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Abstract— An approach to classifying retinal images using a
histogram based representation is described. More specifically,
a two stage Case Based Reasoning (CBR) approach is proposed,
to be applied to histogram represented retina images to identify
Age-related Macular Degeneration (AMD). To measure the
similarity between histograms, a time series analysis technique,
Dynamic Time Warping (DTW), is employed. The advocated
approach utilises two “case bases” for the classification process.
The first case base consists of green and saturation histograms
with retinal blood vessels removed. The second case base
comprises the same histograms, but with the Optic Disc (OD)
removed as well. The reported experiments demonstrate that
the proposed two stage classification process outperforms the
single stage classification process with respect to a number of
evaluation metrics: specificity, sensitivity and accuracy.

I. INTRODUCTION

In this paper a mechanism for classifying retina images
to identify Age related Macular Degeneration (AMD), the
most common cause of reduced vision in people over sixty
years of age, is described. The mechanism uses a histogram
based approach to represent retina images. The classification,
in turn, is founded on a Case Based Reasoning (CBR)
mechanism coupled with a Dynamic Time Warping (DTW)
technique. A given, pre-labelled, training set is processed
so that each retina image is represented by a collection of
histograms, extracted with respect to the RGB (Red, Green
and Blue) and HSI (Hue, Saturation and Intensity) colour
models. The number of histograms was reduced by selecting
only the green channel and saturation component histograms.
The green channel was selected as it has been show to
offer the best discriminatory power between the main retinal
anatomy (blood vessels, fovea and optic disc) and the retinal
background [1]. Saturation was chosen because it has also
been shown to give a good performance in identifying AMD
images, as established by a series of experiments conducted
by the authors [2]. These histograms are conceptualised
as time series, i.e. a set of curves. The curves are stored
in two Case Bases (CBs). The first case base (CB1)
comprises green and saturation histograms generated from
retina images that have been enhanced and had blood vessel
pixels removed. The second case base (CB2) comprises
green and saturation histograms from retina images that have
been further processed by removal of the Optic Disc (OD)
pixels. Removed pixels are replaced with “null” pixels.
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The classification is a two stage process. During the first
stage “unseen data” is classified by finding the most similar
match in CB1. (The unseen data is usually presented as a
collection of retina images, rather than a single image.) The
similarity matching is conducted using the DTW technique.
For those unseen images that can be classified with a certain
degree of certainty the process stops. For the remaining
images that cannot be classified with any certainty the
process is repeated with CB2. CB2 is not used immediately
because the optic disc removal process, in some cases, has the
effect of removing significant pixels. The results presented in
this paper demonstrate that this two pass approach produces
better results than when using a one pass approach (using
either CB1 or CB2 in isolation).

The focus of the work described is the detection of AMD.
AMD is a condition where the macula, a small area located
at the very centre of the retina, as shown in Figure 1(a),
degenerates with age [3]. The first clinical indicator of AMD
is drusen. Drusen are yellowish sub-retinal deposits that are
often difficult to identify against the predominantly orange
retina background. The severity of AMD is categorised as
being either: early, intermediate, advanced non-neovascular,
or advanced neovascular [3]. Each category is characterised
by the existence of various sizes and shapes of drusen as
well as pigment abnormality. An example of a retina image
that features drusen is given in Figure 1(b) (indicated by
the white arrow). The drusen itself are categorised as hard
and soft drusen. Hard drusen have a well defined border,
while soft drusen have boundaries that often blend into the
background. In some cases the drusen “blends” with the optic
disc. The identification of drusen, especially soft drusen, is
thus not a straightforward process [4], [5].

Given the increasing incidence of AMD, attempts have
been made in many countries to establish screening pro-
grammes. However, the manual processing of retinal images
is labour intensive. The accuracy of the screening is also
subject to the graders observation [6]. The automation, or
partial automation, of the process is therefore desirable
although the complexity of drusen detection hampers such
automated screening, especially in the case of early stage
AMD when the presence of drusen is often difficult to detect.
The technique prescribed in this paper is intended to provide
new technical support for the screening process.

The rest of this paper is organised as follows. Section
II presents some necessary background to support the work
described. Section III describes the classification process in
more detail. Section IV describes the image preprocessing
techniques applied to the input data to create CB1 and CB2.
The specific DTW approach developed is detailed in Section
V. An evaluation of the proposed approach is then given
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Fig. 1. (a) Normal and (b) AMD retinal images in greyscale. The circled
area indicates the Macula. The white arrow indicates drusen

in Section VI, followed by some conclusions presented in
Section VII.

II. PREVIOUS WORK

There are a number of references to image classification
and retrieval using histogram comparison techniques that
have been reported in the literature, examples include [7],
[8], [9]. The fundamental idea is to encode the colour
information in an image as a feature vector and then represent
the vectors as histograms. The distinguishing element of
these methods is the similarity measures utilised to compare
histograms; examples include Earth Mover’s Distance (EMD)
[10], Manhattan distance (L1) and Euclidean distance (L2)
[11].

The above histogram comparison techniques assume that
the collection of histograms each have an equal number of
sample points, time series analysis techniques are directed
at more varied categories of sequential data representation.
For example Al-Aghbari [7] proposed a time series analysis
approach to address the histogram based image classification
problem, which has similarities with the work reported in
this paper. Using a time series data representation, called
Symbolic Aggregate approXimation (SAX), and the K-
nearest neighbour technique for classification, the results in
[7] demonstrated a promising approach to the use of time
series analysis for image mining. The distinction between

Al-Aghbari’s approach and that presented in this paper is
in terms of the time series data representation and the
classifier used. High data dimensionality is not an issue
with respect to colour histograms as the length of the time
series data is bounded (typically to 256 sample points). The
approach described here can thus use a “normal” histogram
representation. A DTW technique has been proposed in this
paper to compare histograms.

Histograms can be generated from images in a number
ways. The most straight forward is to to generate sets of
histograms from the three colour channels used to represent
images (Red-Green-Blue or RGB). Another option is to use
Hue-Saturation-Intensity (HSI) values. Experiments reported
in [4], [12] and [1], have shown that the most appropriate
colour channel for object identification (including drusen)
in retina images is the Green colour channel. Since the
classification of AMD images is entirely based on the retinal
colour distribution which will be severely affected by the
quality of the captured images, this paper proposes the
use of saturation histograms for additional coroboration.
Saturation was selected, as opposed to hue or intensity, as
it also demonstrated good performance in identifying AMD
in retinal images, this was established through a series of
experiment conducted by the authors and reported in [2].

CBR [13] is an established AI technique founded on the
observation that humans solve new problems by referring
back to similar problems they have solved in the past, i.e. a
Case Base of past cases. Given a new case a CBR system
will find the most similar past cases (or cases) in its Case
Base and present the solution(s) to the identified case(s) as
solution(s) to the new case. One of the most significant issues
in CBR is the nature of the similarity checking mechanisms
used to identify similar cases in the Case Base. In the work
described here we use a DTW technique.

DTW [14] is a time series analysis technique [15] for
comparing two curves and generating a similarity measure.
It uses a dynamic programming approach to align two time
series and then generates a “warping path” that maps (aligns)
the two sequences onto each other. Further details on the use
of DTW, in the context of this paper, are given in Section V.

III. RETINA IMAGE CLASSIFICATION PROCESS

An overview of the retina image classification process,
to identify AMD, is presented in this section. The process
can be conceptualised as a two stage process: (i) case base
generation, and (ii) classification of unseen data.

The case base generation process is presented in Figure 2.
The process commences with a training set of pre-labelled
images (DB). Due to uneven illumination, the colour retinal
images were first normalised using the histogram specifica-
tion technique [16]. The images were then further enhanced
to emphasise the contrast within the images as well as the
visibility of the main retinal anatomy edges. The retinal blood
vessels and OD, which are deemed to be “noise”, may be
removed by replacing them with null values (this process
is described in further detail in Subsection IV-B). The pre-
processed images are then converted into histograms and



the green and saturation histograms retained (for reasons
described in Section II above. These are then converted
into time series (curves) and stored in the first case base
(CB1). The images are then processed further and the optic
disc removed and replaced with null pixels. It should be
noted that removal of the optic disc is not 100% accurate,
especially in images of severely damaged retinas. However,
the classification of images with severely damaged retinas is
relatively straightforward. Thus the expectation is that such
images will be classified solely with reference to CB1 and
will not need to reference the second case base (CB2); the
ckassification process is described in further detail below.
Once the second image pre-processing stage is complete,
a second set of histograms are produced (again green and
saturation only) and CB2 generated.

Fig. 2. Case base generation

Once both CB1 and CB2 are in place the classification
of unseen data can commence. The process (Figure 3), like
the case base generation process described above, is a two
stage process. The process commences with a collection of
one or more retina images to be labeled as AMD or not
AMD. These are initially pre-processed in the same way
as before to enhance the images and remove blood vessel
data. These are then passed to a “Case Based Reasoner”
which interacts with CB1 to find the most similar curves in

the case base. Comparison is undertaken using the proposed
DTW technique (see Section V). The curves for the current
retina image are compared with those in the case base and
a similarity measure (σ) produced for each comparison. If:

1) There are no values of σ above a similarity threshold;
or

2) More than one curve, with different associated class
labels, have a similar σ,

we go onto stage two. If there is a clear “winner” the
label for the most similar curve in CB1 is selected and
the classification process, with respect to the current image,
stops. Otherwise we go onto stage two. The current image
is processed further and the optic disc removed, and then
passed to the second ”Case Based Reasoner” which interacts
with CB2. Using the same DTW technique as before, the
label associated with the most similar curve in the case base
is selected as the class for the current retina image.

Fig. 3. Classification process applied to unseen data

IV. IMAGE PREPROCESSING

This section describes the two principle image pre-
processes used during the processing of images as described
above: namely image enhancement (Sub-section IV-A) and
noise elimination (Sub-section IV-B).



A. Image Enhancement

The quality of the retinal images, which are acquired with
a digital fundus camera, is heavily effected by factors that
are difficult to control. The most common problem is non-
uniform illumination ([17], [18]), where the luminosity and
contrast variability are unevenly distributed across the image.
Figure 4(a) shows that the illumination exposure is lower
towards the perimeter of the retina but higher in the middle.
This may be caused by number of conditions, such as the
subject’s eye movement and presence of other diseases that
may block the light reaching the retina (such as cataracts),
and retinal colour variations. Thus, colour normalisation and
contrast enhancement are necessary before any diagnosis can
take place.

In this paper, a histogram specification approach was
applied to normalise the retinal images colour. This approach
is used to normalise each image to a desired property, such
as its frequency histogram, to a reference image distribution
([16], [18]). First, a reference image that displays the best
colour distribution and contrast, is carefully selected by a
trained clinician. The histograms of the reference image are
then generated. Next, the histograms of the other images are
extracted and each of these histograms is tuned to match the
reference image histograms. This approach has been proven
to produced colour normalised retinal images [18]. Figure
4(b) shows the colour normalised image of Figure 4(a).

Once the colour is normalised, contrast enhancement is ap-
plied to make objects in the retina more visible. One common
contrast enhancement technique, in the context of histograms,
is histogram equalisation (HE). HE spreads out the most
frequent intensity values to produced a better distributed
histogram. Through this transformation, the contrast of an
image is improved globally; unfortunately, the enhancement
results in some bright parts of the image being further
enhanced to the extent that they are “over exposed” and
consequently edges become less distinct. To overcome this
problem, Contrast Limited Adaptive Histogram Equalisation
(CLAHE) [19] was adopted. CLAHE computes several his-
tograms that correspond to different sections of an image and
equalise each histograms independently. The authors have
conducted empirical experiments with a variety of histogram
based contrast enhancement techniques (not reported here)
from which it was concluded that CLAHE gave the best
performance. The retina edges and the OD boundary in
Figure 4(c), to which CLAHE enhancement has been applied,
is clearly more visible and identifiable.

B. Noise Elimination

The identification of fundamental retinal anatomies, such
as retinal vessels and the optic disc, is necessary before any
complex tasks of identifying pathological entities can be un-
dertaken ([4], [5], [20]). Knowledge of the location of these
structures is often used to provide reference points to which
the detection of eye related diseases can be related. However,
the process is not straightforward because their appearances
on the fundus images are affected by illumination variations
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Fig. 4. Retinal green channel image: (a) original image, (b) colour
normalised, (c) contrast enhanced, (d) retinal vessels binary image, (e) Optic
Disc (OD) segmented binary image and (f) retinal vessels and OD removed

as well as the severity of the retinal disease. With respect to
AMD classification the optic disc in particular is sometimes
identified as drusen because they share similar features (both
are yellowish in colour, and brighter when compared to the
background of the retina). The retinal vessels, on the other
hand, may effect the colour distribution of an image, which
in our case is not desirable. It is has been established, by the
authors, that by focusing only on the colour distribution of
the retinal background and the sypmtoms of AMD (if any),
a better classifier will be produced.

To segment the retinal vessels, a common matched filters
algorithm as proposed by Chaudhuri et al. [1] was used. This
approach has been proved to achieved a good performance if
applied to a well enhanced image [12]. For the segmentation
of retinal vessels, a kernel of size 15 × 15 is generated
and rotated into twelve different orientations (0◦ to 165◦).
These kernels are applied to each pixel where only the
maximum response is kept for each pixel. To obtain a retinal
vessels binary image (Figure 4(d)), the response image is
then thresholded using the Otsu’s threshold algorithm [21].
The images with enhancement and blood vessels removed
are then used to create CB1

An approach where by the 2D retinal image is projected
onto two 1D signals (representing the horizontal and vertical
axis of the retinal image), similar to that proposed in [22]
and [5], was adopted to identify the location of the OD. The
number of horizontal and vertical edges together with the



intensity value of a retinal image were used as features to
localised the OD. Instead of using the original green channel
image, as proposed in [22], the authors propose the uses of
the retinal vessels image and the enhanced green channel
image to generate the (vertical and horizontal) 1D signals.
To identify the horizontal location of the OD, a sliding
window of double the thickness of the identified main retinal
vessel, $, and the image height was used to scan the edge
maps image from left to right and project the image features
of each window onto the horizontal axis 1D signal. The
horizontal location of the OD was identified by the maximum
peak of the 1D signal. A vertically sliding window, with the
size of the OD diameter, δ, was then used to scan the image
from top to bottom in-line with the OD’s identified horizontal
location. A vertical axis 1D signal was thus produced and the
vertical location of the OD identified by the maximum peak
of the vertical axis 1D signal. The OD is then segmented
using a template with a prescribed radius, ρ, whose value
is dependent on the image size. In this paper, the values of
$, δ and ρ have been predetermined through experiments
($ = 13 pixels, δ = 131 pixels and ρ = 45 pixels). Figure
4(e) shows the OD segmented binary image. The identified
retinal vessels and OD location can then be removed from
the retinal image (Figure 4(f)). The OD removal process is
applied to create CB2.

V. DYNAMIC TIME WARPING

As noted in Section II DTW is a well established time
series analysis technique. The particular variation of DTW
developed by the authors for comparing retinal histograms is
described in this section.

The application of DTW to time series analysis ([23],
[24]) is as follows. To map two time series T and S, of
length n and m respectively, where T = t1, t2, ..., tn and
S = s1, s2, ...sm, a n-by-m matrix will be formed, where
the (ith, jth) grid points corresponds to the alignment or
distance between any two points ti and sj . The warping
path, W , is then the set of matrix elements that identifies a
mapping between T and S, defined as W = w1, w2, ...wK ,
where max(m,n) ≤ K < m+n− 1. The distance d(ti, sj)
between two points ti and sj is used to identify potential
warping paths. There are many distance measure that may
be used, the most common is the Euclidean distance, and
this is the measure used in this paper. Thus,

d(ti, sj) = wk = (ti − sj)2 (1)

The minimal warping path is selected by calculating the
minimum cumulated distance between T and S as:

DTW (T, S) = min


√√√√ K∑

k=1

wk

 (2)

In this paper, the green channel and saturation component
histograms are extracted from the colour normalised and
contrast enhanced (as described in Subsection IV-A) retinal
images, represented in the form of histograms. The retinal

blood vessel pixels (generated as described in Subsection
IV-B) are subsequently removed by subtracting the ves-
sels intensity value from the generated histograms. These
histograms formed the first “case base” CB1 comprising:
green, G = g0, g1, ..., gi, and saturation, S = s0, s1, ..., sI ,
histograms (where I is the number of case base images and
G,S ∈ CB1). Next, the optic disc pixels are removed as
well and formed the second “case base” CB2. New “unseen”
images to be classified formed a set of J “new cases”
C, comprising: green, Ḡ = ḡ0, ḡ1, ..., ḡJ , and saturation,
S̄ = s̄0, s̄1, ..., s̄j , histograms (where J is the number of
unseen images and Ḡ, S̄ ∈ C). In the classification stage,
each curve in Ḡ is compared with the content of G using
DTW. A list of the n most similar g ∈ G (n = 5 in this
paper), sim(ḡ) is produced for each ḡ:

sim(ḡj) =
{(
g0, δ

j
0

)
, ...,

(
gn, δ

j
n

)}
(3)

δjn = DTW (ḡj , gi) (4)

DTW (ḡ, g) is the minimal warping path or distance of
the green channel “new case” histogram, ḡ ∈ Ḡ and its
most similar green channel “case base” histogram, g ∈ G
(equation 2), 0 ≤ i < I and 0 ≤ j < J . Next, a similar
distance measuring process is applied to S̄ and S only on
n saturation histograms, s ∈ S, which are deemed as most
similar to the unseen image according to sim(ḡ). This step
will produce a list of saturation curve distances, sim(s̄), for
each s̄ ∈ S̄, of length n:

sim (s̄j) =
{(
s0, δ̄

j
0

)
, ...,

(
sn, δ̄

j
n

)}
(5)

δ̄jm = DTW (s̄j , si) (6)

Finally, the final list of n most similar cases, cb1 ∈ CB1 for
each c ∈ C is generated as follows:

sim (cj) = {(cb10, µ0) , ..., (cb1n, µn)} (7)

µn =
1

2

(
δjn + δ̄jn

)
(8)

If at least two of cb1 ∈ CB1 of sim(c) have a similar µ, the
distance measure processes (equation 1 to equation 8) will
be applied to CB2. Each “new case”, c̄ ∈ C̄ will then be
classified as belonging to the same class of its most similar
histogram in the second “case base”, cb2 ∈ CB2 . Otherwise,
by default, c ∈ C is classified according to the results of
cb1 ∈ CB1.

VI. EVALUATION

To evaluate the proposed retina image classification ap-
proach a data set comprising 144 images was used1. 86 of
the image were known to feature AMD, and the remaining
56 were “normal” control images. The images were collected
as part of the ARIA project2. A Ten-fold Cross Validation

1In the context of data mining this is considered to be a relatively small
data set, however real retina image data to be used for research purposes is
difficult to acquire for reasons of ”ethical approval”.

2http://www.eyecharity.com/aria online/



(TCV) approach was adopted with respect to all the experi-
ments. To illustrate the advantage obtained by the proposed
process five sets of experiments were conducted: the first two
were using the original image histograms, Ior, and enhanced
image histograms, Ien, each, one using CB1 only, one using
CB2 only, and one using the method proposed in this paper
(using both CB1 and CB2). Three evaluation metrics were
used: Specificity, Sensitivity and Accuracy. Sensitivity
will measure the effectiveness of the classifier to identify
true positives (AMD images), while specificity is used to
measure the performance of the classifier in identifying the
normal control images (true negatives). Accuracy is used to
measure the overall performance of the classifier in term of
classifying retinal images correctly according to their class
(AMD or normal).

The results of the first two sets of experiments are
presented in Table I. The results show the feasibility of
using retinal image colour histograms (green and saturation
in this paper) in AMD image classification, and a more
distinguished class labels (AMD and normal) can be obtained
through image enhancement. This is clearly indicated by an
average improvement of 2% in all evaluation metrics used.

TABLE I
EXPERIMENTAL RESULTS GENERATED USING TCV: (I) ORIGINAL GREEN

AND SATURATION HISTOGRAMS, Ior , AND (II) ENHANCED GREEN AND

SATURATION HISTOGRAMS, Ien

TCV Specificity (%) Sensitivity (%) Accuracy (%)
run Ior Ien Ior Ien Ior Ien
1 80 40 78 89 79 71
2 50 67 88 75 71 71
3 67 67 67 67 67 67
4 50 67 67 89 60 80
5 50 67 100 89 80 80
6 67 50 67 100 67 80
7 67 33 100 88 86 64
8 40 60 67 50 57 64
9 33 50 100 75 71 64
10 50 67 50 75 50 71
Ave. 55 57 78 79 69 71

The effect of noise removal on the retinal images is shown
in Table II. Both CB1 and CB2 achieved better results
compared to the results given in Table I. From the table it can
be seen that the the use of CB2 only results in better results
than when using CB1. CB2 however, fails on a small sub-
set of the images because, as noted above, the removal of the
OD results in obscuration of drusen and consequently miss-
classifications result. As will be demonstrated (Table III), the
combination of the two processes, resolves this problem.

Table III gives the results produced using the proposed
approach. By comparing the results presented in Tables II and
III it can be seen that the proposed two stage histogram based
image classification process (using both CB1 and CB2)
outperforms classification using CB2 only, which in turn
outperforms classification using CB1 only. The combination
of both case bases achieves an average accuracy improvement
of 4% and 2% with respect to CB1 and CB2 respectively.

TABLE II
EXPERIMENTAL RESULTS GENERATED USING TCV: (I) CB1, AND (II)

CB2

TCV Specificity (%) Sensitivity (%) Accuracy (%)
run CB1 CB2 CB1 CB2 CB1 CB2
1 40 60 89 89 71 79
2 67 67 75 88 71 79
3 67 67 67 78 67 73
4 67 67 89 89 80 80
5 67 67 89 67 80 67
6 50 50 100 89 80 73
7 33 50 88 100 64 79
8 60 60 67 67 64 64
9 50 67 75 88 64 79
10 67 67 75 63 71 65
Ave. 57 62 81 81 71 73

The improvement in average specificity is 8% and 3% with
respect to CB1 and CB2, and 1% in the case of average
sensitivity. The best average performance recorded is 82%
sensitivity.

TABLE III
EXPERIMENTAL RESULTS GENERATED USING TCV FOR CB1 AND CB2

COMBINED

TCV run Specificity(%) Sensitivity (%) Accuracy (%)
1 60 89 79
2 67 88 79
3 67 78 73
4 67 89 80
5 83 67 73
6 67 89 80
7 50 88 71
8 60 67 64
9 67 88 79
10 67 75 71
Average 65 82 75

A thorough analysis of the results found that OD re-
moval effected only a small part of the histograms. Figure
5 compares a green channel histograms curve before OD
removal (but with blood vessel pixels removed), and after
OD removal. As can be seen from the figure the resulting
modifications of the histogram curves is small. Most of the
changes are located on the right side of the horizontal axis
of the histogram. This is expected since most of the OD is
constructed of the brightest pixels in the retinal image. How-
ever, the features of DTW that measures distance between a
point in a time series curve to all points in the comparator
time series curve to identify the shortest distance, makes the
classifier sensitive to small changes in the generated curves
(sufficient to give an increase in accuracy of 2% as shown
in Table III). Consequently, a more distinctive pattern can
be observed between classes (AMD and normal classes) that
reflects the classification performance. It is also worth noting
that all images that went to the second stage classification are
those images where the OD was successfully segmented (i.e.
there were no images where the OD could not be identified).
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Fig. 5. Green channel histogram curves before and after OD removal

VII. SUMMARY AND CONCLUSIONS

An approach to classify retinal images, in the context of
AMD, using histograms and a DTW comparison technique
has been proposed in this paper. Two content based his-
tograms, green and saturation, were used to represent each
image. Prior to histograms extraction, pre-processing was
applied so as to enhance the images and remove unwanted
noise (blood vessels, or blood vessels and the OD). The
enhancement was directed at reducing both colour and illumi-
nation variation. A 2D matched filter approach was applied
to filter out retinal blood vessels. The main advantage of this
technique was simplicity. OD removal was achieved using
2D to two 1D projection for OD localisation.

The idea of employing a two stage image classification
process founded on two case bases has been demonstrated, at
least in the case of the AMD application, to produced better
classification results than one stage methods. In this paper,
the first case base, CB1, comprised histograms without reti-
nal blood vessels information. The second case base (CB2)
also excluded OD information. The best result achieved was
sensitivity of 82%. It is worth noted that in other work [6],
the mean sensitivity achieved through graders observation on
different set of retinal images was 86%.

The authors intend to take the work forward by applying
an image segmentation technique that will allow different
parts of the retina images to be analised independently.
The intention is to focus the classification process on the
central area of the retinal image (the macula), the most likely
location for drusen. The authors are also investigating ways
to increase the size of the available data set.
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