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Abstract – A novel Over-Segmentation and Neural Binary 

Validation (OSNBV) is presented in this paper. OSNBV is a 

character segmentation strategy for off-line cursive handwriting 

recognition. Unlike the approaches in the literature, OSNBV is a 

prioritized segmentation approach. Initially, OSNBV over-

segments a handwritten word into primitives. Neural binary 

validation is iteratively applied to the primitives. The outcome of 

each iteration is to join two neighboring primitives when the 

joined one improves the global neural competency. OSNBV 

introduces Transition Count (TC) and TC for English (EngTC) 

to prevent under-segmentation error during neural binary 

validation. OSNBV also incorporates Transition Count Matrix 

(TCM) into neural global competency. The proposed approach 

has been evaluated on CEDAR benchmark database. The results 

showed a significant improvement in segmentation errors. The 

analysis of results showed that the inclusion of TCM into the 

validation function has played a major role in improving over-

segmentation and bad-segmentation errors. 

I. INTRODUCTION 
Off-line Cursive Handwriting Recognition (OffCHR) is an automatic 

process to convert an input handwritten document image into 

computer-recognizable character representations.  OffCHR has been 

active research domain for decades, and industrial beneficiaries have 

been trying to automate repetitive manpower oriented tasks such as 

processing postal address, bank checks, form data, historical 

manuscripts, etc [1]. Despite sleepless research in OffCHR for 

decades, the performance of the state-of-the-art OffCHR is below the 

industrial standard to accommodate the real world problems. The 

researchers in this field agree that the main contributor of the low 

OffCHR performance is the segmentation [2-9]. 

Segmentation is a process to discriminate each letter from others, 

prior to recognition into electronic character representations. A sub-

image bound by two neighboring boundaries is called a segment. 

Segmentation precedes the recognition. In other words, the 

recognition process is based on the outcomes of the segmentation 

process. It implies that better recognition performance can be 

achieved on better segmentation outcomes. However, the 

segmentation is very troublesome process because of the nature of 

handwriting, which projects the informality of handwritten 

characters. As matter of fact, the researchers have not found any rule 

of thumb segmentation methods on handwritten images. That's why 

the segmentation process has become a notorious and chronicle 

contributor to OffCHR field [10-15]. 

Many researchers have been tackling the segmentation of 

handwritten image in various approaches. Tripathy et al. [16] 

incorporated water reservoir approach to segment the connected 

characters in Oriya text recognition. Zhao et al. [17] proposed 

background thinning segmentation algorithm to segment connected 

Chinese characters. Alhajj et al. [18] proposed multi-agents to 

segment handwritten connected digits. Liang et al. [19] proposed a 

meta synthetic approach to segment handwritten Chinese character 

strings. Dawoud [20] proposed the iterative cross section sequence 

graph (ICSSG) for handwritten character segmentation. Renaudin et 

al. [21] proposed over-segmentation and graph construction 

technique to segment touching digits. Suwa [22] proposed graph 

representation technique to segment multiply connected digits.  

The remainder of this paper is organized to describe the proposed 

research methodology in section II. The experiments and results are 

presented in section III, and the analysis and discussion of the results 

are explained in section IV. Finally, the section V concludes this 

paper. 

II. PROPOSED RESEARCH METHODOLOGY 
The proposed OSNBV over-segments an input word into primitives, 

and applies neural binary validation to the primitives iteratively. The 

details of OSNBV are described in following subsections. 

A. Overview 
Overall system architecture of the proposed approach OSNBV is 

described in Figure 1. 

From current set P, 

create evaluation 

sets: E

For each element (e) in E, apply 

GlobalConf(e) function. Pick one 

element with the highest 

confidence: Emax

E

Emax

Set of primitives:

P

GlobalConf(Emax) > 

GlobalConf(P)

Yes:

promote Emax as P

P = Emax

No:

output P as

final result

Over-

segmentation
Input word

 

Figure 1. Overview of Over-Segmentation and Neural Binary Validation 

(OSNBV) 

B. Generating primitives 
The core idea of introducing over-segmentation into OffCHR is not 

to miss any letter boundaries. So, successful over-segmentation 

generates a segmentation set containing all letter boundaries 

regardless existence of excessive segmentation points, which are 
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called over-segmentation points. The best way to increase the 

chances to have successful over-segmentation is to locate as many 

segmentation points as possible.  Often many rules and heuristics are 

applied to achieve successful over-segmentation. Every segmentation 

point from over-segmentation has chance to be a correct 

segmentation point, so it‟s called Suspicious Segmentation Point 

(SSP). 

In the proposed approach, the SSPs are generated by using vertical 

foreground pixel density and stroke thickness variable. The stroke 

thickness is the most occurring continuous foreground pixel count. It 

is measured by scanning the segmenting word vertically and 

horizontally. While scanning, the occurrences are recorded and the 

most occurring continuous foreground pixel count becomes the 

stroke thickness of the segmenting word. The details of the stroke 

thickness measurement are described in [23]. Once the stroke 

thickness is estimated, the SSPs are located where the vertical 

foreground pixel density is less than the stroke thickness. However, 

to increase chance of locating the correct boundaries, the SSPs are 

located where the vertical foreground pixel density is less than three 

times of the stroke thickness. The continuous SSPs are consolidated 

as a single SSP by finding the one in the middle.  

   The suspicious segmentation points are screened by hole detection 

module to remove the ones crossing hole regions. The reason to 

incorporate this screening process is two-fold. Firstly, reducing the 

number of SSP cuts down the computational costs significantly. The 

computational cost of validation for a SSP is much cheaper than 

validation by classifier in the later stage. The second reason is to 

reduce the number of primitives. A primitive is a sub-image defined 

by two neighboring SSPs. The lesser primitives, the lesser spatial 

primitive combinations to validate. 

C. Neural Binary Validation (NBV) 
Neural binary validation is iteratively applied to a set of primitives 

created from the over-segmenting module. The primitives are more 

likely to be partial characters at this stage. Therefore, those partial 

character-like primitives need to be combined with the neighboring 

primitives and become a whole character. In each iteration, NBV 

creates evaluation sets. Neural confidence function is applied to each 

of them to pick one evaluation set with the highest value. When the 

selected evaluation set is valued higher than the current set, it is 

passed as the current set for the next iteration. Otherwise, it 

terminates iteration and outputs the current set as the final outputs. 

Each final primitive should represent a whole character. 

1) Creating evaluation sets 
Let P be a current set of primitives, P = {P1, P2, P3 … Pn}, where n is 

the number of primitives in P. Considering that the „+‟ sign indicates 

joint between two neighboring primitives, the maximum of       
evaluation (E) sets can be expressed as follows: 

E1 = {P1+P2, P3 … Pn}  

E2 = {P1, P2+P3 … Pn} 

:  

En-1 = {P1, P2, P3 … Pn-1+Pn} 

However, a joint between two neighboring primitives are allowed 

only if a joint condition is satisfied. The joint condition concerns 

Transition Count (TC) and TC for English (EngTC).The details are 

described in the following subsections. 

 

a) Transition Count (TC) 
TC indicates the maximum number of horizontal black-to-white pixel 

transition for a row of pixels from a primitive. To obtain TC from a 

primitive, rastering technique is used for scanning the primitive. A 

primitive is an image, which can be represented into two dimensions, 

rows and columns of pixels. Therefore, there are as many TC as the 

number of rows for a primitive. The highest TC among rows 

represents the TC for the primitive.  

b) Transition Count for English (EngTC) 
As mentioned earlier, a joint condition of two neighboring primitives 

into one is to compare TC of the combined primitive to a preset 

variable EngTC. The use of EngTC is to prevent from producing 

under-segmentation error during validation. As shown in Table 1, TC 

for 52 classes of English alphabets has been generated from pre-

segmented handwritten character images. The pre-segmented 

character images are the same data used to train two-class neural 

networks classifier. From the table, EngTC is assigned with 5; 

because the highest value of the table is 5 from „M‟ or „m‟. 

Therefore, any joint between two neighboring primitives are 

prohibited if TC of the combined primitive is higher than 5. 

TABLE 1. TRANSITION COUNT (TC) FOR EACH ALPHABET CLASS GENERATED 

FROM PRE-SEGMENTED CHARACTER IMAGES USED TO TRAIN NEURAL 

CLASSIFIER. 

Class TC Class TC Class TC Class TC 

A 4 g 3 N 4 t 3 

a 4 H 4 n 4 U 2 

B 4 h 3 O 3 u 4 

b 3 I 3 o 4 V 3 

C 3 i 1 P 3 v 3 

c 3 J 4 p 3 W 4 

D 3 j 3 Q 3 w 4 

d 4 K 4 q 3 X 3 

E 3 k 3 R 4 x 3 

e 4 L 3 r 3 Y 3 

F 3 l 2 S 3 y 3 

f 3 M 5 s 3 Z 3 

G 4 m 5 T 4 z 2 

 

2) Calculating confidence for evaluation sets 
To calculate confidence value for each evaluation set, the proposed 

approach utilizes the Neural Networks (NN) outputs. The confidence 

function, Conf(P), indicates a Class1 output value from two-Class 

neural networks when a primitive, P, is input. Class1 of two implies 

the likelihood of being a correct character, and Class2 indicates the 

likelihood of being rubbish (non-character). Let GlobalConf(W) be a 

confidence function where W is an evaluation set of n primitives. 

GlobalConf(W) is sought by calculating the average: 

W = {P1, P2, P3 … Pn} 

               
∑         

 

   

 
  (1) 

Therefore, an evaluation set with the highest confidence value, Emax, 

can be obtained by:  

                        
      

, 

where e is an element of evaluation sets, E. 

a) Transition Count Matrix (TCM)   
In the previous section, TC and EngTC were introduced to prevent 

under-segmentation errors during validation. In this section, the use 



of TCM is explained to boost the competency of primitives by being 

multiplied to neural network outputs of primitives inside evaluation 

function. The ideal outcome of introducing this feature is to reduce 

overall over-segmentation and bad-segmentation errors. The method 

to measure TC of a primitive is the same as explained previously. 

However, the distinguishing difference of TCM is that it is measured 

in both directions; vertical as well as horizontal; by the way, TC was 

measured in horizontal direction only. TC was expressed as a single 

digit, which representing horizontal count. However, TCM is 

expressed in double digit format. For example, 34 is a value of TCM. 

The 3 is for the horizontal count and the 4 for the vertical count of a 

primitive.  

To model the pattern of TCM for English language, it requires the 

pre-segmented character images. Therefore, the same database was 

used to model TCM for English. Similar to obtaining EngTC from 

the database, TCM for each sample is acquired and recorded. The 

pattern of TCM and the number of samples per pattern for each class 

have been extracted. After obtaining the patterns of TCM for each 

class, the global TCM can be repopulated in the order of TCM 

patterns. The global population and normalized value for each TCM 

pattern has been show in Table 2. For example, the pattern of TCM 

44 has 4 samples, and its normalized value is 0.0032. The pattern and 

its normalized value of a primitive can be incorporated into 

evaluation function in equation (1). Let M(P) be a TCM function 

when P is a primitive: 

               
∑                 

 

   

 
 (2) 

TABLE 2. PATT = PATTERN, POP = POPULATION, NORM = NORMALIZED. IT 

SHOWS GLOBAL TCM ACROSS THE 52 CLASSES. THE PATTERNS OF TCM HAVE 

BEEN EXTRACTED, POPULATED AND NORMALIZED. 

Patt Pop Norm Patt Pop Norm 

44 5 0.0032 12 36 0.0231 

22 432 0.2769 21 29 0.0186 

35 3 0.0019 43 41 0.0263 

23 358 0.2295 42 59 0.0378 

36 3 0.0019 41 3 0.0019 

33 232 0.1487 32 171 0.1096 

24 42 0.0269 31 18 0.0115 

34 53 0.034 51 1 0.0006 

25 12 0.0077 52 3 0.0019 

13 12 0.0077 53 5 0.0032 

14 1 0.0006 63 1 0.0006 

11 38 0.0244 54 2 0.0013 

 

3) Termination of OSNBV 
The improvement is made when the confidence value of an 

evaluation set with the highest confidence value (GlobalConf(Emax)) 

is greater than the confidence value (GlobalConf(S)) of the current 

set, S. Then, the evaluation set is promoted as a current set for next 

iteration.  

Let Emax and P be an evaluation set with the highest confidence value 

and a current searching set for the iteration respectively. An 

improvement is made: 

IF GlobalConf(Emax) > GlobalConf(P) 

THEN P = Emax 

Neural Binary Validation (NBV) will be repeated until certain 

conditions are erupted. There are two terminating conditions 

enforced. One of them occurs when there is no evaluation set to be 

created from the current set. No evaluation set will be produced when 

the current set has only single primitive or when joints are denied due 

to the joint condition. The other enforces NBV to terminate when 

there is no improvement. It ensures that the current set would be the 

best combinations of primitives.  

4) OSNBV in Steps 
Line 1: Create primitives from input word 

Line 2: Create evaluation sets from the current set 

Line 3: Find the most competent evaluation set 

Line 4:  Decide whether the competency of the selected evaluation 

set is improved over the current set 

Line 5: If improved, assign the selected evaluation set to the current 

set. Go to Line 2. 

Line 6:  Output the current set as final primitives 

An example of the overall SNBV is shown in Figure 2. In the figure, 

a word „st‟ is over-segmented. Then, the primitives are fed into 

neural binary validation module for verification. 
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Figure 2. An example of the proposed methodology, Over-Segmentation 

and Neural Binary Validation (OSNBV) on a handwritten image word 

‘st’ 

III. EXPERIMENTS AND RESULTS 

A. Implementation 
In the proposed system, all algorithms have been implemented in 

Java programming language using object oriented principles. 

B. Database Preparation 
CEDAR is well known benchmark database for cursive handwriting 

recognition. The proposed approach was evaluated on the CEDAR 

database. The 311 words from CEDAR/TEST/CITY/BD were 

extracted and the proposed algorithm was applied to each word. The 



results were produced by manual inspection of the final segmentation 

outputs.   

C. Neural Networks Training 
A MLP neural network with a single hidden layer was trained on pre-

segmented characters with back-propagation learning algorithm. It 

takes 100 inputs, and produces 2 outputs. The two outputs represent 

Class1 and Class2. Class1 is likelihood of being correct character and 

Class2 is of being rubbish character. Training data for Class1 was 

pre-segmented characters from CEDAR/TRAIN/BINANUM 

directory. The number of training samples for Class1 includes 1560 

pre-segmented character images. In English, there are 52 alphabet 

letters. Therefore, 1560 images consist of 30 images per each 

alphabet letter. Training data for Class2 was generated by over-

segmenting words from CEDAR/TRAIN/CITY directory. From the 

over-segmentation, 1560 rubbish look-like primitives were manually 

selected for Class2 training data to balance with Class1 training data. 

The number of hidden units and the number of iteration were 

incremented by an interval for training. With optimal parameter 

configuration, the neural classifier was trained to achieve around 

79% classification accuracy at most and used in the experiments. 

D. Use of TC and EngTC 
The primary use of TC is to prevent re-introducing under-

segmentation errors during validation. TC and EngTC are the 

working pair to reduce under-segmentation errors. For examples, two 

neighboring primitives are combined into a single primitive. TC of 

the combined primitive is extracted. If the TC is greater than EngTC, 

the combination is not allowed; because it is regarded as containing 

more than a single character. To measure the effectiveness of the TC 

strategy, two criteria were used. The first one is to count the number 

of occurrences of prevention. The second one is to inspect if the 

prevention is correct or not. Prevention is defined as correct if the 

two neighboring primitives belong to different character segments. 

On the other hand, prevention is regarded as incorrect if the two 

neighboring primitives belong to a same character segment. 

The experiment was conducted by applying the proposed approach to 

the 311 words described earlier in database section. The variable 

EngTC is assigned with the maximum TC from Table 1. While 

segmenting 311 words individually, the number of occurrences of 

prevention was recorded. The prevented primitives were manually 

inspected to check if the preventions were correct or not. 

In Table 3, total 36 times of joints were prevented by the use of TC. 

35 out 36 were correct prevention and only one joint between two 

neighboring primitives from a same character segment was 

prevented. In other words, 35 under-segmentation errors were 

prevented during validation by EngTC strategy. 

TABLE 3. THE EFFECTIVENESS OF USING ENGTC STRATEGY TO PREVENT FROM 

RE-INTRODUCING UNDER-SEGMENTATION ERRORS DURING VALIDATION. 

EngTC No. of Correct Prevention No. of Incorrect Prevention 

5 35 1 

 

E. Segmentation performance 
One of the segmentation accuracy measurements is to check the 

segmentation errors. Achieving higher segmentation accuracy means 

lowering segmentation errors. The segmentation errors are 

categorized into three types such as under-segmentation, over-

segmentation and bad-segmentation errors [15]. The under-

segmentation error is defined if segmentation boundary is missed 

between two neighboring characters. The over-segmentation error 

happens if a character segment is divided into more than two 

(exclusive) primitives. The bad-segmentation error is defined as 

incorrect segmentation boundary, which does not belong to under-

segmentation or over-segmentation errors.  

Two experiments were conducted. The first experiment was to 

applying the OSNBV with equation (1) individually to the 311 

CEDAR words described in database section. The second experiment 

was to applying the OSNBV with equation (2) to the same database. 

From the final segmentation output of each word, the segmentation 

errors were accumulated by manual inspection. For the both 

experiments, the parameter, EngTC, was statically assigned with the 

maximum value, 5, from Table 1. The figures for the segmentation 

errors in Table 4 are calculated by dividing each categorical 

accumulated error by the total number of characters in 311 words. In 

the first experiment, the highest segmentation error was caused by 

over-segmentation, followed by bad-segmentation and under-

segmentation in order. The overall average error rate was 6.94% for 

the first experiment. From the second experiment, the highest error 

was caused by bad-segmentation error, followed by over-

segmentation and under-segmentation respectively. The overall 

average error from the second experiment was 3.35%. 

TABLE 4. FINAL SEGMENTATION RESULTS OF THE PROPOSED APPROACH 

Experiments Classifier No. of words 
Segmentation Error (%) 

Under Over Bad Average 

OSNBV without TCM 
79% 311 

1.96 11.55 7.33 6.94 

OSNBV with TCM 1.96 2.76 5.32 3.35 

 

IV. ANALYSIS AND DISCUSSION 
As shown in Table 4, it is obvious that the 1.96% of under-

segmentation error was re-introduced by the proposed neural binary 

validation by combining two neighboring primitives, which belongs 

to the different character segment. However, the under-segmentation 

error is very minor compared to over or bad in both experiments. 

Especially, over segmentation error in the first experiment was the 

highest. The over and bad-segmentation errors during the proposed 

neural binary validation can be contributed by getting incorrect 

confidence value of primitives from neural classifier. The proposed 

neural binary validation entirely depends on the confidence value 

from neural classifier apart from the interruption by TC strategy. The 

employed neural classifier was trained up to 79% classification 

accuracy. However, it was very challenging to model the rubbish 

class, which virtually has no pattern. Therefore, rubbish look-like 

patterns could be unknown to the classifier because they weren‟t 

included in the training data. Those unknown pattern could give 

incorrect output values.     

The use of TC and EngTC was investigated to find out the 

effectiveness of under-segmentation error prevention. The 

performance was measured by counting the number of correct and 

incorrect prevention. Through the experiment, 36 preventions were 

discovered. 35 preventions were correct and 1 was incorrect. 

Therefore, the use of TC and EngTC was very effective to prevent 

under-segmentation errors. 

In the proposed approach, TCM was modeled from pre-segmented 

characters and the use of TCM was injected into evaluation function 

during validation. The ideal goal of its use was to reduce the overall 

segmentation errors to improve the segmentation accuracy. To 

investigate the objective, two different segmentation experiments 

were conducted on the same database. The first experiment was to 

apply OSNBV without TCM. The second one was to use OSNBV 



with TCM. The overall segmentation error from the first experiment 

was 6.94%. The second experiment showed 3.35% of overall 

segmentation error.  Through the experiment results and analysis, the 

use of TCM was very effective to reduce the segmentation errors 

from 6.94% to 3.35%. 

TABLE 5. COMPARING THE FINAL SEGMENTATION PERFORMANCE OF THE 

PROPOSED APPROACH (OSNBV) TO THE EXISTING SEGMENTATION 

METHODOLOGIES IN THE LITERATURE 

Methodology  

in the literature 
Database 

Segmentation Error Rate (%) 

Over Under Bad Average 

[13] CEDAR 200 0.00 0.50 1.80 0.76 

[24] CEDAR 317 10.00 0.20 8.70 6.30 

OSNBV with TCM CEDAR 311 2.76 1.96 5.32 3.35 

 

The final segmentation performance of the proposed approach has 

been compared to the existing ones from the literature and shown in 

Table 5. The over segmentation error rate of the proposed approach 

was lower than [24], but higher than [13]. The under segmentation 

error of the proposed approach was higher than [13,24]. The bad 

segmentation error of the proposed approach was lower than [24], but 

higher than [13]. Finally, the average error rate of the proposed 

approach is lower than the approach presented in [24], but higher 

than the approach presented in [13]. However, comparing our result 

to [13] is unfair because authors in [13] used only 200 words by 

excluding the distorted words from the same benchmark database. In 

addition, approach in [24] uses over-segmentation and validation 

strategies similar to the proposed OSNBV. Therefore, it could be the 

fair comparison of the result of [24] and the proposed approach. As 

shown in the result, the proposed segmentation strategy is promising 

and better compared to [24] in terms of average segmentation error. 

 

V. CONCLUSIONS 
In this paper, a novel Over-Segmentation and Neural Binary 

Validation (OSBNV) approach has been proposed as a segmentation 

strategy for off-line cursive handwriting recognition. The 

experiments using the proposed approach on CEDAR benchmark 

dataset have been conducted. The results are very promising. The 

over, under and bad segmentation errors were 2.76%, 1.96% and 

5.32% respectively. A comparative analysis showed that the 

proposed approach performed well in comparison to some existing 

techniques in the literature. The analysis also showed that the 

validation function with transition count matrix has played a major 

role in reducing the over-segmentation and bad-segmentation errors. 
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