
  

  

Abstract—In this paper, an artificial neural network model is 
built up with two pathways: bottom-up sensory-driven pathway 
and top-down expectation-driven pathway,   which are fused to 
train the neural network for visual object recognition. During 
the supervised learning process, the bottom-up pathway 
generates hypotheses as network outputs.  Then target label will 
be applied to update the bottom-up connections. On the other 
hand, the hypotheses generated by the bottom-up pathway will 
produce expectations on the sensory input through the 
top-down pathway. The expectations will be constrained by the 
real data from the sensory input which can be used to update the 
top-down connections accordingly.  This two-pathway based 
neural network can also be applied to semi-supervised learning 
with both labeled and unlabeled data, where the network is able 
to generate hypotheses and corresponding expectations. 
Experiments on visual object recognition suggest that the 
proposed neural network model is promising to recover the 
object for the cases with missing data in sensory inputs.  

I. INTRODUCTION 
Bject pattern learning and recognition remains as a key 
challenge in computer vision and machine learning for 

decades. The objective of object pattern learning and 
recognition is to learn the patterns (i.e., invariance features) 
from various training data and then to recognize the learned 
patterns from new unseen data. One main challenge in visual 
object recognition is to correctly model invariance features 
(or so-called latent variables). Over the last decades, varieties 
of machine learning models, including Bayesian networks [1, 
2] and Artificial Neural Networks (ANN) [3, 4] have been 
applied to tackling this problem. In particular, ANNs have 
been well studied as associate memory and classifier [5-7]. 
The most popular feed-forward ANN model, multi-layer 
perceptrons, uses supervised learning with error 
back-propagation to build up the projection from data space 
to latent space.  

Although the ANN-based approaches have demonstrated 
their effectiveness in various object recognition applications, 
only a single bottom-up pathway is used in the construction 
of neural networks.   Recently, more evidence found in 
cognitive brain research and neuroscience [8-10] suggests 
that the nervous systems responsible for object recognition is 
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a distributed cortical structure containing both bottom-up and 
top-down pathways.  

Little research work has been reported on constructing 
artificial neural networks that consist of both the top-down 
and bottom-up pathways, which can be largely attributed to 
the difficulty in fusing the bottom-up and top-down processes 
systematically in one network. For example, in bidirectional 
associative memories [11], both pathways have been taken 
into account. However, no interaction between these two 
pathways exists. Grossberg[12] started to explore this area in 
1970’s and proposed the ART (Adaptive Resonance Theory), 
which is a general framework for representing interactions 
between bottom-up and top-down pathways. However, 
problem-specific learning algorithms and fusion technique of 
two pathways have to be developed for ART.  Recently, 
biased competition theory[13, 14] has been proposed to 
explain the top-down attention of spatial stimulus and 
different feature dimensions.  But generally, how to fuse the 
data flows of these two pathways to interpret data is still an 
open question in the neural network area for object 
recognition applications.  

In this paper, we aim to propose a novel neural network 
model by fusing the bottom-up stimulus and top-down 
expectations for object pattern recognition. A learning 
algorithm for the neural network model has also been 
suggested. We focus on investigating the impact of the 
top-down expectations on the modulations of neuron 
activities in the lower-layer, and the consequential updates of 
neurons in the higher-layer by modulations through the 
bottom-up propagation iteratively. Different from using the 
spatial attentions to distribute attention strengths to different 
regions in the scene, like most work that uses the top-down 
attention for object recognition, we apply this new neural 
network model to interpret the appearance in a selected 
region for object recognition from various sensory data. We 
believe that the best interpretation of an object should contain 
not only the input data but also the a priori knowledge that has 
been learned before, which is realized through the top-down 
expectations. 

The proposed neural network model that fuses the 
bottom-up and top-down pathways (FBTP-NN) is described 
in Section II. The learning process of the FBTP-NN is 
discussed in Section III, including both supervised and 
semi-supervised learning. Section IV presents our 
preliminary experimental results on visual object learning and 
recognition. Conclusions and future work are given in 
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Section V.  

II. FUSING BOTTOM-UP AND TOP-DOWN PATHWAYS IN 
NEURAL NETWORKS  

A. The System Framework  
Although the detailed mechanisms of human cortex have 

not been fully understood in neuroscience and cognitive 
science, increasing evidence has revealed that  the neural 
system associated with learning and object recognition is a 
distributed cortical structure containing both bottom-up and 
top-down pathways. When an object is presented, the sensory 
input may generate ambiguous hypotheses, which could get 
similar scores (neuron activities) in the conventional 
feed-forward neural networks. However, the top-down 
signals that contain a priori knowledge or memory of the 
related objects can help to modulate the bottom-up pathway 
so that the ambiguousness in the stimulus can be reduced and 
more confident hypothesis can be generated and then 
selected.  

In supervised learning, the neural network is subject to 
minimizing a cost function that often minimizes the error 
between the predicted label and real one. For training the 
FBTP-NN proposed in this work, we treat both input data and 
output labels equally as the environmental constraints, 
meaning that the network tries to learn the environment by 
adapting its dynamics (including both input layer and output 
layer) to these constraints through the learning process. 
Mapping both input data and output labels naturally involves 
both pathways of the neural network. The bottom-up process 
has been well studied in most feed-forward networks, i.e. 
from input data to the output label. With the top-down 
connections, the FBTP-NN is able to generate expectations 
from hypothesis to input data. In other words, the network 
tries to learn both hypotheses and expectations at the same 
time. Furthermore, the bi-directional data flows are fused via 
modulations of neuron activities. In this way, both the 
information in the current input stimulus and the previously 
learned knowledge are presented in the network to improve 
the learning and recognition capability.  

 Base on the above ideas, the general framework for fusing 
bottom-up and top-down pathways in a neural network is 
shown in Fig.1. The network may have multiple layers but 
only contains one input layer and one output layer, which are 
the interface of the network to the environment (i.e., input 
data and output labels). A number of hidden layers can exist 
in between. The input layer receives the sensory input and 
generates a few hypotheses at the output layer through the 
bottom-up pathway layer by layer. The output layer then 
produces expectations on the sensory stimulus via the 
top-down pathway. The expectations will be fused with the 
sensory inputs to update neuron activities of the input layer. 
The input updated based on the expectations will then 
generate new outputs accordingly. Such iterations repeat until 
certain stop conditions are met. The stop conditions are 

usually described by a cost function constrained by labels on 
the output layer and sensory stimulus on the input layer. 
During the learning, fusion can happen at every layer so that 
neuron activities of each layer can contain information of 
both pathways.  

Fig. 1. The framework of the FBTP-NN model. 
 
To train such a neural network with fused bottom-up and 

top-down pathways (FBTP-NN), it is essential to define a 
cost function that takes requirements of both pathways into 
account. Conventional learning algorithms for neural 
networks only consider minimizing the error between 
network outputs and the desired labels.  In the FBTP-NN 
model with the top-down connections, the network attempts 
to achieve a match between the input layer of network and the 
sensory stimulus as well. To this end, a cost function that 
considers both the labeling error at the output layer and the 
discrepancy at the input layer has been developed. The 
weights in both pathways of the neural network are then 
updated iteratively by minimizing this cost function. Details 
about the cost function and the fusion technique will be 
discussed in following sections.  

B. A Basic Two-layer FBTP-NN Model 
The proposed FBTP-NN may contain multiple layers, 

since the neuron activities and weight updates of each neuron 
only depend on its adjacent layers.  For the sake of simplicity, 
we will first discuss a basic two-layer FBTP-NN structure, as 
shown in Fig. 2. In this two-layer structure of a neural 
network, the lower layer X is called the data layer. The higher 
layer Y is called feature layer, which is considered as the 
features of the data layer.  

Each layer contains a number of neurons. Neurons of 
different layers are fully connected by inter-layer weights, 
where W and P represent the inter-layer weights for 
bottom-up and top-down pathways, respectively. Note 
however that the assumption of a fully-connected structure is 
not plausible in the real visual cortical systems, where 
neurons of different layers are connected sparsely according 
to the receptive fields with various sizes. Since we focus on 
exploring the vertical data flows here, fully-connected 
inter-layer connections are assumed for simplicity. The 
lateral connections are only valid for feature neurons to 
reflect their dependencies. Therefore, between any two 
connected neurons, there are bottom-up (solid lines), 
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top-down (dotted lines) and correlation (horizontal lines) 
connections. The network (inside the dotted square) is 
stimulated by the environment, which may contain both data 
information D and the feature information L.  
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Fig. 2.  A basic two-layer FBTP-NN model. 

 The cost function of this basic two-layer FBTP-NN 
structure is defined as: 

)],(),,[( LDYXEE p= ,        (1) 

where pE  is the potential energy, whose cost depends on 

network interfaces (X, Y), as well as environmental 
constraints (D, L). The potential energy describes how the 
environment constrains the network. For example, given a 
number of sensory input and label pairs (also termed sample 
pairs) of the environment ),( LD , which construct a potential 
surface, the network will try to adapt its interfacing 
layers ),( YX to the surface by minimizing the distance 
between ),( YX and ),( LD . pE may include both data and 

feature information in supervised learning, or data 
information only in semi-supervised learning. Under the 
influence of the environment, the neural network attempts to 
minimize its potential energy as: 

)),(),(min()]),(),,[(min( LYdisDXdisLDYXE p +=  (2) 

The distance can be defined as the Manhattan distance as 
D X−  or p-norm as

P
D X− . Under some circumstances, it 

is possible that the cost function contains only D or L. For 
example without minimizing the feature error, the field 
energy pE will only have one term dis(X, D). 

C. Neuron Dynamics 
In the above network model, given any environmental 

constraints (D, L), the neuron activities will be updated 
iteratively through both bottom-up and top-down pathways.  
During the iterations, the data layer will be affected by both 
sensory stimulus and expectations from the feature layer. The 
neuron dynamics in the feature layer depends on the given 
feature information, data information and the correlations 
between the feature neurons. 
 Thus, the dynamics of a neuron x on the data layer is 
defined as: 
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where )1( +Δ txi is the change of activity of i-th input neuron 
at time t+1, which consists of two terms: self-decay and the 
top-down expectations from all feature neurons. )(tyu is the 
activity of  u-th feature neuron at time t and M is the number 
of feature neurons. )(tpui is the top-down weight at time t,  
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)()( represents the sum of top-down 

expectations from all feature neurons. The expectation is then 
fed into the activation function g, which is a sigmoid function 

defined as 
xe
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1)(  to represent the activation 

characteristic of neurons. 1α and 1β are decay constant and 
stimulus coefficient, respectively. Therefore, the current 
neuron activity depends on its previous activity and the 
change. 
 The dynamics of a feature neuron y is defined as: 
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where the change )1( +Δ tyu  includes three terms. The first 
term is self-decay. The second one is the bottom-up stimuli 
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, where )(twiu are weights in 

the bottom-up pathway and N is the number of neurons in the 
data layer. The third term is the correlation between the 
feature neurons, which can be either inhibition or 

excitation ∑
=

M
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)()( , where )(tcuv is the correlation 

strength and M is is the number of feature neurons. 2α  and 

2β are decay constant and stimulus coefficient of feature 
neurons, respectively. 

A multi-layer neural network can be constructed by 
assembling a number of basic two-layer structures.  More 
specifically, the first basic structure consists of the input layer 
(as the data layer) and the first hidden layer (as the feature 
layer).  Then, the second basic structure includes the first 
hidden layer (as the data layer) and the second hidden layer 
(as the feature layer). This procedure continues all the way up 
to the output layer, which is the feature layer of the last basic 
structure. For a multi-layer neural network, the data 
information of the input layer is the sensory input, and the 
feature information of the output layer is the corresponding 
labels.  Any hidden layer can be either treated as the data 
layer or the feature layer depending on which basic structure 
it is referring to at the current moment.  



  

III. THE LEANING ALGORITHMS 

A. Cost Function 
The proposed learning algorithm for the FBTP-NN is based 

on a new cost function that makes it possible to update the 
network parameters using information from both the 
bottom-up and top-down pathways. Given a number of 
data-label constraints ),( LD , the network learns to adjust its 
parameters, mainly the connection weights ),,( CPW , to 
minimize the cost function E defined in Equation (2). For the 
basic model defined in Fig.2, ),( YX are neurons of data and 
feature layers and ),( LD are the data and feature information 
from the environment. By taking ),( YX and ),( LD as vectors, 
and applying square error to measure their distances, the cost 
function can be rewritten as: 
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For clarity, the time index is omitted in the following 
equations. The derivative of the cost function with respect to 
the bottom-up weight iuw can be obtained as follows: 
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Substituting Eqns. (3) and (4) into Eqn. (6), we have: 
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where 2β is the stimulus coefficient of feature neuron. g ′  is 
the derivative of the activation function. For the sigmoid 

function
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for a given input.  ix is the activity of the related data neuron. 

ul  and uy  are the desired feature and real activity of the 
output neurons, respectively. Therefore, to minimize the cost 
function E, the change of weight iuwΔ should be: 

)(1 uuiiu ylxrw −⋅⋅=Δ ,        (8) 
where 1r  is the learning rate of the bottom-up weights. Eqn. 
(8) is a Hebbian-like error-driven learning method.  
 Similarly, we can get the derivative of cost function with 
respect to the top-down weights P and the update rule for a 
specific uip  can be derived as:  
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where 2r is the learning rate of the top-down weights. 

On the other hand, the correlation connections C reflect the 
dependencies among the feature neurons and can be updated 
as: 

)sgn()sgn(3 vuuv yyrc ⋅⋅=Δ ,      (10) 
where 3r  is the learning rate of the correlation weights. 

)sgn(y  is the sign function defined as: 
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Therefore, if the two neurons are activated simultaneously, 
their correlation weight will be strengthened; weaken 
otherwise. For tasks such as object recognition or 
classification, we usually assume that feature neurons in the 
output layer of a multi-layer network are mutually 
suppressive, which means that the output neurons are 
competitive.  

B. The Supervised Learning Process 
If we assume that all input data are labeled, then a 

supervised learning algorithm can be applied. For a 
multi-layer network, each layer tries to converge to its desired 
value under the environmental constraints. The desired value 
of the neurons on the input layer is the input data, the desired 
value for the output layer is the true label, and the desired 
value for the hidden layers is the fusion of the bottom-up 
stimulus and top-down expectation which is defined as: 

l
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where l
iv represents the stable state of i-th neuron of l-th layer. 

For the same neuron, l
ix and l

iy are often different, since 
l
iy is produced by the bottom-up stimulus, while l

ix  is the 

top-down expectation. l
iv influences the neuron activity and 

updates the related weights.  f is the fusion ratio in combining 
the bottom-up stimulus and top-down expectation. 

By defining the desired values for all layers, the supervised 
learning can be conducted, through a number of bottom-up, 
top-down and fusion iterations. Driven by the input data, the 
network generates hypotheses layer by layer through the 
bottom-up process. Then expectations are built up based on 
these hypotheses along the top-down pathway. For hidden 
layers, the stimulus and expectation are fused to generate the 
desired values. The supervised learning procedure of the 
FBTP-NN can be summarized as followings. 

Generally, a FBTP-NN is a multi-layer neuron network 
consisting of a number of basic two-layer structures described 
in Section II.B.  Given a FBTP-NN  with randomly initialized 
weights ),,( CPW  and a number of data-label pairs ),( LD , 
the bottom-up process is started from the input layer X with 
input data D. Here, the input layer of the network is the data 
layer and the first hidden layer is the feature layer in a basic 
two-layer structure. 

• Step 1. Calculate the activity of the neurons on the 
feature layer Y via Eqn. (4).  

• Step 2. Update the bottom-up weights W via Eqn. (8). L 
is the feature information for the current feature layer, 
which can be defined in two cases.  If the current 
feature layer is the output layer of the neural network, 
L is the true label.  If the current feature layer is a 
hidden layer, L is the desired value V defined in Eqn. 



  

(11). 
• Step 3. Update the correlation weights C via Eqn. (10).  
• Step 4. Move up one layer to build a new basic structure.  

The current feature layer becomes the data layer and 
the adjacent top layer becomes the feature layer in the 
new basic structure. Repeat steps 1-3 for the learning 
of the new basic structure. 

• Step 5. Repeat steps 1-4 until the output layer of the 
whole neural network. 

Now perform the top-down and fusion process from the 
output layer. Here, we start with a basic structure using the 
output layer as the feature layer and the last hidden layer as 
the data layer.   

• Step 6. Calculate the neuron activities in data layer X via 
Eqn. (3).  

• Step7. Update the top-down weights P using Eqn. (9). 
Here, the data information D can be defined in two 
cases. If the current data layer is the input layer, D is 
the true sensory data. If the current data layer is a 
hidden layer, D is the desired value V defined in Eqn. 
(11).  

• Step 8. Fuse the bottom-up stimulus and top-down 
expectation to get the desired values for the current 
data layer using Eqn. (11).  

• Step 9. Move down one layer to build a new basic 
structure. The current data layer becomes the feature 
layer and the adjacent bottom layer becomes the data 
layer in the new basic structure. Repeat steps 6-8 for 
the learning of this new basic structure. 

• Step 10. Repeat steps 6-9 until the input layer of the 
whole neural network.  

• Step 11. Repeat steps 1 to 10 until the stop condition is 
met.  

By repeating the above steps, the network will learn the 
labels in the output layer as well as the corresponding 
stimulus in the input layer by updating the weights in the 
bottom-up and top-down pathways and the correlation 
weights among the neurons in the same layer (except for the 
input layer). 

C. Extension to Semi-supervised Learning 
For many learning tasks, labeling data is extremely time 

consuming and needs expert skills. It is found that the 
learning performance can be improved significantly for a 
neural network to learn from a mixture of small amount of 
labeled data and large amount of unlabeled data. However 
ambiguous data may trigger confusing hypotheses that have 
similar quality values. To make use of the top-down 
expectations as well as bottom-up stimulus to evaluate 
hypotheses, the neural network is trained by a small number 
of labeled data initially. When unlabeled data come in, the 
network performs the bottom-up, top-down and fusion 
process to generate potential hypotheses. If more than one 
hypothesis is produced, they will be evaluated by combining 
the bottom-up and top-down scores. The winner will be 

adopted to train the neural network.  
It is assumed that only one output is desired for object 

recognition. The network generates K hypotheses 
as },...,2,1),,{( KkYX kk = . Each hypothesis has one output 

vector kY with only one output neuron activated, whose value 
usually is between 0 and 1. Different hypotheses have 
different output neurons activated. Each hypothesis also has 
one expectation on the input layer as kX . Therefore the 
hypothesis score is defined as: 

),()1( kkk XDDisYh ⋅+−= φ ,      (12) 
where the first part is the score from the bottom-up pathway 
and the second part is the score from the top-down pathway. 
The larger kY is, the better the hypothesis is. The smaller the 

distance between the input data D and expectation kX  is, the 
better the hypothesis is. φ  is a hyper parameter for 
combining scores.  
 This semi-supervised learning method can be described as 
followings. 
 Again, the FBTP-NN is a multi-layer neural network. 
Given a FBTP-NN with the learned weights ),,( CPW from 
some labeled data initially and a number of unlabeled data D. 
 Stage 1: Free runs to generate hypotheses 

  Steps 1, 4, and 5 in Section III.B are applied to the 
bottom-up process and Steps 6, 8-11 are applied to the 
top-down process to generate hypotheses.  Steps 2, 3, and 7 
are skipped in the free runs to keep the weights unchanged.  
Stage 2: Hypotheses evaluation 
 Evaluate hypotheses one by one. 
• Step 1: With only output vector kY activated, calculate 

the expectation kX  on the input layer. 
• Step 2: Compute the hypothesis score via Eqn. (12). 
• Step 3: Repeat Steps 1-2 for all hypotheses and choose 

the winner with the minimal score.  
Stage 3: Learning the winner hypothesis ),( kYD  
Choose the winner hypothesis as the label for the input 
data, and apply the supervised learning algorithm to train 
the neural network.  

IV. THE EXPERIMENTAL RESULTS 

A. Experimental Setup 
To demonstrate the effectiveness of the proposed learning 

algorithms, a few experiments on visual object recognition 
have been performed using the FBTP-NN. The training 
datasets are taken from Caltech 256 [15], as shown in Fig. 3. 
Firstly, the original images are transformed into gray images, 
where objects are presented as white pixels and the 
background as black pixels. Due to the cluttered background, 
some images are very noisy and it is hard to tell the object 
from the background. We choose images of four object 
categories, air planes, bicycles, shotguns and motorcycles. 



  

For each category, objects with different appearances, sizes, 
orientations, backgrounds and lightening conditions are 
presented. The pixel values will be fed into the neural 
network directly as input, although extracted salient features 
as inputs may help to improve the recognition performance. 

 

 

 

 
Fig. 3. Experimental data sets taken from Caltech 256. 

 
 In this work, a three-layer FBTP-NN is built for object 
recognition, which contains two basic two-layer structures. 
First basic structure consists of the input layer and the hidden 
layer. The other consists of the hidden layer and the output 
layer. The number of neuron in the input layer equals the size 
of training images, i.e. 32x24. The hidden layer has about 100 
neurons and the output layer has 4 neurons. Neurons of 
adjacent layers are fully connected. Correlation connections 
are applied in the hidden and output layers only if they act as 
the feature layer in the basic structures.   

TABLE I. PARAMETER SETUP 
Coefficient Value 

Self-decay rate 21,αα  0.2 

Stimulus rate 21,ββ  0.5 

Learning rate 321 ,, rrr  0.01 

Fusion rate f 0.95 
Score combining rate φ  0.5 

Max loop for super training 100 
Max loop for free-run 15 
Max loop for semi training 30 

Table I provides the parameter setup used in the 
experiments. The decay constants for data neurons and 
feature neurons are supposed to be the same for simplicity.  
The same assumption is made to the stimulus rates. The 
learning rates are set also to the same. Usually, a smaller 
learning rate requires more learning iterations to achieve the 
same performance. A fusion rate of 0.95 suggests that a 
neuron is less influenced by the top-down pathway each time 
so as not to change too fast. A score-combining rate of 0.5 
means that the bottom-up and the top-down scores are treated 
equally. For supervised learning, one data is learned for 100 
iterations. For semi-supervised learning, the free-run is 
executed for 15 iterations and the winner hypothesis is 
learned for 30 iterations. 

 The FBTP-NN can be trained by using either the online 
learning mode or the batch learning mode. For the online 

learning mode, the training data are mixed randomly and 
presented to the network sequentially to reduce the forgetting 
influence.  

B. Analysis of Learning Procedure 
To demonstrate the learning performance of the proposed 

FBTP-NN, the dynamics of the input layer and output layer 
are presented and discussed here. Fig.4 shows how the input 
neuron activities change over the learning procedure for a 
labeled data of airplane #1. Every image of Fig.4 is recovered 
from the input layer of the neural network. In Fig.4, the top 
left panel shows the original image, the top right is the 
corresponding gray image, which is also the initial neuron 
activity level of the input layer. At the beginning, there is no 
top-down expectation fused into the neuron activity. As 
learning goes on, the neuron activity of the input layer is 
updated by fusing the top-down expectations. Gradually, the 
network is able to learn better expectations about the input 
data, which means that it can produce a better image of the 
given object, which are shown in the bottom-left and 
bottom-right panels in Fig.4, as of iteration 70 and 95, 
respectively.  

 

 
Fig. 4. The recovered images of the input layer changing over 
learning procedure for airplane #1. 

We define the label error as the Hamming distance 
between the true label and activation level of the output layer 
neurons, as )(tYL − . )(tY  represents neuron activities of 
the output layer at time t. The smaller the distance is, the 
better the output. Fig. 5(a) shows how the label error for 
dataset airplane #1 changes over the learning iterations. In the 
first 20 iterations, the label error decreases. As learning 
continues, the input layer is modulated by the top-down 
expectations, which may cause a disturbance to the 
bottom-up stimulus, as shown in Fig. 5(a), roughly from 
iterations 40 to 60. After a number of bottom-up and 
top-down interactions, the network is able to reduce the label 
error. 

Then we define the expectation error as the Hamming 
distance between the original input data and neuron activities 
of the fused input layer, as )(tXD − . Fig. 5(b) shows the 
error changes over the learning iterations. In the beginning, 
the influence from the top-down pathway is too little to 
activate neurons so that the distance starts from zero. As the 
learning process goes on, stronger perturbations are added 
from the top-down expectation to the input layer. When 



  

top-down weights are further trained, the distance decreases, 
meaning the network is able to recover the true data better.  

  
Fig. 5. (a) Change of the label error over learning iterations for 
dataset airplane #1; (b) Change of the expectation error over 
learning iterations for dataset airplane #1. 

 
(a)         (b) 

 
(c)         (d) 

Fig. 6. The hypotheses evaluation. 
Fig.6 shows how the combined hypotheses score improves 

the semi-supervised learning. Fig. 6(a) is the original image, 
whose gray image is noisy due to cluttered background, as 
shown in Fig. 6(b).  In the experiment, as the first part of Eqn. 
(12), the bottom-up score of airplane is 0. 42 and is 0.4 for 
bicycle. So if the network output is based only on the 
bottom-up pathway, this image will be recognized as a 
bicycle. Fig.6(c) shows the expectation image of the network 
by selecting an airplane as the hypothesis, which captures the 
most pixels along the plane body in (b). The expectation 
image when a bicycle is selected as the hypotheses is shown 
in Fig. 6(d). We can see that the recovered image contains 
some wheel-like structures, which are similar to the clouds in 
Fig. 6(b) and cause the incorrect output of the bottom-up 
pathway. When the second term in Eqn. (12) also plays a role 
in the neuron dynamics, the top-down score will balance the 
hypotheses of bottom-up pathway. After combination of the 
information of both pathways, the airplane hypothesis has a 
score of 0.32 and the bicycle hypothesis has a score of 0.35, 
which leads to the correct recognition of the object as an 
airplane. 

C. Robustness Test 
One important advantage of having the top-down pathway 

is its ability of recovering missing data in the sensory input. 
Fig. 7(a) presents the original image whose right part is lost. 
Fig. 7(b) is the initial neuron activities of the input layer at the 
beginning of learning. During the learning, the top-down 
expectation is able to recover the lost information in the 
stimulus, which is fused into the input layer, as shown in Fig. 
7(c). Fig. 7(d) shows the neuron activities of the input layer at 
the end of learning, where the lost information has been 

recovered. 

  
(a)           (b) 

  
(c)           (d) 

Fig. 7. The recovery ability of FBTP-NN. 

D. Comparative Study on Learning and Recognition 
Firstly, we evaluate the recognition ability of the proposed 

FBTP-NN on the airplane and bicycle datasets, as a 
two-category case. The FBTP-NN has been trained using 
training datasets of different sizes, such as 10, 15, and 20. 
Firstly, the batch learning is adopted for training the neural 
network. The learning iteration number is set to 1000. As 
shown in Table II, the FBTP-NN achieves better performance 
up to 98% with more training samples. Then the same 
training datasets are used to train a three-layer feed forward 
neural network (FF-NN). The FF-NN has 100 hidden neurons 
and its weights are updated by error back-propagation. The 
number of learning iterations for the FF-NN is also 1000. 
From Table II, we can tell that FBTP-NN has comparable 
performance with FF-NN. This is reasonable since FBTP-NN 
also adopts the gradient-decent learning strategy as described 
in Eqn. (7) and (9), which is similar to back-propagation in 
principle. Therefore under the same training and testing 
conditions, FBTP-NN and FF-NN have similar 
performances. 

TABLE II. RECOGNITION RATE OF BATCH LEARNING OVER DIFFERENT 
TRAINING DATA SIZES FOR TWO-CATEGORY EXPERIMENTS 

Training  
Data 

10 Data 15 Data 20 Data 

Network FBTP FF FBTP FF FBTP FF 
Airplane 78% 90% 95% 95% 98% 98% 
Bicycle 90% 90% 95% 95% 98% 95% 

In addition to batch learning, we also compare the 
performance of FBTP-NN and FF-NN using the on online 
learning mode, where the order in which the training data are 
presented and the number of iterations become important in 
preventing the neural network from over-fitting any 
individual data. The iteration number of 35 is chosen through 
trial-and-errors and 40 test samples are applied then. Similar 
to batch learning, FBTP-NN has comparable performance 
with FF-NN, as shown in Table III. On the other hand, in the 
online learning mode, the performance of learning is affected 
by the order of the training samples and the number of 
learning iterations, which may be a reason why in some cases 
the networks can even achieve better recognition with fewer 
training data.  



  

TABLE  III.  RECOGNITION RATE OF ONLINE LEARNING OVER DIFFERENT 
TRAINING SIZES FOR TWO-CATEGORY EXPERIMENTS 

Training  
Data 

10 Data 15 Data 20 Data 

Network FBTP FF FBTP FF FBTP FF 
Airplane 75% 77% 93% 95% 90% 90% 
Bicycle 95% 80% 90% 90% 95% 90% 

Due to the top-down pathway, FBTP-NN is able to 
represent the learned knowledge about the sensory input, 
which is expected to help improving recognition when the 
new sensory input is incomplete. Both FBTP-NN and FF-NN 
are trained by same training samples under the batch learning 
mode. Then 40 testing samples with 25% and 50% data 
missing are made by replacing the image pixels of 25% or 
50% of the images with all zeros. These samples with 
incomplete information are applied as the testing data to 
evaluate both models, respectively. As shown in Table IV, 
FBTP-NN outperforms FF-NN in both experiments. This can 
be attributed to the top-down pathway of FBTP-NN that can 
recall the learned feature of sensory input given a hypothesis 
in the output. The recalled sensory input can help to recover 
the missing data in the presented stimuli as shown in Fig. 7, 
thereby improving the recognition performance. On the 
contrary, FF-NN can only make judgments based on partial 
data, leading to a lower recognition rate. 

TABLE  IV. RECOGNITION RATE COMPARISONS ON DATA WITH PARTIAL 
INFORMATION MISSING FOR TWO-CATEGORY EXPERIMENTS 

Training Data 25% Missing 50% Missing 

Network FBTP FF FBTP FF 

Airplane 92% 87% 88% 86% 

Bicycle 90% 90% 90% 83% 

Table V shows the performance of FBTP-NN on 
four-category recognition using the online learning mode. 
Each data is trained with 35 learning iterations and 40 testing 
samples are applied. In this case, the average probability of 
each category is 25%. FBTP-NN can achieve very good 
recognition rate up to about 80%, which reflects the learning 
capacity of the proposed neural network. The proposed 
FBTP-NN can be applied for multi-category object 
classification using one integrated structure. On the other 
hand, many algorithms in computer vision field adopt 
One-VS-All strategy and have to construct individual 
classifier for each individual class separately[16].  

TABLE  V.  RECOGNITION RATE OF ONLINE FBTP-NN OVER DIFFERENT 
TRAINING SIZES FOR FOUR-CATEGORY EXPERIMENTS 

Training Data 10 Data 15 Data 20 Data 

Airplane 62% 78% 79% 

Bicycle 75% 80% 80% 

Motor 80% 85% 85% 

Shotgun 78% 78% 80% 

V. THE CONCLUSION AND FUTURE WORK 
In this paper, a novel neural network model with both 

bottom-up and top-down pathways is proposed. The network 
learns the maps from data to label as well as the expectation 

on sensory input given a hypothesis on the label. Neuron 
dynamics of the network is regulated by both the bottom-up 
stimuli and top-down expectations. A new cost function has 
also been suggested to train the weights of the network. 
Extensive experimental results have demonstrated that the 
proposed model is efficient in object recognition problems.   

For future work, we intend to analyze the fusion dynamics 
of the proposed neural network, especially on exploring new 
fusion mechanisms. Currently, the bottom-up stimulus and 
top–down expectations are fused linearly, which can be 
extended to more advanced and bio-inspired nonlinear 
mechanisms. Additional empirical study is also needed to 
verify the performance of the proposed model in comparison 
to the state-of-the-art methods on more benchmark problems.   
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