
The Leaky Integrate-and-Fire Neuron: A Platform for Synaptic

Model Exploration on the SpiNNaker Chip

A. D. Rast, F. Galluppi, X. Jin and S.B. Furber

Abstract— Large-scale neural hardware systems are trend-
ing increasingly towards the “neuromimetic” architecture: a
general-purpose platform that specialises the hardware for
neural networks but allows flexibility in model choice. Since the
model is not hard-wired into the chip, exploration of different
neural and synaptic models is not merely possible but provides
a rich field for research: the possibility to use the hardware to
establish useful abstractions of biological neural dynamics that
could lead to a functional model of neural computation. Two
areas of neural modelling stand out as central: 1) What level
of detail in the neurodynamic model is necessary to achieve
biologically realistic behaviour? 2) What is role and effect
of different types of synapses in the computation? Using a
universal event-driven neural chip, SpiNNaker, we develop a
simple model, the Leaky-Integrate-and-Fire (LIF) neuron, as a
tool for exploring the second of these questions, complementary
to the existing Izhikevich model which allows exploration of the
first of these questions. The LIF model permits the development
of multiple synaptic models including fast AMPA/GABA-A
synapses with or without STDP learning, and slow NMDA
synapses, spanning a range of different dynamic time con-
stants. Its simple dynamics make it possible to expand the
complexity of synaptic response, while the general-purpose
design of SpiNNaker makes it possible if necessary to increase
the neurodynamic accuracy with Izhikevich (or even Hodgkin-
Huxley) neurons with some tradeoff in model size. Furthermore,
the LIF model is a universally-accepted “standard” neural
model that provides a good basis for comparisons with software
simulations and introduces minimal risk of obscuring important
synaptic effects due to unusual neurodynamics. The simple
models run thus far demonstrate the viability of both the LIF
model and of various possible synaptic models on SpiNNaker
and illustrate how it can be used as a platform for model
exploration. Such an architecture provides a scalable system for
high-performance large-scale neural modelling with complete
freedom in model choice.

I. UNIVERSAL NEURAL HARDWARE: THE NEED FOR

MODEL LIBRARIES

WHAT is the purpose of dedicated neural network

hardware? In the past, the answer was easy: model

acceleration. However, rapid progress in standard digital

hardware often outpaced the development cycle for first-

generation neural chips, so that by the time they were avail-

able software simulators could outperform them anyway [1].

FPGA implementations offered hardware-like performance

gains with greatly reduced design time [2], and added a new

dimension: the ability to implement different models on the

same platform and explore various architectural tradeoffs [3].

However, power and routability limitations with FPGA’s ef-

fectively restricted their role to model prototyping [4]. Today,

The authors are with the School of Computer Science, The University of
Manchester, Manchester, UK (email: {rasta}@cs.man.ac.uk).

Fig. 1. SpiNNaker test chip

however, the rate of progress in standard digital hardware

is flattening out, and the configurable-model concept that

the FPGA introduced has given rise to new neural devices

that offer various levels of model configurability without the

scalability problems of the FPGA: “neuromimetic” chips [5].

These chips alter the nature of the research question: now it

is not simply a matter of how to scale a neural model to large

sizes but what model to scale.

The question of which neural network models are the

“right” ones depends rather critically on what the purpose of

the model is. A “one-size-fits-all” hardware neural model is

thus unrealistic and somewhat irrelevant. Different research

groups, with different goals, may want to use the hardware

in different ways, and it is unrealistic to expect them to

have, or even to acquire, the low-level hardware familiarity

necessary to develop efficient models for universal neu-

romimetic chips. Configuring such chips can involve careful

optimisation: the mapping of model to chip may be unusual

and require intimate hardware knowledge [6]. Rather, the

hardware developers should provide a library of different

reference models, giving experimenters at minimum some

models to get started with, and more generally a reference

template that third-party developers could use to develop still

further models and expand the hardware’s model support.

The beginnings of a model library are therefore a crucial

step in the adoption of neuromimetic hardware for neural

simulation.

With the SpiNNaker chip (fig. 1), we have introduced

a neuromimetic platform for large-scale neural modelling

ideal for exploring the effects of different models. Previously,

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3959

Fig. 2. SpiNNaker Architecture. The dashed box indicates the extent of
the SpiNNaker chip. Dotted grey boxes indicate local memory areas.

we have introduced basic models for neural [7] and synap-

tic [8], [9] dynamics that illustrate the basic functionality

of the device. However, these models are illustrative rather

than prescriptive; having developed them we now wish

to introduce further models to build a neural library and

provide further examples to third-party developers of how

to configure SpiNNaker. We have focussed on an important,

popular neural model - the leaky-integrate-and-fire (LIF)

model, and used it as a platform to develop other synaptic

models, notably an NMDA synapse with slow voltage-gated

dynamics. These models introduce a variety of techniques

not yet demonstrated in the original reference models, while

using and extending important core techniques from those

models that show their general nature. Developing different

neural models is a useful way not only to extend hardware ca-

pabilities, but to establish principles of efficient computation

- a basis for approaching the question of what abstractions

of neural function are useful.

II. THE SPINNAKER ASYNCHRONOUS EVENT-DRIVEN

ARCHITECTURE

The SpiNNaker chip (fig. 2) is a universal neuromimetic

platform containing programmable processing blocks em-

bedded in a configurable asynchronous interconnect. Three

major goals have driven design decisions: complete system

virtualisation - where possible components are generic and

configurable; analogy to biology - components use the same

model of computation as “real” neural networks, provided

this does not compromise their universal capabilities; and off-

the-shelf internals - where suitable predesigned components

(“IP”) already exist, the system uses them. The primary

features of the architecture are:

Native Parallelism:

“Real” neural networks are massively parallel pro-

cessors. Native parallelism is therefore basic to the

neuromimetic architecture. There are multiple (2 in

the present implementation, 20 in a forthcoming

version) general-purpose ARM968 processors per

device. Each processor has its own private sub-

system containing various devices to support neu-

ral functionality: a communications controller that

handles packet-based I/O traffic, a DMA controller

that provides transparent access to synaptic data

residing off-chip in a separate memory, and a Timer

to generate fixed time steps where models need

them. Each “processing node” operates completely

independently, using only local information to con-

trol execution and operating asynchronously from

other processing nodes.

Event-Driven Processing:

Biological neurons communicate primarily through

spikes: short-duration impulses whose precise

shape is usually considered immaterial. Corre-

spondingly, SpiNNaker uses Address-Event Repre-

sentation (AER) to transmit neural signals between

processors over a configurable packet-switched

asynchronous interconnect. AER is an emerging

neural communication standard [10] that abstracts

spikes from neurobiology into a single atomic

event, transmitting only the address of the neuron

that fired. SpiNNaker extends the basic AER stan-

dard with an optional 32-bit payload. This fabric

implements the support infrastructure for the event-

driven model.

Incoherent Memory:

The notion of controlled shared access to a central

memory store simply does not exist in biology; neu-

rons update using purely local information. Thus

any processor may modify any memory location

it can access without notifying or synchronising

with other processors. Each SpiNNaker processor

has access to 2 primary memory resources: its

own local “Tightly-Coupled Memory” (TCM) and

a chip-wide Synchronous Dynamic Random Access

Memory (SDRAM) device, neither of which require

or have support for coherence mechanisms. The

TCM is only accessible to its own processor and

contains both the executing code (in the 32KB

“Instruction TCM” (ITCM)) and local variables (in

the 64KB “Data TCM” (DTCM)). The SDRAM,

private to each chip but global to its processors,

contains synaptic data (and possibly other large

data structures). The processor’s DMA controller

handles synaptic data transfer over a >1GByte/s

external link, making the synapse appear virtually

local to the processor by bringing it into DTCM

3960

when an incoming packet arrives [11]. Since all

data a given processor accesses is effectively pri-

vate, SpiNNaker needs no coherence checking.

Incremental Reconfiguration:

Biological neural networks are plastic: the physi-

cal topology changes during operation. Likewise,

the structural configuration of neuromimetic hard-

ware can change dynamically while the system

is running. SpiNNaker uses a distributed routing

subsystem to direct packets through the network.

Each chip has a packet-switching router that can

be reprogrammed in part or in full by changing the

routing table, thus making it possible to reconfigure

the model topology on the fly. Under the AER

format, the router uses a source routing protocol to

direct traffic. Previous work ([12], [13]) describes

the design of and configuration procedure for this

network: the “Comms NoC”.

III. LIF MODEL IMPLEMENTATION

A. Implementation Constraints

Implementation of the LIF model must consider SpiN-

Naker’s hardware architecture. In particular, the following

details of the hardware act as model design constraints:

Elementary mathematical operations only

The ARM968 has basic add and subtract, logical,

shift, and multiply operations, but does not have

native support for division, transcendental func-

tions, and other nonlinear computations. Therefore,

the model must express its processing in terms of

simple polynomial mathematical operations.

32-bit fixed-point representation

Similarly, the ARM968 has no floating-point unit.

The model needs to translate any floating-point

quantities into fixed-point numbers, while determin-

ing a position for the decimal point, hence assigning

a fractional precision.

Limited local memory

SpiNNaker’s individual processors have 64k data

memory and 32k instruction memory each. This

effectively prohibits having synaptic data local at

all times and limits the number of parameters.

Memory management must therefore attempt to

store as much information as possible on a per-

neuron rather than per-synapse basis.

Limited time to process a neuron

To stay within the real-time update requirement,

each neuron must be able to update its state in

the time between external events. If a processor is

modelling multiple neurons, this means updating at

worst in 1
N Rmax, where N is the number of neurons

modelled and Rmax is the maximum event rate.

Synaptic data only available on input event

Because of the limited memory, SpiNNaker stores

synaptic data off-chip and brings it to the local

processor only when an input event arrives. Synapse

processing must therefore be scheduled for a fixed

time after the input, and can only depend on infor-

mation knowable at the time the input arrived.

These constraints allow us to form a general specification for

SpiNNaker neural models using a set of design guidelines in

combination with an abstract processing model.

B. Implementation Rules

To meet SpiNNaker’s hardware constraints with an effi-

cient, accurate model we introduce a set of design rules that

help to define the model implementation. These rules are

indicative but not forcing, so that while models generally

obey this pattern they can in specific details deviate from it.

Defer event processing with annotated delays

The deferred-event model [8] is a method to al-

low event reordering. Under this scheme we only

perform minimal processing at the time of a given

event, storing state information in such a way as to

be available to a future event, so that processes can

wait upon contingent future events. Future events

thus trigger state update relevant to the current

event.

Solve differential equations using the Euler method

The Euler method is the simplest general way to

solve nonlinear differential equations. In it, the

processor updates the equations using a small fixed

time step δt, using the formula X(t+δt) = X(t)+
dx
dt (t + δt). The time step is programmable (nom-

inally 1 ms in our models), allowing modellers to

select the time step to optimise the precision/timing

margin tradeoff.

Represent most variables using 16-bit values

Various studies indicate that 16-bit precision is ad-

equate for most neural models [14], [15]. Since the

ARM contains efficient 16-bit operations it makes

sense to conserve memory space and use 16-bit

variables throughout. Intermediate values, however,

may use 32 bits to avoid unnecessary precision loss.

Precompute constant parameters where possible

By an astute choice of representation, it is often

possible to transform a set of parameters in a

neural equation into a single parameter that can

be precomputed and simplifies the computation

remaining. For example, in the expression x(t) =
Aekt, we can use the substitution logab = logcb

logca ,

choose 2 for c and arrive at x(t) = A(2(log2e)kt),
which allows us to precompute a new constant

λ = klog2e and determine x with simple shift

operations.

Compute non-polynomial functions by lookup table

Lookup tables provide a simple, and in fact the only

general way of computing an arbitrary function.

The ARM takes at most 2N instructions to compute

a LUT-based function with N variables. Memory

utilisation is a concern: a 16-bit lookup table is

impractical; however, 8- or 12-bit lookup tables

3961

Fig. 3. A general event-driven function pipeline for neural networks.
Variable retrieval recovers values stored from deferred-event processes as
well as local values. Polynomial evaluation computes simple functions
expressible as multiply and accumulate operations. These then can form the
input to lookup table evaluation for more complex functions. Polynomial
interpolation improves achieved precision where necessary, and then finally
the differential equation solver can evaluate the expression (via Euler-
method integration). Each of these stages is optional (or evaluates to the
identity function).

are feasible, occupying 512 or 8192 bytes for 16-

bit values respectively. Where models need greater

precision we implement various interpolations.

Exploit “free” operations such as shifting

Most ARM instructions can execute conditionally,

many can shift an operand before doing the in-

struction, and there are built-in multiply-accumulate

instructions. Taking advantage of such “free” oper-

ations is an obvious optimisation.

Using these rules, we can build up a generalised function

pipeline to represent a neural process that is adequate for

most models (fig. 3).

C. The LIF Model

The LIF model uses this instruction pipeline. Many of the

techniques it uses are common to the “reference” Izhikevich

model we have described earlier [7]. The basic approach

applies to virtually any spiking model with voltage-variable

differential-equation dynamics: an illustration of the univer-

sal design of the software as well as the hardware. We will

walk through the function pipeline stage by stage.

1) Variable Retrieval: Like the Izhikevich neuron, the LIF

neuron uses the deferred-event model to place input spikes

into a circular array of current “bins” representing the total

input in a given time step (fig. 4). Arrival of an input triggers

a DMA operation which retrieves a source neuron-indexed

synaptic row. Completion of the DMA triggers a second

stage of deferral, adding the synaptic weight (representing the

current injection) to the bin corresponding to the synapse’s

delay. The Timer event that occurs when that delay expires

recovers the total current from the bin and the neuron’s

associated state block, containing the voltage variable and

internal parameters. We precompute natural frequency fn =
1
τ from time constant τ in order to avoid division.

Fig. 4. SpiNNaker Neuron Binned Input Array. Inputs arrive into the bin
corresponding to their respective delay. Output is computed from the bin
pointed to by “Now”.

2) Polynomial Evaluation: The basic LIF neuron equation

is [16]
dV

dt
= fn(Vr − V + IR)

where Vr is the rest voltage, I input current, R membrane

resistance, and V membrane voltage. The right-hand side is a

simple polynomial, which we can compute in 3 instructions.

It is possible also to incorporate conductance-based synapses

into this evaluation; the function is then

dV

dt
= fn(Vr − V + T (t)(V − Vn) + IR)

where T(t) is the synaptic “transmissivity”, a precomputed

value that incorporates the values of maximum synaptic con-

ductance and specific membrane resistivity into the release

probability. Vn is the synaptic rest voltage.

3) Look-up table: For the “normal” LIF neuron there is

no need for a lookup table function since the differential

equation is polynomial. However, if we include conductance-

based NMDA synapses, there is a voltage gating term [16]:

G =
1

1 + Mg+

3.57 e(−V
16.13)

where Mg+ is the magnesium ion concentration. This func-

tion will use a (256-entry) LUT to compute its value.

4) Interpolation: Likewise in the standard LIF model

there is no need for interpolation since the function can be

computed exactly. If the model uses NMDA synapses, and

if it requires better than 8-bit precision in the gating factor,

however, we have implemented a spline-based interpolation.

While efficient, it is not computationally free, requiring 48

cycles.

5) Differential Equation Solver: The Euler-method pro-

cess evaluates the differential equation at each (1ms) Timer

event. After evaluating the equation, it also tests whether the

potential has exceeded the threshold Vt. If it has, it resets

V to Vs. The LIF computation requires 10 instructions if

the neuron does not fire (state update), 21 if the neuron

fires (state update + spike generation), and 38 if the neuron

fires and synapses have spike-timing-dependent plasticity

(STDP) (state update + spike generation + STDP update).

The high efficiency of this model makes it an ideal test-bed

for exploring different synaptic models.

3962

IV. SYNAPTIC MODELS

Spiking neural networks can contain various different

synapse types with different dynamics. At present the role of

different synaptic types remains an area of intense research

interest [17]. Equally significantly, the level of biophysical

realism necessary to achieve useful behaviour or model actual

brain dynamics is unclear. For instance, in the case of the

well-known STDP plasticity rule, while many models exist

describing the behaviour [18], [19], the actual biological data

on STDP is noisy and of low accuracy. Observed STDP

modifications exhibit a broad distribution for which the

nominal functional form of STDP models usually constitute

an envelope or upper bound to the modification [20]. This

suggests that high repeatability or precision in STDP models

is not particularly important.

SpiNNaker’s completely virtual, general-purpose design

makes it capable, in principle, of modelling synapses with

biophysical realism down to the molecular level if necessary,

but such high biological fidelity would almost certainly

sacrifice real-time update speed and possibly require mul-

tiple processors to implement a single synapse. In view of

observed synaptic variability, exact biological replication, or

fidelity to a precise functional form, appears to be unneces-

sary for understanding their computational properties. This

gives considerable latitude for experimenting with different

synaptic models in order to investigate various tradeoffs be-

tween computational cost and functional accuracy. Using the

LIF model gives not only a default “reference” model with

known and easily tuned dynamics that expose the synaptic

dynamics clearly, it also provides a very-low-computational-

cost model, minimising machine cycles to allow more time

for complex synaptic models. We are using the LIF model

to test 2 different models.

The first model is a temporally accurate STDP model.

Details of the technique and algorithm are in [8], [9].

This model demonstrates 2 important techniques: use of the

deferred-event model to reorder processes, and exploiting

the ARM’s bit-shifting logic to maximise computational

efficiency. Under the deferred-event model, the processor

performs the synaptic update only upon receipt of a new

presynaptic spike, using a pair of time stamps to record

presynaptic and postsynaptic events so that the processor

can track postsynaptic spikes happening after a given input.

It can then retroactively apply the weight changes that

would have happened to the synapse between the last input

and the current input, using shift-and-add operations, before

transmitting the spike through the synapse.

The second model adds N-Methyl-D-Aspartic (NMDA)-

mediated synapses exhibiting voltage gating with slow dy-

namics. This model presents 2 challenges: first, how to model

the slow dynamics without having to retrieve the synaptic

values multiple times, and second, how to implement the

voltage gating process. 2 properties of NMDA synapses make

it possible to implement an efficient algorithm. First, the

synaptic current exhibits a linear kinetic, therefore instead

of using sampled Euler-method evaluation it is possible

to precompute the update for each input. Second, voltage

gating is multiplicative and depends on the post-synaptic

potential, thus the net contribution from all synapses with

NMDA-mediated dynamics can be computed by multiplying

their aggregate activation by the gating factor on a per

(postsynaptic) neuron basis.

Precomputing the synapse open probability uses a va-

riety of techniques. Since NMDA synaptic currents reach

their maximum value quickly, usually within 1.5 ms of

spike arrival, it is possible to neglect the effects of rise-

time dynamics, incorporating them into the delay. We can

accommodate the slower decay dynamic by adding a second

set of activation bins to each neuron that rotate every (slow

time constant) τ ms. Precomputing the value to place in

each bin after the initial (Tmax) bin is trivial by exploiting

the exponential property of shifting and using precomputed

parameter scaling: shift the “weight” stored in the synaptic

block, right by one place for each successive bin.

The complete process then functions as follows:

Presynaptic input event

1) Retrieve the synaptic row corresponding to the presy-

naptic neuron.

2) Calculate the effective bin delay (position of bin Pmax)

using Tmax = δw(1
τ), where δw is the real-time

annotated delay in the synaptic weight.

3) Precompute the synaptic contribution (effective open

probability) for each future bin.

4) Distribute the contributions into each bin by accumu-

lating them with the current bin value.

Neuron timer event

1) Get the current system time tsys.

2) Calculate whether the NMDA bin should rotate by

computing tsysREMτ ≤ 1
2τ .

3) If the bin should rotate, advance it and clear the

previous bin.

4) Compute the gating factor by LUT.

5) Multiply the current NMDA bin by the gating factor.

6) Add to the (fast AMPA/GABA-A) activation.

The NMDA synaptic model takes advantage of the low

instruction count of the LIF process. Updating the NMDA

dynamics in a neuron requires 22 instructions. Thus the total

instruction count rises only to 32 if the neuron does not fire,

43 if the neuron fires. This remains well within timing limits

to permit ∼1000 neurons per processor.

V. SIMULATING VARIOUS SPIKING MODELS ON

SPINNAKER

A. Single Neuron Dynamics

To test the LIF model, we started with a single neuron.

We tested single neuron dynamics by injecting short pulses

of current into a neuron with the following parameters:

V0 = Vs = −75mV , Vr = −66mV , fn = 1
4ms−1, R = 8,

Vt = −56mV . To test the accuracy of our implementation

we compared it with the same neuron implemented with

Brian [21]. Results are in fig. 5: the difference in the spiking

region is due to the fact that we artificially set V = 30mV

3963

Fig. 5. Single neuron dynamics. We inject 4 pulses of current into the
neuron. Traces compare the membrane potential of the simulation run on
SpiNNaker (continuous line) with the same neuron implemented in Brian
(dashed line).

Fig. 6. Detection of the interpulse interval between spikes from neurons a

and b. d denotes the synaptic delay between inputs and detectors. Detector
neuron τi fires when the interpulse interval ta − tb = i.

when a neuron crosses the threshold in order to have a self-

evident spike.

B. Spike Propagation

In order to test the time precision of spike generation and

propagation processes we implemented a network capable

of detecting inter-pulse interval between spikes generated by

two neurons, reproducing the results in [22] (Section 2). Two

input neurons connect to 7 detector neurons with a delay

proportional to the distance (fig. 6).

The weights are set so that a detector will fire only if

two coincident spikes arrive within a millisecond interval;

detector neuron τi only fires when the inter-pulse interval

ta − tb = i, where ta and tb are the absolute firing times of

neurons a and b respectively. Fig. 7 represents the network

structure, specifying the delays. Fig. 8 presents the simulation

results. The network is able to discriminate the inter-pulse

interval between the firings of neuron a and neuron b

with millisecond precision by producing a spike from the

corresponding detector neuron.

Fig. 7. Network Structure. Arrows represent connections between neurons.
Values at the end of each arrow represent synaptic delays, set according to
detector placement (cf. fig. 6).

Fig. 8. Spike Propagation. (a) Raster Plot. Only the neuron detecting the
correct interpulse interval fires. (b) Membrane potential of neurons a (blue)
and b (red). (c) Membrane potential of detector neuron τ+2. The neuron
only fires when spikes from neurons a and b converge on it with coherent
synaptic delays.

C. Oscillatory Network Activity

We tested network dynamics by simulating the network

in fig. 9: the network contains 100 neurons (V0 = V s =
−75mV , Vr = −65mV , fn = 1

16ms−1, R = 8, Vt =
−56mV) divided into 80 excitatory neurons and 20 in-

hibitory neurons. Each neuron in the excitatory group con-

nects to 56 (70%) excitatory neurons and 2 (10%) inhibitory

neurons with random delay between 1 and 8 ms. Each

inhibitory neuron connects to every excitatory neuron with a

delay of 1 or 2 ms. 8 neurons from the excitatory group form

input neurons and receive a constant current injection of 3

nA, making them fire approximately every 10 ms. Excitatory

weights are set in order to build up the background activity

of the network slowly. Once there is sufficient activity, the

3964

Fig. 9. Oscillatory Network Structure. Excitatory and inhibitory groups
are connected so that when the activity of the excitatory group gets high
the inhibitory group shuts down the activity of the whole network.

Fig. 10. Oscillatory Network Raster Plot. Input neurons (ID’s 1, 11, 22,
33, 44, 55, 66, 77) feed excitatory neurons (ID’s 0-79), slowly building
up the activity until excitatory neurons start to fire with high frequencies.
Inhibitory neurons (ID 80-99) then activate, quenching the activity of the
network.

whole excitatory group starts firing, causing the inhibitory

neurons to fire a few ms later. Inhibitory weights are set to

quench network activity quickly. Fig. 10 presents the results

of the simulation.

VI. CONSIDERATIONS FOR EFFICIENT MODELLING

LIBRARIES

Implementing the LIF model has made it possible to

consider efficiency limits within the SpiNNaker hardware.

The core computation time of 10 instructions without spik-

ing, 21 with, is probably the minimum possible for any

model with broad acceptance within the spiking neural

model community. Assuming a mean activity rate throughout

the network of 1% (number of active neurons in a given

processor), and providing for a timing margin of 0.2 ms in

a 1 ms Timer (Euler sample) interval, we can examine the

maximum number of neurons a single SpiNNaker processor

could model (fig. 11).

For most models, memory capacity rather than processing

overhead is the limiting factor: most configurations easily

supported rates in excess of 2000 neurons/ms; consider-

ably over the memory limit of 1724 AMPA/GABA-A-only

neurons/processor, or 910 neurons with NMDA synapses.

SDRAM external bandwidth turns out not to be a factor: 1

GB/s, even in worst-case conditions (100% active synapses)

Fig. 11. Number of neurons per processor. The data considers neurons
with 100, 1000, and 10,000 synapses with firing rates of 1Hz, 10Hz, and
100 Hz.

supports 12.8 updates/synapse/s with 1000 synapses/neuron.

Of the various factors the mean spiking rate of the active

population has the greatest impact on performance. This

was particularly noticeable for NMDA synapses where high

firing rates increase the number of iterations necessary to

precompute future NMDA activation; a multiplicative effect.

High rates also increase the mean activation, making it more

probable that the NMDA gate will turn on, increasing the

downstream firing rate. The result is a processing cascade -

and at the maximum firing rate of 100 Hz the number of

neurons a processor can model drops drastically.

The LIF model can support more complex synaptic models

that other spiking models such as the “reference” Izhikevich

model or conductance-based models, simply because it has

fewer instructions to perform. This in itself is a strong reason

to make it the model of choice for large-scale studies of

synaptic dynamics, but there is another and equally powerful

motivation: ease of analysis.

Any research project must of necessity make a definite

choice as to the scope of the research: what is being

investigated. Unsurprisingly, the majority of investigations

into new synaptic models have used the LIF neuron so as not

to introduce too many experimental variables simultaneously.

It is ideal because it is very simple, exhaustively analysed,

and does not introduce complexities that might obscure the

effects of a given synaptic model. Developing the LIF model

for SpiNNaker adds it to the “neural library” so that mod-

ellers can insert the neuron as a “drop-in” component without

having to spend any time developing or implementing the

neurons themselves on SpiNNaker.

Implementing a function pipeline has given us a stan-

dard “template” for library components. It considers what

functions SpiNNaker can implement efficiently. SpiNNaker’s

processors can easily compute polynomial functions but it is

usually easier to implement other types, e.g. exponentials

as a look-up table with polynomial interpolation. This ade-

quately covers the right-hand-side of differential equations.

3965

For very simple cases it may be possible to solve such

equations analytically, but for the general case, the Euler

method evaluation we have used appears to be adequate.

Creating a new component for the library is simply a matter

of plugging in appropriate models for the pipeline stages,

allowing for extensive software reuse because most of the

support libraries, low-level utilities, and “housekeeping” code

can be general across all models. Only the dynamics need

change. The library therefore takes the form of a general

infrastructure with model-specific core routines.

VII. CONCLUSIONS

The LIF model we have created is an important reference

model for developing new synaptic models, and has been

instrumental in creating and refining the function pipeline, as

a base standard for neural and synaptic libraries. Developing

more models for these libraries on SpiNNaker is one of our

major research foci. We are currently reworking the library

into a series of C++ template classes, where the template

parameters can indicate the model type. This will further

simplify future model development and provide a specifica-

tion for third-party model building. More research on data

precision and performance, particularly in comparison with

“reference” LIF and other models is important and ongoing.

The other major area of research is in increasing the scale of

neural models. We are creating a large-scale neural model,

based on the LIF neuron with AMPA/GABA-A and NMDA

synapses, to simulate attentional control and response, with

future development of short- and long-term memories. Such

a system should form an effective, scalable demonstration

network for a multichip SpiNNaker system.

In a larger context, the function pipeline model we de-

veloped may be a useful abstraction for neural hardware,

regardless of platform. To create the function pipeline we

attempted to decompose the general form of neurodynamic

state equations into platform-neutral components that hard-

ware can typically implement easily. Digital hardware can

readily implement memories to form variable retrieval and

LUT stages, and both analogue and digital hardware have

effective blocks for polynomial evaluation and interpolation.

Both DSP’s and various analogue blocks offer efficient

computation of differential equations. Thus one could build a

neural system in building-block fashion, by chaining together

various components using AER signalling, allowing for the

construction of hybrid systems in addition to integrated

approaches like SpiNNaker. More than anything else, SpiN-

Naker is valuable as a test bed for hardware architectures for

neural models.

ACKNOWLEDGEMENTS

The Spinnaker project is supported by the Engineering

and Physical Sciences Research Council, partly through the

Advanced Processor Technologies Platform Partnership at the

University of Manchester, and also by ARM and Silistix.

Steve Furber holds a Royal Society-Wolfson Research Merit

Award.

REFERENCES

[1] A.R.Omondi, “Neurocomputers: a dead end?” Int’l J. Neural Systems,
vol. 10, no. 6, pp. 475–481, Dec. 2000.

[2] D.Roggen, S.Hofmann, Y. Thoma, and D. Floreano, “Hardware spik-
ing neural network with run-time reconfigurabile connectivity in
an autonomous robot,” in Proc. 2003 NASA/DoD Conf. Evolvable

Hardware. IEEE Press, 2003, pp. 189–198.
[3] A.Upegui, C. Pen̋a-Reyes, and E.Sanchez, “An FPGA platform for on-

line topology exploration of spiking neural networks,” Microprocessors

and Microsystems, vol. 29, no. 5, pp. 211–223, Jun. 2005.
[4] L. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche,

and J. Harkin, “Challenges for large-scale implementations of spiking
neural networks on FPGAs,” Neurocomputing, vol. 71, Dec. 2007.

[5] S. Renaud, J. Tomas, Y. Bornat, A. Daouzli, and S. Saighi, “Neu-
romimetic ICs with Analog Cores: an Alternative for Spiking Neural
Networks,” in Proc. 2007 IEEE Int’l Symp. Circuits and Systems

(ISCAS2007). IEEE Press, 2007.
[6] J. Fieres, J. Schemmel, and K. Meier, “Realizing biological spiking

network models in a configurable wafer-scale hardware system,” in
Proc. 2008 Int’l Joint Conf. on Neural Networks (IJCNN2008). IEEE
Press, 2008, pp. 969–976.

[7] X. Jin, S. Furber, and J. Woods, “Efficient modelling of spiking neural
networks on a scalable chip multiprocessor,” in Proc. 2008 Int’l Joint

Conf. on Neural Networks (IJCNN2008), 2008.
[8] A. Rast, X. Jin, M. Khan, and S. Furber, “The deferred-event model

for hardware-oriented spiking neural networks,” in Proc. 2008 Int’l

Conf. Neural Information Processing (ICONIP 2008), 2009.
[9] X. Jin, A. Rast, F. Galluppi, M. M. Khan, and S. Furber, “Implement-

ing learning on the SpiNNaker universal neural chip multiprocessor,”
in Proc. 2009 Int’l Conf. Neural Information Processing (ICONIP

2009), 2009.
[10] D. Goldberg, G. Cauwenberghs, and A. Andreou, “Analog VLSI

spiking neural network with address domain probabilistic synapses,”
in Proc. 2001 IEEE Int’l Symp. Circuits and Systems (ISCAS2001).
IEEE Press, 2001, pp. 241–244.

[11] A. Rast, S. Yang, M. M. Khan, and S. Furber, “Virtual synaptic
interconnect using an asynchronous network-on-chip,” in Proc. 2008

Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.
[12] M. M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and

S. Furber, “SpiNNaker: Mapping neural networks onto a massively-
parallel chip multiprocessor,” in Proc. 2008 Int’l Joint Conf. on Neural

Networks (IJCNN2008), 2008.
[13] A. Brown, D. Lester, L. Plana, S. Furber, and P. Wilson, “SpiNNaker:

The design automation problem,” in Proc. 2008 Int’l Conf. Neural

Information Processing (ICONIP 2008). Springer-Verlag, 2009.
[14] T. Daud, T. Duong, M. Tran, H. Langenbacher, and A. Thakoor,

“High resolution synaptic weights and hardware-in-the-loop learning,”
in Proc. SPIE, vol. 2424, 1995, pp. 489–500.

[15] H.-P. Wang, E. Chicca, G. Indiveri, and T. J. Sejnowski, “Reliable
computation in noisy backgrounds using real-time neuromorphic hard-
ware,” in Proc. 2007 IEEE Biomedical Circuits and Systems Conf.

(BIOCAS2007), 2008, pp. 71–34.
[16] P. Dayan and L. Abbott, Theoretical Neuroscience. Cambridge: MIT

Press, 2001.
[17] D. Durstewitz, “Implications of synaptic biophysics for recurrent

network dynamics and active memory,” Neural Networks, vol. 22,
no. 8, pp. 1189–1200, Oct. 2009.

[18] H. Z. Shouval, M. F. Bear, and L. N. Cooper, “A unified model
of NMDA receptor-dependent bidirectional synaptic plasticity,” Proc.

Nat. Acad. Sci. USA, vol. 99, no. 16, pp. 10 831–10 836, Aug. 2002.
[19] M. Hartley, N. Taylor, and J. Taylor, “Understanding spike-time-

dependent plasticity: A biologically motivated computational model,”
Neurocomputing, vol. 69, no. 16, pp. 2005–2016, Jul. 2006.

[20] G. Bi and M. Poo, “Synaptic Modifications in Cultured Hippocampal
Neurons: Dependence on Spike Timing, Synaptic Strength, and Post-
synaptic Cell Type,” J. Neurosci., vol. 18, no. 24, pp. 10 464–10 472,
Dec. 1998.

[21] D. Goodman and R. Brette, “Brian: a simulator for spiking neural
networks in Python,” Frontiers in Neuroinformatics, vol. 2, no. 5, Nov
2008.

[22] E. M. Izhikevich and F. Hoppensteadt, “Polychronous wavefront com-
putations,” International Journal of Bifurcation and Chaos, vol. 19,
pp. 1733–1739, 2009.

3966

