lu+Vlv|[ully.

Applying the strict convexity o/ and Lemma 21, we obtain that+ v = u, namelyy = 0. This is
impossible. |

Theorem 23 (Representer Theorem) Letlde the minimizer of (62). Then there exists saraeC"
such that
fo=3 ciGl.x). (63)
j€Ny

If Gx is linearly independent then the right hand side of the above equation isithaizer if and
only if

Ko+ |G( %), 3 CiG(-Xj)| =Yk keNp. (64)

JENR B*

Proof Letg e B. Define the functionp: R — R by ¢(t) := £, u(fo+19), t € R. We compute by
Lemma 7 that

@(t)=2Re Y g(xj)(fo(x;) —yj+1t9(x;)) +2uRe[g, fo+tg)s.
J€Nn

Sincefy is the minimizert = 0 is the minimum point of. Henceg (0) = 0, that is,
> 9(xj) fo(xj) —yj +H[g, fols =0, forallge B.
i€Nn
The above equation can be rewritten as
> [fo(xj) =¥iG(- %)), 9] +Hf5,9"]s =0, forallge B,
j€Np
which is equivalent to
ufo = > yi—folx)G(%)). (65)
j€NR
Therefore,f; has the form (63).

If Gx is linearly independent thefg = ¥ ., ¢jG(, ;) satisfies (65) if and only if (64) holds.
Thus, it remains to show that condition (65) is enough to ensurefghiatthe minimizer. To this
end, we check that (65) leads to

Eou(fo+9) — Ezu(fo) = p fo+gll% — Ml foll 5 — 2uRelg, fols + 5 [a(xi)I%,
jEN,
which by Lemma 22 is nonnegative. The proof is complete. |

By Theorem 23, ifGy is linearly independent then the minimizer of (62) can be obtained by
solving (64), which has a unique solution in this case. Using the featureth@pystem (64) has
the following form

MO+ | P (), > CP(Xj)| =¥k KN
JENR B*
As remarked before, this is in general nonlinear alwout
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5.3 Support Vector Machines

In this subsection, we assume that all the spaces are over th&fadldeal numbers, and consider
learning a classifier from the dara= {(x;,y;) : j € Nn} € X x {—1,1}. We shall establish for
this task two learning algorithms in RKBS whose RKHS versions are well-kn@wvgeniou et
al., 2000; Schlkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapni®818/ahba,
1999).

5.3.1 FTMARGIN HYPERPLANE CLASSIFICATION

We first focus on the soft margin hyperplane classification by studying

(1 ,

|nf{2|]w||?w +ClI&l[ ) W E W, 8:=(Ej:jeNyeR], be ]R} (66)
subject to

Yi([P(X)),Wgp +b) > 1—-¢j, j€Np.

Here,C is a fixed positive constant controlling the tradeoff between margin maximizatidtrain-
ing error minimization. If a minimizetwo, §o,bg) € W x R x R exists, the classifier is taken as
sgn([P(-), WoJ 4y + bo).

Recall by Theorem 10 that functions #t are of the form

£ = (), Wy, we W (67)

and
(R

g = ||W]|qp-
Introduce the loss function
Lp(ay) :=max{l—ay—by 0}, (ay) e Rx{-11}, beR,

and the error functional o*,

Tozu(F) = WIF (5 + 5 Lo(F(x),y), e B
j€NR

wherep:= 1/(2C). Then we observe that (66) can be equivalently rewritten as
inf{Ep,u(f"): " € B*, beR}. (68)

Whenb = 0, (68) is also called the support vector machine classification (Wahb8).19

If a minimizer (f5,bg) € B* x R for (68) exists then by (67), the classifier followed from (66)
will be taken as sgff§ + bo). It can be verified that for evely € R, £ is convex and continuous
with respect to its first variable. This enables us to prove the existence whinéns for (68) based
on Theorem 20.

Proposition 24 Suppose thafy; : j € Ny} = {—1,1}. Then there exists a minimizéfg,bg) €
B* x R for (68). Moreover, the first componenj 6f the minimizer is unique.
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Proof The uniqueness ofj follows from the fact thatg, , |, is strictly convex with respect to its
first variable. It remains to deal with the existence. &&ke the infimum (68). Then there exists a
sequencéf;,b;) € B* xR, k € N such that

Since{y; : j € Np} = {—1,1}, {bx: k € N} is bounded orR. We may hence assume that
converges to somay € R. By Theorem 20, mi{tEy, - ,(f*) : f* € B*} has a unique minimizef;.
The last fact we shall need is the simple observation that

max{1—ay—by,0} — max{1—ay—b'y,0} < |b—b/| foralla,b,b’ € Randye {-1,1}.
Thus, we get for alk € N that
Fio.z(f0) < Bop.zu(fc) < Eoezpu(f) +nlbo — byl
which together with (69) anEI lify = b implies that(f;,bp) is a minimizer for (68). |
Since the soft margin hyperplane classification (66) is equivalent to\(&8pbtain by Proposi-
tion 24 that it has a minimizgwo, §o,bo) € W x R'L x R, where the first component, is unique.

We shall prove a representer theorem fgrusing the following celebrated geometric conse-
guence of the Hahn-Banach theorem (see, Conway, 1990, paye 111

Lemma 25 Let A be a closed convex subset of a normed vector space V andibtanpé that is
not contained in A. Then there existeTlV* anda € R such that

T(b)<a<T(a), forallacA

Theorem 26 (Representer Theorem) Lef be the minimizer of (68). Then fies in the closed
convex cone€oG; spanned by &:= {y;G(x|,) : j € Np}, that is, there exisk; > 0 such that

fo= z )\jij(Xj,-). (70)
j€Np

Consequently, the minimizerpwef (66) belongs to the closed convex cone spanned;®dyxy),
j € Np.

Proof Assume thafy ¢ coG,. By Lemmas 25 and 8, there exigts B anda € R such that for all
A>0
[fo,d]s < a <[AyjG(X;,-),gls =Ayjg" (X)), | € Nn.

Choosing\ = 0 above yields thatt < 0. ThatAy;g*(x;) > o for all A > 0 impliesy;g*(xj) > 0,
j € Nh. We hence obtain that

[fo,dl3 < 0<yjg" (X)), € Nn.
We choosef * = 5 +-tg*, t > 0. First, observe fromg;g*(x;) > 0 that

1—yjf*(xj)§1—yjf§(xj), ] € Np. (71)
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By Lemma 7,

. f*+t*2x_ f* 2* * *
t|Ln(;I+ H ° : |f H OHZ; :2[9 »fo]‘B* :2“079]’3 <0.

Therefore, there exists> 0 such that| f*||3. < | f||5.. This combined with (71) implies that
Fozu(f) < Eozu(fg) for everyb € R, contradicting the hypothesis thg is the minimizer. W

To solve (68), by Theorem 26 one substitutes equation (70) into (68)téanad convex opti-
mization problem about;j subject to the constraint thaf > 0, j € Nj,.

5.3.2 HARD MARGIN HYPERPLANE CLASSIFICATION

Consider in the feature spa6@€ the following hard margin classification problem
inf{||w||lqy :we W, be R} (72)

subject to
Yi([®(xj),Wqp+D0) > 1, | €Ny

Provided that the minimizewg,bp) € W x R exists, the classifier is s@(-),wo]q + bo).

Hard margin classification in s.i.p. spaces was discussed in Der and L@®&).(28pplying
the results in our setting tells that lif is fixed then (72) has a unique minimizep andwp €
co{y;®(xj) : j € Na}. As a corollary of Proposition 24 and Theorem 26, we obtain here that if
{yj : j € Nn} = {—1,1} then (72) has a minimizemg, bp), wherewy is unique and belongs to the
set coly;®(x;j) : j € Np}.

We draw the conclusion that the support vector machine classifications iauhéection all
reduce to a convex optimization problem.

5.4 Kernel Principal Component Analysis

Kernel principal component analysis (PCA) plays a foundational roldaita preprocessing for
other learning algorithms. We shall present an extension of kernel BCRKBS. To this end, let
us briefly review the classical kernel PCA (see, for examplep&opf and Smola, 2002; Sotkopf
etal., 1998).

Letx:={X;: j € No} C X be a set of inputs. We denote byw,V) the distance fromv e W
to a closed subspagseof 7. Fix me N. For each subspadé C W with dimension dinV = m,

we define the distance fromto ®(x) as
1
DV, P(x)) ==~ 3 (d(P(x),V))%.

J€NR

Suppose thafu; : j € Ny} is a basis foW. Then for eaclv € W the best approximatiow in
V of v exists. Assume thalp = 3 jcn,, AjUj, Aj € C, ] € Nm. By Lemma 17, the coefficients;’s
are uniquely determined by

[uk,v— Z AjUj] =0, k&€ Np. (73)
j€Nm w
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In the case whemt/ is a Hilbert space, the system (73) of equations resulting from beshappr
imation is linear abouk;’s. This enables us to construct a uniquelimensional subspatg C W
such that

D(Mo, P(x)) = min{ D(V,P(x)) : V C W subspace, div = m}. (74)

Let T be the compact operator @ determined by

(TuVy = = 3 (UB0))30(®04).V)ap, UvE W, (75)

J€NR

We letv;, j € Ny, be the unit eigenvectors af corresponding to its firghlargest eigenvalues. Then
vj's form an orthonormal basis fafy and are called thprincipal componentsf ®(x). For each
xe X, ((P(x),vj)q : j € Nm) € CMis its newfeature Therefore, kernel PCA amounts to selecting
the new feature map froid to C™. The dimensiom s usually chosen to be much smaller than the
original dimension ofiW. Moreover, by (74), the new features>oéire expected to become sparser
under this mapping.

The analysis of PCA in Hilbert spaces breaks in s.i.p. spaces wheres {[7@)linear. To tackle
this problem, we suggest using a class of linear functionals to measure thecdidetween two
elements inM. Specifically, we choosB C W* and set for all,v e W

1/2
I(U—V,b)w|2> :

The idea is that ifig(u, v) is small for a carefully chosen sBtof linear functionals thefju—v|| 4
should be small, and vice versa. In particularpifis a Hilbert space anB is an orthonormal basis

for W thendg(u,v) = |lu—V||4. From the practical consideration, we shall use what we have at
hand, that isgp(x). Thus, we define for eadhv € W

beB

dg(u,v) := (Z

1/2
dopx) (U, V) 1= ( > Hu—v,d)(x,-)}w}2> :

JE€NR

This choice of distance is equivalent to mapp¥to C" by

D(X) := ([P(X), P(X})]qp : | € Np), x€X.

Consequently, new features of elementsxinwill be obtained by applying the classical PCA to
®(X;), j € Np in the Hilbert spac&".
In our method the operatdr defined by (75) orC" is of the form
Tu= 1 (D(x;)* u)P(x;), ueC"
- n Jean ] 1/ )

where&)(xj)* is the conjugate transposefﬁ(xj). One can see thdt has the matrix representation
Tu= Myu, uec C", where
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Let Ak, k € Ny, be the eigenvalues ™y arranged in nondecreasing order. We find for dachNy,
the unit eigenvecton® := (a'j‘ : ] € Np) € C" corresponding tdy, that is,

My o = Aak.
Vectorsak, k € Ny, form an orthonormal sequence. The new featurexfoiX is hence
(D(X),05)¢n 1 ke Npy) € C™.

We compute explicitly that

(®(x),a)en =5 okG(x, %)), k€ N,
J€NRp
We remark that unlike the previous three learning algorithms, the kernelpgp€#ented here only

makes use of the kern€land is independent of the semi-inner-productith Thekernel trickcan
hence be applied to this algorithm.

6. Conclusion

We have introduced the notion of reproducing kernel Banach spakgeneralized the corre-
spondence between an RKHS and its reproducing kernel to the settin{B8.F5.i.p. RKBS were
specially treated by making use of semi-inner-products and the duality mappisgmi-inner-
product shares many useful properties of an inner product. Thiepenties and the general theory
of semi-inner-products make it possible to develop many learning algorithmKBERAS illus-
tration, we discussed in the RKBS setting the minimal norm interpolation, recatianznetwork,
support vector machines, and kernel PCA. Various representeetheavere established.

This work attempts to provide an appropriate mathematical foundation oflkaethods for
learning in Banach spaces. Many theoretical and practical issuedtdoe fature research. Anim-
mediate challenge is to construct a class of useful RKBS and the condiegaeproducing kernels.
By the classical theory of RKHS, a functidhis a reproducing kernel if and only if the finite matrix
(1) is always hermitian and positive semi-definite. This function properdyattierization brings
great convenience to the construction of positive definite kernels., Weuask what characteristics
a function must possess so that it is a reproducing kernel for some RiBBerties of RKBS and
their reproducing kernels also deserve a systematic study. For the gippkcave have seen that
minimum norm interpolation and regularization network reduce to systems tiheanequations.
Dealing with the nonlinearity requires algorithms specially designed for therlyieg s.i.p. space.
On the other hand, support vector machines can be reformulated inton canterex optimization
problems. Finally, section 5.4 only provides a possible implementation of ke@alfor RKBS.
We are interested in further careful analysis and efficient algorithmthése problems. We shall
return to these issues in future work.
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Appendix A.

In this appendix, we provide proofs of two results stated in the previai®ss of this paper. The
first one is about the minimization problem (5) in the introduction.

Proposition 27 If ¢ : RY — [0, +o) is strictly concave and t 0, then every minimizer of
min{¢(x) + pX||2 : x € RY} (76)
has at most one nonzero element.

Proof Assume to the contrary that € RY is a minimizer of (76) with more than one nonzero
elements. Therg is not an extreme points of the sphesec RY : ||x|| 2 = [|Xo||2}. In other words,
there exist two distinct vectorg, X, € RY and someé\ (0,1) such that

Xo = Ax1+ (1= A)xz and|[xal;2 = [[X2l ;2 = [[Xoll 2.

By the strict concavity o, we get that

¢ (%) + HiIXollr > Ad(X1) +(1—=A)d(x2) + H|Xol[ 2
= MO (xa) + Mxaller) + (1= A)(d(x2) + Hxalln)-

Therefore, we must have either
b (X0) + MlIXol[ e > (%) + WX 2

or
¢ (x0) + X0l > ¢ (x2) + KXzl 2

Either case contradicts the hypothesis thds a minimizer of (76). |

The second result confirms that (27) indeed defines a semi-innengirod

Proposition 28 Let V be a normed vector space ov€r If for all x,y € V \ {0} the limit
X+ tyllv = [[Xllv

te}gg]_@ . exists then-, -y : V xV — C defined by
o YAt =y Y Xy =i
X Yiv = [lyllv <t€]g7rgl0 " +i tim " ifx,y#0  (77)

and[x,yly :=0if x=0o0ry=0is a semi-inner-product on V.
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Proof First, we obtain fox # 0 that

, 1+t)x|jv —|IX . i+t)x|lv —[|x
oy =[xy (tim JEFOXv = IXiv o 140Xy ] rv>
teR,t—0 t teR,t—0 t
o 14t—-1 . i+t -1
i (nim UL i ‘*’) (78)
teR,t—0 t teR,t—0 t

= [X[§(1+0) = X[ > 0.

We then deal with the remaining three conditions of a semi-inner-productl ey are true
if one of the arguments involved is the zero vector. Xgtz< V \ {0}. We start with the estimate:

1z+tx+tyllv — [[Zlv

Rex+vy,zy =z lim
x+y.zv = HVteR,t—>0+ t
: 5+t + 115 +tyllv — |z
B M VR R 1Y
teR,t—0* t
) ;+tX _ |2 ] Z_|_t _ |2
B O | V[ VA S Vil 1Y
teR,t—0+ t teR,t—0+ t
. z+2tx||lv — ||z . z+ 2tylly — ||z
T VANV - Ve 1YY
teR,t—0F 2t teR,t—0* 2t
The above equation implies that
Re[x+Y,Zv < Re[x,Zy + Rely,Z)y. (79)
It can be easily verified that-x,yly = —[X,y]v. Replacingy with x+y, andx with —x in the above
equation yields that
Re[yv Z]V < Re[ixa Z]V + Re[x+yv Z}V = - Re[X, Z]V + Re[X+ Y, Z]V~ (80)

Combining (79) and (80), we get that Re+-y,zy = Re[x,zv + Re[y,z)yv. Similar arguments lead
to that Im[x+y,zy = Im[x,Zy + Im|y,Zy. Therefore,

[X+y7 Z]V = [X7 Z]V + [ya Z}V- (81)
Next we see for al\ € R\ {0} that

_ im WYXy —lyllv _ im WYXy —lyllv _
A Yy =yl fim . =Alylv, fim X =AYy

It is also clear from the definition (77) thék,yly = i[x,yJv. We derive from these two facts and
(81) for everyh = a +if, a,B € R that

AXYlv = [ax+iBX,Ylv = [0X,Y]v + [IBX,Ylv = a[X,Ylv +i[BX,Ylv

: . 82
— Ayl +iBX YV = (@ +iB) Y = AR ylv- (82)

We then proceed fox € C\ {0} by (82) that

. AY+tx|ly — |IA ) +t¥ly —
pay =yl fim PRV ) g I 2

teR,t—0 5 t teR,t—0 t (83)

X A —

= WP v = P by = Ry
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Finally, we find some\ € C such thajA| = 1 andA[x,y]v = |[X,Y]v|, and then obtain by (82) and
(77) that

. ly+tAXllv = [Iyllv
e [Xﬁ ”yu”Vt\TRmﬁ
- Yllv +tIAX][v — [y[lv
< | = A = .
< Iyl fim t Iyl Il = X Iyl

By (78), the above inequality has the equivalent form

xoYiv] < Xy 2y vy (84)
Combining Equations (78), (81), (82), (83), and (84) proves thpgsition. |
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