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Abstract— A novel model is proposed to describe the rich
dynamics of spiking activities of leaky integrate-and-fire (LIF)
neuronal networks via the moment neuronal network approach.
Different from the existing neuronal field model (for example,
Wilson-Cowan-Amari model) which only takes the first-order
moment (mean firing rate) into considerations, we develop a
Gaussian random field to qualitatively describe the spatio-
temporal distribution of the first- and second-order moments:
mean firing rate, variance or coefficient of variation (CV)
equivalently, and the coefficient of correlation (CC), of spiking
trains. By this neuronal field model, we find out that the firing
rate response with respect to the input may be not sigmoidal
or even monotonic if the inhibition is stronger than excitation,
which leads fruitful dynamical behaviors, in comparison with
the sigmoidal response. In addition, within this framework,
we can analyse the synchronisation propagation in the LIF
neuronal network. We use our Gaussian random field model
to investigate how the three key factors: the ratio between
inhibition and excitation, the size of synchronous cluster, and
the background firing rate, decide the stability of a synfire
chain.

I. INTRODUCTION

Recent years have witnessed a significant growth in the
field of biological computation [1], [2], [3], which is bridging
the gap between the experimental data and theoretical neuro-
science. Computational neuronal models, say, the LIF model
[4] and the more biophysical Hodgkin-Huxley model [5],
provide us with a more powerful tool to analyzing the dynam-
ics of actual biological neurons than the traditional classical
approach to neural modelling. The spike activities, which are
usually described as point processes, are considered as the
main functional medium to carry the neural signal, regarded
as a function of the membrane potential and concentration
of ions.

When dealing with a neuronal network, these existing
models exhibit complicated dynamical behaviours and seems
impossible to be analytically treated in a rigorous math-
ematical manner. Furthermore, there exists a gap between
the computational neuronal model and employing stochastic
methods. On the other hand, the general stochastic model,
for example, general linear model (GLM), has a good perfor-
mances in neural signal processing but the model is too sim-
ple to be linked with the underlying biological background.
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A possible approach to bridge this gap is to develop a model
based on the biological description of neuronal networks
with proper simplifications and approximations so that some
well-developed dynamical theory and statistic methods can
be employed to associate model activities with experimental
data.

So, it is not surprising that attempting to describe neuronal
network spike activities with partial differential equations
(PDE) or field equations (FE) has been taken up by many
authors and is still an active topic [13]. A classical approach
is the well-known Wilson-Cowan-Amari (WCA) model [6],
[71, [8], [9], which describes the firing rates of neural
populations by integro-differential equations. In this model,
the membrane potential is directly mapped to the firing rate,
via the sigmoidal function. The model is widely applied to
simulate or mimic the local field potentials (LFP), functional
magnetic resonance imaging (fMRI), electroencephalogram
(EEG), and magnetoencephalogram (MEG) [10]. However,
the properties of neuronal spikes can only be described by
their firing rates and, despite succeeding many applications,
can not exactly match some aspects to some key biological
meaningful quantities, as detailed below.

In this paper, we establish a spatio-temporal Gaussian
neuronal field to describe the dynamics of spike activities.
The basic approach is the mathematical framework called
moment neuronal networks (MNN) [11], which describes the
maps of the first and second order (or even higher) statistics
from the input spike trains to the output. Also, taking the
coefficients of correlation (CC) into considerations [12], we
construct evolution equations of the first- and second-order
moment statistics: mean firing rate, coefficient of variation
(or equivalently variance), and CC. In contrast to all ap-
proaches in the literature such as the mean field approach
(WCA model), our approach is, essentially, to describe the
neuronal activity as a Gaussian random field [14]).

By including higher-order moment statistics, our approach
can describe more aspects of the properties in spiking net-
work activities. As one would expect, when the variance in
our model is removed, the firing rate response with respect
to the input becomes sigmoidal, which implies that in this
situation our continuous-time model has the same property
as the WCA model. Instead, if the inhibition is stronger
than the excitation, in a reasonable parameter area, the
map of the firing rate is non-sigmoidal and non-monotonic,
similar to the tent or logistic map. Synchronisation, a well-
known biological phenomenon, can be well described as the
correlation between spike trains, one of the second order
statistics [12], [15], [16]. It has been earlier reported in the



literature that a feed-forward spiking network can easily lead
to the propagation of a synfire chain [17], [18]. The MNN
framework allows us to theoretically analyse it, under some
mild conditions.

II. MODEL DESCRIPTION

Our main approach is the theory of moment neuronal
network [11]. The main idea is to represent (approximate) the
spike activity of a neuron (a point process) by a continuous
process in the spirit of the ergodicity and central limit
theorem. In details, we start with a LIF neuronal network
with p neurons and model the potential activity of the i-th
neuron as follows:

dVi(t) = —LV;(t)dt + > _whdN;*(
J

() + > whdNF (1),
J
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where 1/L is the leaky resistance, wg , Z-Ij is the EPSP, IPSP
size from the j-th pre-synaptic neuron (j = 1,2,---,p),
and N ;E(t) and N ;’I(t) are random point processes of the
synaptic spike stimulus. First, we regard the spike point

process as the renewal processes:
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with the [-th inter-spike interval (ISI) T”’ with v = E
or I supposed to be independently 1dent1cally distributed.
Since the number of renewals converge to a Gaussian random
variable due to the central limit theorem, second, we have
the following approximation as ¢ is large:

dN;,u( ) M? 1)dt+ 11)dBl v (2)

dN“’

where B;-’U, j =1,---,p are correlated Brownian motions.
And, according to the renewal theorem [19],
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where T, ; represents the refractory period and (-) and var(-)
denotes the expectation and variance of a random variable,
respectively.

Thus, Eq. (1) yields as Ornstein-Uhlenbeck (OU) pro-
cesses:

dV;(t) = —LV;(t)dt + f;dt + 7,dB, ()
with a standard Brownian motion (Wiener process) By,
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where pz e

dN}". Initiated with a rest potential V;., when the potentlal
of the i-th neuron reaches a threshold V;;, the neuron emits
a spike at that time and is rest back to V,. after a refractory
period T} f.

is the correlation coefficient between dN “V and

In the term of Siegert’s expression [3], we can have the
expression of all moments of the output stationary inter-spike
interval (ISI) distribution based on the Fokker-Planck equa-
tion and first-passage-time (FPT) theory [28]. In particular,
the mean and the variance of the output ISI are

9 (Vin,Ri,54)
<Tout,i> = Z/ D,(u)du
I(Vy,fi,64)
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Var(Touti) = L2/ D_ ® D_(u)du. (5)
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where D_(u) is exactly the Dawson’s integral. We continue
approximating the output spike trains as renewal processes.
Using the renewal theory, we can obtain the mean and
variance of the output spiking as
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For simplicity of depiction in the following, we define
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In addition, to study the correlation evolving equations, we
firstly consider two OU processes driven by two correlated
Brownian motions, as shown in [12], we can regard the CC
of the output spike trains as a function of the CC of the input
Brownian motions:

52(y> Z) =

Pout = ‘I’(Pm) P

The map of cc has been studied in details by [12], [11].
By numerical illustrations and direct reasoning, they both
found that ®(-) satisfies: (1). ®(0) =0, &1 = 1; (2). ®(-) is
increasing and below the identical map in [0, 1], i.e., ®(p) <
p for all p € [0,1]; (3). () depends on the input firing rate
and CV (variance) and trends to the identical map in [0, 1] if
the mean firing rates in the period of the time-scale 1/L is
large via increasing the input firing rate or CV. By the linear
perturbation theory [20], we can derive the slopes of the map
®(-) near p;;,, =0 and p = 1 respectively.
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Fig. 1. Approximation described by the map I': (A): the Gaussian
approximation of the pointer process; (B): the map of I in a spiking neuronal
network.

Thus, if the map of CC is well defined, we are in the
position to derive a map I, with respect to the mean, variance
(CV), and CC, from the input spiking trains to the output in
the neuronal network as:

(/«Louta Oout» Eout)
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where pinput (%, j), the correlation of the input spiking trains
of the ¢-th and j-th neurons, has the form:

(wi0) TS (wy0) |
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Equivalently, sometimes in this paper, we can consider
the coefficient of variation (CV) of the ISI, instead of the

variance o
oV — VVar(T;) _ /071.2.
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Thus, we have
CVout,. = S2(fi., .).

The moment neuronal network map can be described by
three variables, (i, o, p), as depicted in Fig. 1 A and B. Using
this Gaussian motion as the input for the next iteration, we
can model the neuronal activities as a Gaussian field. This
is the main idea of this paper. We regard again the output of
a LIF network model as a renewal process and Gaussian
motions. So, these three classes of variables (firing rate,
variance, CV, and CC) can fully describe the output Gaussian
motions. Then, we derive evolution equations over these three
classes of variables using the moment map. Thus, the spiking
neuronal network is described by a Gaussian field.

Now, we develop a Gaussian field of discrete time to
model the underlying neuronal networks. First, we consider a
feedforward neuronal field by iterating the maps of moments
to derive difference equations. Let pu(x, k) and o(z, k) the
mean and variance at the location x of the k-th layer and
p(x,y, k) the correlation between the location x and y at

the k-th layer. Let w(z,y) be the interconnection coefficient
between the locations z and y. Define

wx p(x, k) = /w(x,y)u(&k)dy

<w *O, W * U>p(k:) (1'7 Y, k)

:/w(x,u)w(y,v)a(u,k)a(v,k)p(u,v,k)dudv.
Then, [[w * p[|2,) (2, k) = (w * 0,w * 0) o1 (z, 2, k). Thus,
the neuronal field yields the following iterative equations:

(@, k+1) = Si(w * p(@, k), [|w o ||y (z, k)
o(z,k+1) = Sa(w* p(z, k), Hw * UHp(k) (z,k))
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where £ = 1,2,--- ,. Sometime, we consider the iterative
equations of C'V (z, k), instead of o, as follows:

CV(I, k+ 1) = 52(w * ,LL(I, k)a ”w * U”p(k) (l’, k))

In the continuous-time case, we can derive differential
equations to describe their evolution directly from the map
iterations. We use a slow time scale such that the spike
processes keep stationary. Let ¢ be continuous time which
is much slower than that of the sampling. Thus, we can use
the moment map to describe the dynamics of the moments
of spike activities. Letting 7 be the sampling time inter-
val, the iterative equations (6) yields the following integro-
differential equations:
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where ¢ € R, in addition with its CV:
aCcv
o = —OV + Sa(wx | x o).

These maps can well approximate the dynamics of LIF
neuron model. A lots of numerical illustrations are conducted
in the literature [11], [12]. In the current paper, we present
two examples of the dynamics analysis of the evolution
equations we derived above.

III. NON-SIGMOID FIRING RATE RESPONSE

Consider the situation with the input variance trending to
zero and r < 1, it can be proved in [21] that the sub-manifold
with ¢ = 0 is stable and the system converges to

op
{T-at = —p+ L(w*p) )
o = 0,

where the firing rate response function £(-) is a sigmoid-type
function:

v>VyL/(1—1)

1
Lv)={ Trertiin/E=m=es
0 0<v<VyL/(1—r1).



However, if » > 1, i.e, the inhibition is stronger than
excitation, it is not always the case. Since the maps of
moments are rather complicated, here, for simplicity , we
assume that

w); = —rwf, L ={p(i,j)} =¥ =%,
i B B i,1

i1 _ i,E _
Hj =M1 = Hj1, 05 =053 =057,

where r indicates the proportion between inhibitory and ex-
citatory input. » = 1 means that the input is exactly balanced,
but » > 1 means that inhibitory input is stronger than
excitatory input and the vise versa. Further simplification
is conducted by unifying the neurons. That is, u;, o;, and
pi; are regarded invariant with respect to i. So, we use a
single spiking neuron representing a homogeneous neuronal
network. We define the mean and the variance of the input
from p excitation neurons and p inhibition neurons:

= p(lfr)ﬂinv
= VI+r)p+pp-

which are obtained from the assumption that the excitation
synaptic spike train and inhibition synaptic spike train are
independent; in the same group, the CC between two ex-
citation (or inhibition) synaptic inputs is commonly p; the
variance of each synaptic spike input is commonly &;,,.

Recall the firing rate response function in the homoge-
neous MNN map I':

Sl(.u“’ J) =

=
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With a fixed CV > 0 and a zero CC, its monotonicity is
inverse to that of the following function
L—(1—7)p

u
xp()du [
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Thus, owing to o = CV[ , we obtain the derivative of f
as follows:
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according to Vr =0 as we set.
We consider two situations: a small ¢ near zero and a large
1 near infinity. On one hand, in the case of y — 0+, we

have
Iy
exp(l3) [ ex(-

of —VinL

o 24/(1+r2)pCV u3/?

by neglecting the terms of higher orders. One can see that
whether » > 1 or not, f is monotonically increasing with

v?)dv

respect to small x, which implies that the firing rate response
increases with respect to the ascent of a small input firing
rate.

On the other hand,in the case of u — 400, we have

of _ Ip(r—1)] 2y [T
o~ 2 (Lt P2)puCV [exp(l*) /_oo >l
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by neglecting the terms of lower orders. It is clear that if
r < 1, the firing rate response still increases according an
ascent and large input firing rate; but if » > 1, with a stronger
inhibition than excitation, the situation turns over that the
firing rate response decreases with respect the input firing
rate of relative large values.

In Fig. (2), we plot the surfaces of the firing rate response
with respect to (i, CViy,) for the cases of » < 1 and r >
1. As concentrating on the inside, we also plot the curves
of the firing rate response with respect to the input firing
rate or CV respectively, also as shown in Fig. 2. One can
see that the firing rate response is monotonically increasing
with respect to the input firing rate and has a sigmoid-like
curve in the case of r < 1. Instead, if » > 1, the firing
rate response is not sigmoid or monotonic any more. As the
bottom-right panel in Fig. 2 shows, it bends like a tent map or
logistic map if the inhibition is strong. Since it is well known
that this shape of map in an iteration equation may lead
to complicated dynamical behaviours such as bifurcations
even chaos, it is reasonable to expect the dynamics exhibits
such rich behaviours. This will be one of our future research
objectives to establish a clear spectrum of this neuronal field
dynamics.

We also give a simple illustration of the attractor diagram
of (u, C'V') with respect to r. As Fig. (3) shows, the system
can keep a point attractor with positive firing rate, which may
correspond to the well-known spontaneous activity in real-
world neuronal networks [22], [23]. In details, for » < 0.8
or so, the pair (u, C'V') has deterministic point attractor that
1 converges to some positive value but C'V to zero. That is,
for r < 0.8, the system trend to a deterministic system with
o = 0, coinciding with what we show in the beginning of
this section. Instead, for a large r, even a single neuron (or
a homogeneous neuronal network) can have more fruitful
dynamical behaviours. First, for » € (0.8,1), the system
has a sub-Poisson point attractor with a positive firing rate
and nonzero CV less than 1. For r € (1,3.25), the region
between two red lines, the system becomes multi-stable with
two point attractor: one is a quasi-silent Poisson attractor
with almost zero firing rate and C'V = 1 and the other is
with positive firing rate and a positive CV from sub-Poisson
to sup-Poisson. As we show, in the region of biological
reasonable parameters, we obtain a fixed point attractor of
a low but positive firing rate (less than 20 HZ) spontaneous
activity, accompanied with the situation that the inhibitory
input should be stronger than the excitatory input.

Fig. 4 shows the bifurcation diagram of (u,C'V) with
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Fig. 2.  Maps of the firing response with respect to the firing rates and
CV of the input. Here, we pick the size of network as 1/L = 20 (msec),
p = 100, Vip, = 0 (mv), Vi = —20 (mv), and T}..y = 5 (msec). The two
surface plots at the top illustrates the map of the firing rate response with
respect to (fin, C'Vip) in the formula (9) for r = 0.5 (left) and r = 1.5
(right). The four plots below are the curves of the firing rate response with
respect to pinor C'Vj,, with the other fixed. They are the firing rate response
with respect to i, with CV = 0.6 and » = 0.5 (middle-left), CV = 1.5
and » = 1.5 (bottom-left), the firing rate response with respect to C'V;,,
with 4 = 10 (HZ) and r = 0.5 (middle-right), 4 = 10 (HZ) and r = 1.5
(bottom-right).
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Fig. 3. Stability diagram of the map I" with respect to the parameter r with
a fixed p = 0.The parameters are picked as the same as in Fig. 2. We plot
the collection of the states of 50 iterations after initial 100 iterations of the
map S1,2(+) with 30 overlaps of randomly selected initial data. The regions
between red broken lines in both figures corresponds to the spontaneous
activities.

Firing Rate (KHZ)

. 7
5 g T
AR k) +
AN au bk
CRR AR FOC S QTR . £ NIRRT

Fig. 4. Bifurcation diagram of the map I" with respect to the parameter
r with a fixed p = 0. The parameters are picked as 1/L = 20 (msec),
p = 1000, Vi, = 0 (mv), V, = —20 (mv), and T}..y = 2 (msec). We plot
the collection of the states of 50 iterations after initial 100 iterations of the
map S1,2(-) with 30 overlaps of randomly selected initial data.

respect to r. With selective parameters, one can see that
the dynamics have a periodic-doubling phenomenon and
trend a chaotic-like attractor as r increases. In Fig. 5, we
plot the phase of the firing rate and CV of an attractor.
From numerical calculations, we conclude that its largest
Lyapunov exponent equals 0.0864, which implies that the
attractor is chaotic. Moreover, we also calculate its correla-
tion dimension which is around 1.1574. Since it has only
one positive Lyapunov exponent, its K-entropy is equal to
the largest Lyapunov exponent. We should point out that
for most values of parameters, we can observe the periodic-
doubling phenomenon but in order to show them clearly,
we have chosen a different set of values of parameter from
the previous setting which is obviously biologically more
realistic. Certainly the nonlinear dynamics will be further
investigated somewhere else in our future work.

IV. SYNCHRONISATION PROPAGATION

Synfire chain has been widely studied in both experiment
and theoretical manners. It is a well-known fact in the
literature that in a feed-forward spiking neuronal network,
spikes of different neurons could easily synchronize and
propagate their activity [18], [24]. This phenomenon can not
be described by the WCA model, since it can only concern
the first moment of the spiking activity but synchronisation
should be described by a second-order statistics. In [25], [26],
the authors proposed a computational approach, called “pulse
packets”, to analyse it via the timing information of spikes.
However, it is more direct and clear to describe synchrony
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a fixed p = 0. The parameters are picked as 1/L = 20 (msec), p = 1000,
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collection of the states of 2000 iterations after initial 1000 iterations of the
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between spike trains by their coefficient of correlation (CC).
Thus, (complete) synchronisation can be defined as the CC
equal to 1. In [27], the authors use a simple model to analyse
correlation between neurons in a synfire chain. However, they
only focused on the synchronisation among the cluster and
assume the spike activity background out of the synchronous
cluster is stochastically independent, which contradicts with
the experimental phenomena and the reasoning. In fact, the
spike trains between neurons can not be independent since
they has probabilities to received a partial of synchronous
spikes. A balanced network (with equal proportion between
excitation and inhibition, i.e., r = 1) is a general and
common assumption for stable synfire chain.

In this paper, we have established field equations to
describe the dynamics of CC in LIF neuronal networks,
which suggests a novel approach to study synchrony by a
mathematical manner.

In this paper, we consider a multi-layer neuronal network
with discrete space. For a pair of neurons ¢ and j, the CC
between them can be formalized as

(wxo,wx0a) (i, ])

k+1/- -\ _
p (27.7) - q)'i,' . .
i e olle @l oll,e. )

v’L'7j:17"'7p7’l/”':l727"" (10)

where p* is the CC matrix at the k-th layer and ®;; is the
CC map between the neuron pair (%, j), depending on their
firing rates and CVs.

The stability of a synfire chain is twofold. On the one
hand, the CCs between the cluster are large and near 1; on
the other hand, the other CCs, excluding among the cluster,
are low. First, we study the an extreme case: how a network
of the coupled systems (10) converge to 1. We consider the
stability of the equilibrium of p;; = 1 for all ¢ # j and
present the following results via the linear stability theory.

Proposition 1: Let

1, :@2‘(1){ ip"jq

Pa / 1Dk Wikl 22, Wl
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and L = [L ]i>j p>q be an (n—1)n/2-order square matrix.
If p(L) < 1, then the equilibrium of p;; = 1 for all ¢ # j is
asymptotically stable.

As shown in [12], if the firing rate per 1/L is sufficiently
high, illustrated as larger than 5 spikes per 1/L, then the CC
map in the positive region is very close to an identity map,
symbolled by Id. Then, we have the following result if the
CC map is the identity map and the all neurons are excited:

Theorem 1: Suppose ®; ;(-) =Id foralli,j=1,---,p,
all couplings are nonnegative, all self-links are positive, and
all variances are greater than some give positive number. Let
Gy, be the interacting topology from the layer k to k+1 !. If
there exists an positive integer 7' such that the union graph
across any time interval with the length larger than 7' has
spanning trees, then limy_, o pfj =1 holds for all 7 # j.
The proof is omitted here. Theorem 1 indicates that in a high
firing background, excitation couplings can synchronize the
network (cluster) efficiently, which has been illustrated in
experiments [18]. That is, in a synfire chain, the synchrony
in a cluster can be conserved through propagation in layers
owing to the excitation couplings between the synfire group.

Second, we consider the situation that all CCs keep low
values. In a real-world neuronal network, without concentrat-
ing external stimulus, the CCs of the whole network keep
around 0.1 ~ 0.3. As shown by the results above, a full
exciting network is not good to keep CCs in low values. Thus,
it is reasonable to believe that to realize a stable synfire chain,
an optimal environment is that in the synchronized group,
the neurons are all excited, intra-group graph topology is
compact, and the others neurons have proportional excitation
and inhibition neurons.

As illustration, we consider a random network of 2N
nodes (the set N'), where N nodes are E-neurons (the set
&) and the other N are I-neurons (the set 7). Each node has
K = AN E-neuron neighbors and K I-neuron neighbors,
which are selected randomly with common probability. Here
A is the density of the random network. Let w;; = 1if j € £
and w;; = —r if j € Z, where the parameter r represents the
proportion rate between excitation and inhibition. Suppose all
variance to be identical. Let M C & be the neuron cluster
where synfire chain is supposed to occur and denote its size
as #W = W. The map of CC is supposed to be uniform
and approximated by:

O(x) = (1—b)a"™ + bx

IThe interacting topology G* is defined as a pair of set {V, £}. The node
set 1V corresponds the neuron set at a single layer, which is supposed to be
of the same size for different layers. The edge set £ is defined as follows:
If there is a link from the neuron ¢ at the k-th layer to the neuron j at the
k + 1-th layer, then it corresponds an edge from ¢ to j in &£.
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Fig. 6. Coefficients of Correlation attractor of the CC system (10). Here,
we pick the size of network as 2000 (N=1000), the density as A = 0.1,
the CC map as ®(p) = bp + (1 — b)p®. (A): the attractors of the mean
CC through the cluster (0) and outside (x) with respect to r with a fixed
W = 80; (B): the attractors of the mean CC through the cluster (o) and
outside * with respect to the size of the cluster W with a fixed r = 1; (C):
the curve plots of the map ®(-) with different b = 0 (blue), 0.25 (red), 0.5
(yellow), 0.75 (green), and 1 (magenta); (D): the attractors of the mean CC
through the cluster (o) and outside (x) with respect to the size of the cluster
W with a fixed » = 1, and different b = 0 (blue), 0.25 (red), 0.5 (yellow),
0.75 (green), 1 (magenta).

where the parameter b is picked in [0, 1] and n is an integer
larger than 1. When b = 1, & = Id. It is a monotonically
increasing convex function. Here, we pick n = 5. We analyse
the point attractors (p; ;)7 ;=1 of the system (10) and measure
the mean of CCs among the cluster and the outside:

CCsyn = <P*(i7j)>(i,j)eA7 Ccoutside = <p*(i7j)>(i,j)6A“, i#£g

where A = {(i,5) : i, € W, i # j} and A° denotes its
complementary set. Thus, a stable synfire chain is described
as CCyy, is large, near 1 and Coutsideis small so that
CCsyn — CCohytside is distinctly apparent.

It can be seen from Fig. 6 A that if  # 1, in a network
of a large size, both the CCs among the synchrony cluster
and outside reach a local minimums. Therefore, a balanced
network seems not good to conserve the synchronisation
among the cluster but optimal to keep the CCs of the
background small values. The size of cluster also influence
the stability of the synfire chain. As one can see from Fig.
6 B, both the maps of CCs of intra-cluster and outside
with respect to the size of the cluster are sigmoid-like. In
comparison to the outside, the steep slope of the curve of
intra-cluster CC can approach at a smaller size of cluster than
that of the outside CC. The parameter area of m, where the
intra-cluster CC is much lager than the outside CC, provides
the possibility to realize a stable propagation of synfire chain.
However, if m is small, both CCs are small but if m is
too large, both CCs keep in high values. That is to say,
synchronisation in a cluster of a relative small size may
collapse for several layers but synchronisation in a cluster
of a large size may diffuse through the whole network. By a
mean-field approach (not shown in this paper), we can obtain

an approximation
W~ VK

as the size of the whole network goes to infinity, which
is optimal for a stable synfire chain. In addition, the ratio
W/v/K can neither too small nor too large.

It has been illustrated [12] that increasing the firing rate
leads that the map approach the identity map. We use the
parameter b in the CC map to show how the firing rate

" influence the synchronisation. Fig. 6 C illustrates the shapes

of the map depending on b, which implies that increasing
b can make the map approach the identity map too. So,
we claim that a larger b implies a higher firing rate in the
network. One can see from Fig. 6 D that the ascent of
b (increasing firing rates) enhances the CCs of both intra-
cluster and the outside. As a result, a stable synfire chain
can occur for a small size of cluster if we increase the
firing rate (b) but it will lead diffusion of synchrony at a
smaller size of cluster in comparison to the lower firing
rates. Instead, a synfire chain may collapse for a smaller
size of cluster but can exist for a lager size of cluster,
in comparison to the spiking background of higher firing
rates. These phenomena can be supported by simulating LIF
spiking neuronal network. But the details are omitted in this
paper according to the limit of space and will be presented
in anywhere else.
In summary, we can conclude:

1) r = 1, a nearly balanced network counts for preventing
the synchronisation diffusing out of the cluster;

2) a suitable size of cluster can prevent the synchronisa-
tion from collapse and diffusion;

3) a higher firing rate can enhance synchronisation as well
as its diffusion.

V. CONCLUSIONS

The LIF model network provides a powerful computa-
tional tool in both theoretical neuroscience and dealing the
experimental data. However, it is still complicated to perform
rigorous mathematical analyses. A widely-used simplifica-
tion is to approximate spike processes as Gaussian processes,
keeping the first and the second order moment identical.
Thus, the dynamics of the subthreshold membrane potential
of a LIF neuron can be described as an OU process. The
theory of stochastic dynamical system can be employed.
Different from the existing work, which usually only take the
membrane potential or the mean firing rate into considera-
tions, we develop a novel model based such an OU approx-
imation (moment neuronal network approach) to describe
the dynamics of both the first- and second-order statistics
of the spike counting. By this way, a random Gaussian field
of neuronal network is established. Also, we present some
preliminary analytic results on the dynamics of the model,
which provide qualitative analyses of several important phe-
nomena in both biological experimental observes and LIF
neuronal network. We find, if the inhibition is stronger than
excitation, the firing rate response to the input firing rate is



not sigmoidal or even not monotonic any more, but bends like
a tent map, which could lead fruitful dynamic behaviors. This
observation leads an apparent difference between our model
and the classic WCA model. Also, our model illustrates
the spontaneous activity, which has been widely observed
in biological experiments. The description of the dynamics
of the correlation coefficient (CC) provides a tool to study
another widely-observed phenomenon,synchronisation prop-
agation, in the neuronal network, to which the WCA model
is clearly unavailable. By this manner, we illustrate how the
three parameters affect the stability of a synfire chain.

We argue that this model can facilitate the analyzing
the dynamics in spiking neuronal networks and due to
introducing the second-order statistics, a number of statistic
tools can be available to tackle with biological data via this
model. More important, the framework of this model can
be generalized to other spiking neuronal network model, for
example, nonlinear LIF neuron model and Hodgkin-Huxley
model, via the first-passage-time theory [28]. We also note
that the current model has shortcomings which may prevent
its applications to quantitatively deal with the real experiment
data, despite of its qualitative analysis capability to several
experimental phenomena. On the one hand, the LIF model
is too simple, without taking other important quantities such
as the AMPA and GABA currents into consideration. On the
other hand, the MNN maps are already complicated for both
analytic and numerical discussions, which demands to further
simplify the model without affecting the dynamic properties
but decreasing the complexity. Those are our current research
topics.
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