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Abstract— We present an exemplar-based learning approach bootstrapping. This guaranties a low amount of errors in
for incremental and life-long learning of visual categories. The the estimated labels, but this data most probably is less
basic concept of the proposed learning method is to subdivide \,sefy| to enhance the classifier performance, because it is

the learning process into two phases. In the first phase we utilize Iread I ted [171. T this limitati
supervised learning to generate an appropriate category seed, already well represented [17]. To overcome this limitation

while in the second phase this seed is used to autonomouslySeMmi-supervised learning can be extended by active legarnin
bootstrap the visual representation. This second learning phase [13], [15], where the learning system requests the tutedr
is especially useful for assistive systems like a mobile robot, labeling for the currently worst represented training data
becagse the visual knowledge_can be enhanced even_if N0 |4 contrast to this we propose to use temporal context
tutor is present. Although for this autonomous bootstrapping . . R .
no category labels are provided, we argue that contextual Inforr.natlon to ov'ercome.thlsllmltatlon rather than redires
information is beneficial for this process. Finally we investigate additional user interactions. To use the temporal context,
the effect of the proposed second learning phase with respect object views that belong to the same physical object have
to the overall categorization performance. to be identified first. In offline experiments this typicallgrc
be easily achieved. For an autonomous system this requires
the tracking of the object over a longer period, so that it
In the recent decades a wide variety of category learfis most probable that the corresponding views belong to
ing paradigms have been proposed ranging from generati¥fe same physical object. Based on this object view list a
[10], [14] to discriminative models [6], [18]. However, nos majority voting can be applied. The advantage of such voting
research on this topic focused so far on supervised leafg-that not only already well represented views are added to
ing. The major advantage of supervised over unsupervis@ge training ensemble, but also currently wrong categdrize
learning is the higher categorization performance, whieee tyiews of the same object. We believe that such a combination

time consuming and costly collection of accurately labeleflas the highest potential effect with respect to an incnegsi
training data is its fundamental drawback. In the context afategorization performance.

assistive systems this means that whenever the SyStenﬁShOU|A|though Semi_supervised |earning is a common learn-

enhance its category representation a tutor has to specifyy technique (see [19] for an overview), in the context
the corresponding labels. Although we consider the interagf incremental and life-long learning it has gained so far
tion with a tutor as a necessary part of the early learningyuch less interest. We consider the ability of increasing
phase, we want to enable the system to more and mo#@ visual knowledge in a life-long learning fashion as a
autonomously bootstrap its acquired category representat hasic requirement for an autonomous system. Nevertheless
Therefore we investigate in this paper the combination &ombining semi-supervised with life-long learning is more
semi-supervised and life-long learning to reduce the re#yes challenging compared to typical semi-supervised learning
of tutor interactions. approaches. This is because for life-long learning tasks th

The basic idea of semi-supervised learning is to comearning method commonly has only access to a limited
bine supervised with unsupervised learning [12], [2]. Th@mount of training data, so that the bootstrapping is ndymal
advantage of this combination is typically a considerablpurely based on the unlabeled training views and their
higher performance compared to purely data driven unsupgutonomously assigned label information. This is in cattra
vised methods, whereas the labeling effort can be strongly typical semi-supervised approaches, where the labeled
reduced. Typically for semi-supervised learning the ahiti and unlabeled training views are combined to one single
representation is trained based on the labeled portioneof thaining set. Furthermore to cope with the “stability-icisy
training data. Afterwards this initial representation i$ized  dilemma” [1] of life-long learning tasks on the one hand sta-
to estimate the correct class labels for the unlabeledgorti pjlity considerations are required to avoid the “catadtiop
of the training data. Commonly only unlabeled trainingorgetting effect” [3] of the learned representation, ehil
examples with high classifier confidence are used for thgr the plasticity the allocation of new network resources i

o _ necessary. It is obvious that this resource allocation is co
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Fig. 1. [llustration of the Category Learning Framework. The learning with our proposed category learning vectomtjmation (cLVQ) approach
is based on a limited and changing training set. Based on thently available training vectors® and the corresponding target labelsthe cLVQ
incrementally allocates new representation nodes andatsgecific features. The selected features sets for esiearyc enables an efficient separation
of co-occurring categories (e.g. if an object belongs tessvcategories, which is the standard setting in our experts) and the definition of various
metrical “views” to a single nodev*. The categorization decision itself is based on the alimtat VQ nodesv* and the low-dimensional category-specific
feature spaces.

tions of the basic cLVQ approach and the context dependentle that automatically determines the number of required
estimation of category labels is described in Section Hl. Irepresentation nodes. The final humber of allocated nodes
Section 1V the experimental results are summarized and ave® and the assigned category labef$ corresponds to the
discussed in Section V. difficulty of the different categories itself but also to the
within-category variance. Finally the long-term stalyilif
these incrementally learned nodes is considered based on an
Our proposed category learning approach [8] enables iidividual node learning rat®* as proposed in [7].
teractive and life-long learning and therefore can beagdi
for autonomous systems, but so far we only considered
supervised learning based on interactions with an human
tutor. In the following we briefly describe the learning Additionally a category-specific forward feature selegatio
framework as illustrated in Fig.1. In the presented paper waethod is used to enable the separation of co-occurring cate
utilized this framework for creating the category seed in gories, because it defines category-specific metrical “siew
purely supervised fashion. The proposed learning approaoh the representation nodes of the exemplar-based network.
is basically based on an exemplar-based incremental fearniDuring the learning process it selects low-dimensional sub
network combined with a forward feature selection methodets of features by predominantly choosing features that
to enable incremental and life-long learning of arbitranoccur almost exclusively for this particular category. Fur
categories. Both parts are optimized together to find a balanthermore only these selected category-specific featues ar
between the insertion of features and allocation of represeused to decide whether a particular category is present or
tation nodes, while using as little resources as possiblifid not as illustrated in Fig.1. For guiding this selection mse
following we refer to this architecture as category leagnina feature scoring valuk. is calculated for each categoey
vector quantization (cLVQ). and featuref. This scoring value is only based on previously
To achieve the interactive and incremental learning capaeen exemplars of a certain category, which can strongly
bility the exemplar-based network part of the cLVQ methoadhange if further information is encountered. Therefore a
is used to approach the "stability-plasticity dilemma” &4 continuous update of thé.; values is required to follow
long learning problems. Thus we define a node insertiois change.

II. CATEGORY LEARNING VECTORQUANTIZATION



A. Distance Computation and Learning Rule are updated in the following way:

The learning in the cLVQ architecture is based on a By — Hey _ (4)
set of high—dimensional and sparse feature vectdrs= < H.;+ H.y
(1, @), whereF" denotes the total number of featurese yariablest,; and ., are the number of previously
Each x* is assigned to a list of category labets =

seen positive and negative training examples of category
where the corresponding featufewas active £; > 0). For
each newly inserted object view, the counter valiig: is
updated in the following way:

(ti,...,t5). We useC to denote the current number of
represented color and shape categories, whereastgach
{~1,0,+1} labels anx’ as positive or negative example of
categoryc. The third statg. = 0 is interpreted as unknown ‘ ‘
category membership, which means thatdllwith ¢ = 0 Hep:=Hep+11if 2% >0 andt] = +1, (5)
have no influence on the representation of category
The cLVQ representative nodes® with k = 1, ..., K are ~ B ) ]
built up incrementally, wheré denotes the current number Hep:=Hep + 11 2% >0 andt; = —1. (6)
of allocated vectorsv. Eachw” is attached to a label vector The scoreh.; defines the metrical weighting in the cLVQ

k k i :
u” whereu; € {~1,0,+1} is the model target output for yonresentation space. We then choase= h.; for all f €
categorye, representing positive, negative, and missing Iabegc and \.; = 0 otherwise.

where H..; is updated as follows:

; NI kmin 2 ; ;
output, respectively. The winning nodeg»(“)(x’) are o our learning architecture we assume that not all cate-
calculated independently for each categaryherekuin(c)  gories are known from the beginning, so that new categories
is determined in the following way: can occur in each training epoch. Therefore if categery

r with the category labet’ = +1 occurred for the first time

kmin(c) = arg min Z)\cf(mjf — w?)z, VEk with u £ 0. in_ the current training epoch, we initialize this categery
k =1 with a single feature and one cLVQ node. We select the
(1) featurev. = argmaxy(h.s) with the largest scoring value
where the category-specific weights; are updated contin- and initialize S. = {v.}. The training vectow’ is selected
uously inspired by the generalized relevance LVQ proposeas the initial cLVQ node, where the selected featurédas
by [4] . We denote the set of selected features for an actithe highest activation, i.ew® ™! = x9 with 24 > z_for
categoryc € C asS.. We choose\.; = 0 for all f ¢ S., alli. The attached label vector is chosenugs = +1 and
and otherwise adjust it according to a scoring procedurzero for all other categories.
explained later. Eackv~i»(¢)(x?) is updated based on the = | carmni .
. Learning Dynamics

standard LVQ learning rule [9], but is restricted to feature
dimensionsf € S..: All changes of the cLVQ network are only based on the

limited and changing set of training vectoxs. During a
w’;min(c) = w’;min(c) + pu ©Fmin() (g _w’;min(c)) Vfe S, single learning epoch of the cLVQ method an optimization
‘ ‘ (2) loop is performed iteratively as illustrated in Fig. 2. The
wherey, = 1 if the categorization decision for’ was correct, basic concept behind this optimization loop is to apply $mal

otherwisey, = —1 and the winning nodav*==(¢) will be changes to the representation of erroneous categories by
shifted away fromx®. Additionally ©%=in(¢) js the node- testing new features. and representation nodes’ that may
dependent learning rate as proposed by [7]: lead to a considerable performance increase for the current
set of training vectors. A single run through the optimiaati
OFmin(©) — @y exp < akmi“(c)> . 3) loop is composed of the following processing steps:
Step 1: Feature TestingFor each category with remain-

ing errors a new feature is temporally added and tested. If
a categoryc is not present in the current training set or is
Error free then no modification to its representation is ieplpl
The feature selection itself is based on the observablaitigi
vectorsx’, the feature scoring valués ; and theejf values.
The ejf is defined as the ratio of active feature entries
(xjc > 0.0) for feature f among the positive training errors
The learning dynamics of the cLVQ learning approactE. of classc. The Ef is calculated in the following way:
is organized in training epochs, where at each epoch only i i Konin (i
a limited amount of objects and their corresponding views B = {ilte = +1 At # um (3}, (7)
are visible to the learning method. After each epoch somehere thet: € {—1,0,+1} is defined as target signal for
of the training vectorsx’ and their corresponding targetx’ and u*mi» is the label assigned to the winning node
category valueg’ are removed and replaced by vectors ofw*mi»(¢)(x?) of categoryc.
a new object. Therefore for each training epoch the scoring For the feature testing a candidate should be added to
valuesh.r, used for guiding the feature selection procesghe category-specific feature sgt that potentially improves

Here O is a predefined initial values is a fixed scaling
factor, anda” is an iteration-dependent age factor. The ag
factor a* is incremented every time the corresponding
becomes the winning node.

B. Feature Scoring and Category Initialization



all errors solved for errors for category ¢

. . optimization step we insert new representation nodés
category ¢ — stop learning  occured - start learning

until for each erroneous categoryat least one new node
is inserted. As categorization labei§ for these nodes only
the correct targets labels for the categorization erroes ar
assigned. For all other categoriethe corresponding® = 0,
or no features |eft keeping all error free categories unchanged.
selec n? add Agai lcul .
new feature gain we calculate the performance increase based on all
gain <=¢g* gain > ¢’ currently available training vectors. If this increase tate-
del node keep node

until errors solve

gory c is above the threshole?, we make no modifications
to LVQ node labels of the newly inserted nodes. Otherwise
_ -,  delfeature keepfeature \ye set the labels* of this set of newly inserted nodag*
gain <=g* gain >& / to zero. If due to this evaluation step alf become zero
seIec{E1 en 8ner<])ggevector then we remove the corresponding.
Step 3: Stop condition. If all remaining categorization
errors for the current training set are resolved or all foesi
Fig. 2. lllustration of the cLVQ Optimization Loop. The basic idea of featuresf of erro_n_eous categories ar.e tested th.en we .
this optimization loop is to make small modifications to the reprgation of start the next training epOCh' Otherwise we continue this

categories where categorization errors on the availahieifig vectors occur. Optimization loop and test further feature candidates and
If the gain in categorization performance, based on all al#l training LVQ representation nodes.
examples of category, is above the insertion threshold the modification is
kept and otherwise it is retracted.
I11. UNSUPERVISEDBOOTSTRAPPING OFCATEGORY

REPRESENTATIONS

the categorization performance of categanpy having a Our focus is the life-long learning of visual representa-

high scoring valueh.;. Additionally the feature candidate .. . L .
o . . tions. For such learning tasks normally it is unsuitable to
should also be very active in the remaining training errdrs g

: : 2 -store all previously seen training vectors. Thus we decided
this category to quickly resolve all remaining errors ofsthi : ; . .
: ] that the learning during the bootstrapping phase is onlgdbas
particular category. Therefore we choose:

on unlabeled training views and their estimated category

Ve = arg max(ejf + hey) (8) labels, which is distinct from most commonly used semi-
fgse = supervised learning methods. Before the cLVQ modifications

and addS, := S.U{v.}. The added feature dimension modi-are described in more detail, we first define the majority vot-

fies the cLVQ metrics by changing the decision boundaries afig schema used for the autonomous estimation of category

all Voronoi clusters assigned to categerywhich potentially labels for the unlabeled training views.

reduces the remaining categorization errors. Thus based on

all training vectorsx’ we calculate the actual categorizationA. Autonomous Estimation of Category Labels

performance of the erroneous categories. If the performanc

; . ) For the autonomous estimation of category labels we first
increase for category is larger than the prespecified thresh- gory

Id e th . tlv added and otherwise i gneasure the network response for all available unlabeled
old e” thew, 1S permanently added and OINErwise 1S remove aining views based on the previously supervised trained
and excluded for further training iterations of this epoch.

Furthermore in rare cases also the removal of alrea f tegory seed. For each individual objectn this current
. : L : aining set we calculate the detection ratés = D},
selected features is possible. This is done if the total rarmb g 0c/ Qo

of negative errorgtE. > #E, where theE is analogous andd,, = Doc/Qo, Where theq), is defined as the number

X of unlabeleofctrainin views of objeet. The measured’
to E defined as: 9 | oc

indicates how reliable the categorycan be detected in the
E- = {i|t! = =1 At] # ubmin(x7)}. (9) views of objecto, while the rated,, indicates how probable
the category is not present in these views. Furthermore we
count the number of object views indicating the presence
%ch) and absencel{;_) of categoryc in the following way:

The only difference is that in this case a featyrec S.
is removed from the set of selected featuigs and the
performance gain is computed for the final decision on th
removal. D} = DF +1if ubmin(x) = 41 (10)

Step 2: LVQ Node Testing.Similar to Step 1 we test new
LVQ nodes only for erroneous categories. In contrast to thend
node insertion rule proposed in [7], where nodes are inderte D, =D, +1fif u’;m" (x) = —1, (12)
for training vectors with smallest distance to wrong wirqnin
nodes, we propose to insert new LVQ nodes based on trainimfpere the sum oD}, + D, = Q,.
vectorsx® with most categorization errors. This leads to a Based on these detection rates and the predetermined
more compact representation, because a single node typicahresholds e+ and ¢~ the correct target valueg: e
improves the representation of several categories. In this-1,0,+1} are estimated for all views of the same object.



The assignment of the target values is done in the followinghe fundamental effect of the modulation of and €2 is

way: that it becomes distinctly more difficult to allocate new
L e ot + resources the more unreliable the corresponding estimated
T e > tegory labels b Therefore the allocation of
f=d Z1 . ifd<—et &dn > e (12) category labels become. Therefore the allocation of cagego

unspecific or even erroneous network resources should be
strongly reduced.

The selection ofe™ and e~ is crucial with respect to the  Also for the adaptation of the representation nodésthe
potential performance gain of this bootstrapping phase. #riginal cLVQ learning rule (see Eq. 2) is multiplied with
these values are chosen too conservative mangecome 1 . Besides the node dependent learning @fei»(¢) this
zero and the corresponding object views have no effegaiodification guarantees the stability of the learned visual
to the representation. On the contrary the possibility ofategory representation. The update step for the winning
mislabeling increases if these values are low. In general onode w*=i=(¢) of categoryc is calculated as follows:

cLVQ approach is robust with respect to a smaller amount, Fin () i Foin ()i Fomin(©)

of mislabeled training vectors, because additional networy = wy +7ocpO ) (2 —wy ) VfeS.,
resources are only allocated if the performance gain isebov o o o (14)

the insertion thresholds ande2. Nevertheless if the number Where ;. is the reliability factor and the: indicates the

of wrongly labeled training views becomes to large th&Orrectness of the categorization decision.

0 : else.

categorization performance can possibly also decrease. ~ Besides this modulation of the learning parameters,
o _ weighted with reliability, the continuous update of thersco
B. Modification of the cLVQ Learning Approach ing valuesh.; was deactivated for this bootstrapping phase,

For our first evaluation of the unsupervised bootstrappingecause these values are most fragile with respect to errors
of visual category representations we keep the incremenialthe estimation process of category labels. A larger amoun
learning approach as in [8]. Thus also in this bootstrappingf such errors could strongly interfere globally with the
phase the learning process is subdivided into epochs aptevious trained category representations. This can cause
also the overall cLVQ learning dynamics is reused. Thig global performance decrease of all categories, while all
means the category representation is enhanced by makigitper modifications due to the allocation of new features and
small changes to the category representation by seleating nrepresentation nodes have only a local effect.
category-specific features or by allocating additionalreep
sentation nodes. Furthermore the same learning parameters
like the learning rated, the feature insertion threshold ~A. Image Ensemble
and node insertion threshotd are used. As experimental setup we use an image database com-

Although the same learning parameters are utilized we stilosed of 44 training and 33 test objects as shown in
want to express the reliability of the autonomously estédat Fig. 3. This image ensemble contains objects assigned to
category labels. This means if the reliability is low onlyfive different color and ten shape categories. Each object
small changes with respect to the modification of existingsas rotated around the vertical axis in front of a black
nodes, the allocation of new category-specific features am@ckground. For each of the training and test objects 300
representation nodes should be applied. To achieve tlgisteffviews are collected. The views of all training objects are
all learning parameters are modulated based on the panamétgthermore subdivided into labeled and unlabeled views as

IV. EXPERIMENTAL RESULTS

ri € {0,...,1} that is defined as follows: illustrated at the bottom of Fig. 3. In general out of all
At o if £ = 41 300 views are 200 used to train the seed of the category
R B I (13) 'epresentation in a supervised manner, while the remaining
o 0 - i tz —o. 100 object views (view range 50-100 and 150-200) are used

A for the unsupervised bootstrapping of this representation
Ther;,. value is assigned to each unlabeled object views arthis separation into labeled and unlabeled object views
is equal for all views of one physical object means that for the autonomous bootstrapping the cLVQ has

For both insertion thresholds ande? this ;. modulates to generalize to a quite large unseen angular range of object
the measurement of the performance gain after the insertigiews. Compared to a random sampling of the unlabeled
of a new featurev. or representation nodev®. In the object views this is more challenging, because for random
basic cLVQ each erroneous training view that could beelected views the appearance difference to already seen
resolved by such slight modification of the representatiofabeled views would be considerably smaller.
is counted with1.0. In contrast to this for the modified )
version of the cLVQ each resolved erroneous training view i8- Feature Representation
counted as_ only. This means that the required amount of For the representation of visual categories we combine
training vectors, necessary to reach the insertion thidshosimple color histograms with a parts-based feature repre-
is inversely proportional to the correspondin§, values sentation, but we do not utilize this a priori separation for
(e.g. if for all current training views . = 0.8 a factor our category learning approach. Therefore for each object
of 1.25 views are required compared to the basic cLVQYiew all extracted features are concatenated into a single



Training Objects Test Objects

— Labeled Training Views ---Unlabeled Training Views

Fig. 3. Image Ensemble At the top of this figure all 44 training and 33 test objects sftewn. Each object was rotated around the vertical axis|tieg
in overall 300 views per object. The images of the trainingeoty are splitted into a set of labeled and unlabeled viewsuatrated at the bottom.

structureless feature vector. We use color histogramsaugecaviews are used, we are additionally interested in how the
they combine robustness against view and scale changegrall performance changes if more an more object views
with computational efficiency [16]. The parts-based shapef the unlabeled training set are presented.

feature extraction [5] is based on a learned set of category-For the parameter search of the detection thresholds, de-
specific feature detectors that are based on SIFT descrificted in Fig. 4, we first trained five different cLVQ networks
tors [11]. Commonly these descriptors are only determing@l a supervised manner. Based on this representation the
around some highly structured interest points, while theategorization performance for the 33 distinct test okjést
used feature extraction method applies them at all imaggiculated. The measured performance is used as the fEaselin
position. This especially allows the representation of lesperformance. Afterwards the complete set of unlabeled-trai
structured categories. For the final shape feature respongg views are randomly and incrementally presented to the
only the maximum detector value is selected, so that ahodified cLVQ approach and the detection threshefdand

spatial information is neglected. ¢~ are varied. In this evaluation we changed the threshold
o et € {0.2,021,...,1.0} and e~ € {0.9,0.91,...,1.0}.
C. Categorization Performance We selected a distinctly smaller range for the threshold

As already mentioned for the experimental evaluation drecause due to the selection of low-dimensional featuse set
our semi-supervised category learning framework theitigin the rejection of categories is typically nearly perfect.
is splitted into two training phases. The first training phiss For this investigation we expected an approximately con-
based on the basic supervised cLVQ training. Afterwards ttg$ant performance for the color categories, because the use
categorization performance on the distinct test set isuealccolor histograms should be similar to the previously seen
lated as baseline performance. In the second training phdgbeled object views. In contrast to this for the shape cate-
the categories are bootstrapped based on the incremergiafies we expect an increased categorization performance,
presentation of the unlabeled training set. Again we cateul because the angular range of the unlabeled object views
the categorization performance to measure the effect sf ttgovers approximately one third of the overall object ratati
second learning phase. Additionally are the fluctuations in the feature responses o

In general we consider two different experiments. Théhe extracted parts-based features larger during the tobjec
first experiment investigates the influence of the detectioietation compared to the color features, so that the urgabel
thresholdset and ¢~ that are used for the autonomoustbject views contain further information with respect te th
category estimation of the unlabeled training views. A rop representation of shape categories.
selection of these thresholds is important for a potentéial p  The results of the threshold search experiment are shown
formance increase during the bootstrapping phase. Inasintrin Fig.4. As expected in an intermediate range of the
to the first experiment, where all additional unlabelediirei  thresholde™ (0.4 < et < 0.6) a performance increase
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Fig. 4. Influence of the Detection Thresholds to the Categorization Fig. 5. Influence of the Detection Thresholds to the Absolute Labetig

Performance. For this evaluation five different cLVQ networks are first Errors. We repeated the experiment shown Fig. 4 with five different
trained in a supervised manner. The resulting category septation and cLVQ networks, where in this evaluation we measured the gessanount
its corresponding performance on the distinct test set id asihe baseline of wrongly labeling for different detection thresholds. A&spected the
performance. For the second learning phase we incrementdfigdathe  average number of wrongly classified unlabeled object viewseases with
complete set of unlabeled training views and vary the detedtiresholds  decreasing detection thresholkds ande~. Additionally it can be seen that

et ande™. It can be seen that for the color categories soon the perfarena there is a slightly higher tendency of wrongly labeled sheategories.
drops ifet < 0.8, while for the shape categories in the intermediate range

of 0.4 < et < 0.6 a performance increase can be measured.

in direct comparison with the shape categories, the ladpelin
can be measure for the shape categories. Although we €gors are not a plausible explanation of this performance
not expected a performance gain for the color categorig§op. During the bootstrapping process we noticed that,
the performance drop for™ < 0.8 is somehow astonish- compared to the supervised learning part, a considerably
ing. The amount of labeling errors could be one potentidligher amount of shape features are selected for the color
reason for this performance drop. Therefore we performeztegories. These additionally allocated shape featues a
a similar threshold search experiment and focused on tfeost probable the cause for the slight performance decrease
labeling errors with respect to different detection thadh.  of the color categories. It indicates that for the remaining
The results depicted in Fig. 5 corresponds to the absolut@tegorization errors of color categories some shapertatu
amount of wrongly labeled bootstrapping views for the fivéespond as stable as the color features, so that the greedy
color and ten shape categories averaged over five differdggture selection method has difficulties to distinguisénth
cLVQ networks. As expected the average number of wrongijom the correct color features.
classified unlabeled object views increases with decrgasin For our second evaluation shown in Fig. 6 we selected
detection thresholde* and e~. The number of errors for the optimal detection thresholds for the shape categories
color and shape categories are in the same range with(e = 0.5 and e~ = 0.9) and investigated the effect of
slightly higher tendency for wrongly labeled shape catethe performance change during the bootstrapping process by
gories, reflecting the lower categorization performance afdding more and more unlabeled object views. Although in
shape categories. The results in Fig. 5 show that, at leake previous investigation we could measure a performance
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for the shape categories achieve an enhancement of the
- {1 categorization performance. It should be mentioned that
this performance increase can already be measured for a
quite low number of additional unlabeled object views by
allocating further representation nodes and categorgiépe
features. On the contrary for the color categories no pesiti
effect with regard to the performance could be measured.
Unfortunately partially also a performance decrease can
occur for such kind of categories, which is undesired for the
______________________________________ 7 autonomous bootstrapping. Therefore we propose to egtimat
the thresholds™ and ¢~ for each category independently
to discriminate between both visual modalities. How these
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