

© 2010 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Over-Segmentation and Neural Binary Validation for Cursive Handwriting

Recognition

Hong Lee and Brijesh Verma

Abstract – A novel Over-Segmentation and Neural Binary

Validation (OSNBV) is presented in this paper. OSNBV is a

character segmentation strategy for off-line cursive handwriting

recognition. Unlike the approaches in the literature, OSNBV is a

prioritized segmentation approach. Initially, OSNBV over-

segments a handwritten word into primitives. Neural binary

validation is iteratively applied to the primitives. The outcome of

each iteration is to join two neighboring primitives when the

joined one improves the global neural competency. OSNBV

introduces Transition Count (TC) and TC for English (EngTC)

to prevent under-segmentation error during neural binary

validation. OSNBV also incorporates Transition Count Matrix

(TCM) into neural global competency. The proposed approach

has been evaluated on CEDAR benchmark database. The results

showed a significant improvement in segmentation errors. The

analysis of results showed that the inclusion of TCM into the

validation function has played a major role in improving over-

segmentation and bad-segmentation errors.

I. INTRODUCTION
Off-line Cursive Handwriting Recognition (OffCHR) is an automatic

process to convert an input handwritten document image into

computer-recognizable character representations. OffCHR has been

active research domain for decades, and industrial beneficiaries have

been trying to automate repetitive manpower oriented tasks such as

processing postal address, bank checks, form data, historical

manuscripts, etc [1]. Despite sleepless research in OffCHR for

decades, the performance of the state-of-the-art OffCHR is below the

industrial standard to accommodate the real world problems. The

researchers in this field agree that the main contributor of the low

OffCHR performance is the segmentation [2-9].

Segmentation is a process to discriminate each letter from others,

prior to recognition into electronic character representations. A sub-

image bound by two neighboring boundaries is called a segment.

Segmentation precedes the recognition. In other words, the

recognition process is based on the outcomes of the segmentation

process. It implies that better recognition performance can be

achieved on better segmentation outcomes. However, the

segmentation is very troublesome process because of the nature of

handwriting, which projects the informality of handwritten

characters. As matter of fact, the researchers have not found any rule

of thumb segmentation methods on handwritten images. That's why

the segmentation process has become a notorious and chronicle

contributor to OffCHR field [10-15].

Many researchers have been tackling the segmentation of

handwritten image in various approaches. Tripathy et al. [16]

incorporated water reservoir approach to segment the connected

characters in Oriya text recognition. Zhao et al. [17] proposed

background thinning segmentation algorithm to segment connected

Chinese characters. Alhajj et al. [18] proposed multi-agents to

segment handwritten connected digits. Liang et al. [19] proposed a

meta synthetic approach to segment handwritten Chinese character

strings. Dawoud [20] proposed the iterative cross section sequence

graph (ICSSG) for handwritten character segmentation. Renaudin et

al. [21] proposed over-segmentation and graph construction

technique to segment touching digits. Suwa [22] proposed graph

representation technique to segment multiply connected digits.

The remainder of this paper is organized to describe the proposed

research methodology in section II. The experiments and results are

presented in section III, and the analysis and discussion of the results

are explained in section IV. Finally, the section V concludes this

paper.

II. PROPOSED RESEARCH METHODOLOGY
The proposed OSNBV over-segments an input word into primitives,

and applies neural binary validation to the primitives iteratively. The

details of OSNBV are described in following subsections.

A. Overview
Overall system architecture of the proposed approach OSNBV is

described in Figure 1.

From current set P,

create evaluation

sets: E

For each element (e) in E, apply

GlobalConf(e) function. Pick one

element with the highest

confidence: Emax

E

Emax

Set of primitives:

P

GlobalConf(Emax) >

GlobalConf(P)

Yes:

promote Emax as P

P = Emax

No:

output P as

final result

Over-

segmentation
Input word

Figure 1. Overview of Over-Segmentation and Neural Binary Validation

(OSNBV)

B. Generating primitives
The core idea of introducing over-segmentation into OffCHR is not

to miss any letter boundaries. So, successful over-segmentation

generates a segmentation set containing all letter boundaries

regardless existence of excessive segmentation points, which are

 Manuscript received April 27, 2010.
 Hong Lee is with CQUniversity, Australia (phone: +61 7 4150 7052;

email: h.lee1@cqu.edu.au).
 Brijesh Verma is with CQUniversity, Australia (phone: +61 7 4930 9058;

email: b.verma@cqu.edu.au).

called over-segmentation points. The best way to increase the

chances to have successful over-segmentation is to locate as many

segmentation points as possible. Often many rules and heuristics are

applied to achieve successful over-segmentation. Every segmentation

point from over-segmentation has chance to be a correct

segmentation point, so it‟s called Suspicious Segmentation Point

(SSP).

In the proposed approach, the SSPs are generated by using vertical

foreground pixel density and stroke thickness variable. The stroke

thickness is the most occurring continuous foreground pixel count. It

is measured by scanning the segmenting word vertically and

horizontally. While scanning, the occurrences are recorded and the

most occurring continuous foreground pixel count becomes the

stroke thickness of the segmenting word. The details of the stroke

thickness measurement are described in [23]. Once the stroke

thickness is estimated, the SSPs are located where the vertical

foreground pixel density is less than the stroke thickness. However,

to increase chance of locating the correct boundaries, the SSPs are

located where the vertical foreground pixel density is less than three

times of the stroke thickness. The continuous SSPs are consolidated

as a single SSP by finding the one in the middle.

 The suspicious segmentation points are screened by hole detection

module to remove the ones crossing hole regions. The reason to

incorporate this screening process is two-fold. Firstly, reducing the

number of SSP cuts down the computational costs significantly. The

computational cost of validation for a SSP is much cheaper than

validation by classifier in the later stage. The second reason is to

reduce the number of primitives. A primitive is a sub-image defined

by two neighboring SSPs. The lesser primitives, the lesser spatial

primitive combinations to validate.

C. Neural Binary Validation (NBV)
Neural binary validation is iteratively applied to a set of primitives

created from the over-segmenting module. The primitives are more

likely to be partial characters at this stage. Therefore, those partial

character-like primitives need to be combined with the neighboring

primitives and become a whole character. In each iteration, NBV

creates evaluation sets. Neural confidence function is applied to each

of them to pick one evaluation set with the highest value. When the

selected evaluation set is valued higher than the current set, it is

passed as the current set for the next iteration. Otherwise, it

terminates iteration and outputs the current set as the final outputs.

Each final primitive should represent a whole character.

1) Creating evaluation sets
Let P be a current set of primitives, P = {P1, P2, P3 … Pn}, where n is

the number of primitives in P. Considering that the „+‟ sign indicates

joint between two neighboring primitives, the maximum of
evaluation (E) sets can be expressed as follows:

E1 = {P1+P2, P3 … Pn}

E2 = {P1, P2+P3 … Pn}

:

En-1 = {P1, P2, P3 … Pn-1+Pn}

However, a joint between two neighboring primitives are allowed

only if a joint condition is satisfied. The joint condition concerns

Transition Count (TC) and TC for English (EngTC).The details are

described in the following subsections.

a) Transition Count (TC)
TC indicates the maximum number of horizontal black-to-white pixel

transition for a row of pixels from a primitive. To obtain TC from a

primitive, rastering technique is used for scanning the primitive. A

primitive is an image, which can be represented into two dimensions,

rows and columns of pixels. Therefore, there are as many TC as the

number of rows for a primitive. The highest TC among rows

represents the TC for the primitive.

b) Transition Count for English (EngTC)
As mentioned earlier, a joint condition of two neighboring primitives

into one is to compare TC of the combined primitive to a preset

variable EngTC. The use of EngTC is to prevent from producing

under-segmentation error during validation. As shown in Table 1, TC

for 52 classes of English alphabets has been generated from pre-

segmented handwritten character images. The pre-segmented

character images are the same data used to train two-class neural

networks classifier. From the table, EngTC is assigned with 5;

because the highest value of the table is 5 from „M‟ or „m‟.

Therefore, any joint between two neighboring primitives are

prohibited if TC of the combined primitive is higher than 5.

TABLE 1. TRANSITION COUNT (TC) FOR EACH ALPHABET CLASS GENERATED

FROM PRE-SEGMENTED CHARACTER IMAGES USED TO TRAIN NEURAL

CLASSIFIER.

Class TC Class TC Class TC Class TC

A 4 g 3 N 4 t 3

a 4 H 4 n 4 U 2

B 4 h 3 O 3 u 4

b 3 I 3 o 4 V 3

C 3 i 1 P 3 v 3

c 3 J 4 p 3 W 4

D 3 j 3 Q 3 w 4

d 4 K 4 q 3 X 3

E 3 k 3 R 4 x 3

e 4 L 3 r 3 Y 3

F 3 l 2 S 3 y 3

f 3 M 5 s 3 Z 3

G 4 m 5 T 4 z 2

2) Calculating confidence for evaluation sets
To calculate confidence value for each evaluation set, the proposed

approach utilizes the Neural Networks (NN) outputs. The confidence

function, Conf(P), indicates a Class1 output value from two-Class

neural networks when a primitive, P, is input. Class1 of two implies

the likelihood of being a correct character, and Class2 indicates the

likelihood of being rubbish (non-character). Let GlobalConf(W) be a

confidence function where W is an evaluation set of n primitives.

GlobalConf(W) is sought by calculating the average:

W = {P1, P2, P3 … Pn}

∑

 (1)

Therefore, an evaluation set with the highest confidence value, Emax,

can be obtained by:

,

where e is an element of evaluation sets, E.

a) Transition Count Matrix (TCM)
In the previous section, TC and EngTC were introduced to prevent

under-segmentation errors during validation. In this section, the use

of TCM is explained to boost the competency of primitives by being

multiplied to neural network outputs of primitives inside evaluation

function. The ideal outcome of introducing this feature is to reduce

overall over-segmentation and bad-segmentation errors. The method

to measure TC of a primitive is the same as explained previously.

However, the distinguishing difference of TCM is that it is measured

in both directions; vertical as well as horizontal; by the way, TC was

measured in horizontal direction only. TC was expressed as a single

digit, which representing horizontal count. However, TCM is

expressed in double digit format. For example, 34 is a value of TCM.

The 3 is for the horizontal count and the 4 for the vertical count of a

primitive.

To model the pattern of TCM for English language, it requires the

pre-segmented character images. Therefore, the same database was

used to model TCM for English. Similar to obtaining EngTC from

the database, TCM for each sample is acquired and recorded. The

pattern of TCM and the number of samples per pattern for each class

have been extracted. After obtaining the patterns of TCM for each

class, the global TCM can be repopulated in the order of TCM

patterns. The global population and normalized value for each TCM

pattern has been show in Table 2. For example, the pattern of TCM

44 has 4 samples, and its normalized value is 0.0032. The pattern and

its normalized value of a primitive can be incorporated into

evaluation function in equation (1). Let M(P) be a TCM function

when P is a primitive:

∑

 (2)

TABLE 2. PATT = PATTERN, POP = POPULATION, NORM = NORMALIZED. IT

SHOWS GLOBAL TCM ACROSS THE 52 CLASSES. THE PATTERNS OF TCM HAVE

BEEN EXTRACTED, POPULATED AND NORMALIZED.

Patt Pop Norm Patt Pop Norm

44 5 0.0032 12 36 0.0231

22 432 0.2769 21 29 0.0186

35 3 0.0019 43 41 0.0263

23 358 0.2295 42 59 0.0378

36 3 0.0019 41 3 0.0019

33 232 0.1487 32 171 0.1096

24 42 0.0269 31 18 0.0115

34 53 0.034 51 1 0.0006

25 12 0.0077 52 3 0.0019

13 12 0.0077 53 5 0.0032

14 1 0.0006 63 1 0.0006

11 38 0.0244 54 2 0.0013

3) Termination of OSNBV
The improvement is made when the confidence value of an

evaluation set with the highest confidence value (GlobalConf(Emax))

is greater than the confidence value (GlobalConf(S)) of the current

set, S. Then, the evaluation set is promoted as a current set for next

iteration.

Let Emax and P be an evaluation set with the highest confidence value

and a current searching set for the iteration respectively. An

improvement is made:

IF GlobalConf(Emax) > GlobalConf(P)

THEN P = Emax

Neural Binary Validation (NBV) will be repeated until certain

conditions are erupted. There are two terminating conditions

enforced. One of them occurs when there is no evaluation set to be

created from the current set. No evaluation set will be produced when

the current set has only single primitive or when joints are denied due

to the joint condition. The other enforces NBV to terminate when

there is no improvement. It ensures that the current set would be the

best combinations of primitives.

4) OSNBV in Steps
Line 1: Create primitives from input word

Line 2: Create evaluation sets from the current set

Line 3: Find the most competent evaluation set

Line 4: Decide whether the competency of the selected evaluation

set is improved over the current set

Line 5: If improved, assign the selected evaluation set to the current

set. Go to Line 2.

Line 6: Output the current set as final primitives

An example of the overall SNBV is shown in Figure 2. In the figure,

a word „st‟ is over-segmented. Then, the primitives are fed into

neural binary validation module for verification.

.

Over-segmentation

Primitives

improved (W = C3)

improved (W = C5)

GlobalConf (W)

= 0.2

GlobalConf(C1)

=0.3

GlobalConf(C

2)=0.1

GlobalConf(

C3)=0.4

GlobalConf(C4)

=0.35

GlobalConf(C

5)=0.7

GlobalConf(C6

)=0.15

Current set: W

C3

C5

C1 C2

C4

C6

Figure 2. An example of the proposed methodology, Over-Segmentation

and Neural Binary Validation (OSNBV) on a handwritten image word

‘st’

III. EXPERIMENTS AND RESULTS

A. Implementation
In the proposed system, all algorithms have been implemented in

Java programming language using object oriented principles.

B. Database Preparation
CEDAR is well known benchmark database for cursive handwriting

recognition. The proposed approach was evaluated on the CEDAR

database. The 311 words from CEDAR/TEST/CITY/BD were

extracted and the proposed algorithm was applied to each word. The

results were produced by manual inspection of the final segmentation

outputs.

C. Neural Networks Training
A MLP neural network with a single hidden layer was trained on pre-

segmented characters with back-propagation learning algorithm. It

takes 100 inputs, and produces 2 outputs. The two outputs represent

Class1 and Class2. Class1 is likelihood of being correct character and

Class2 is of being rubbish character. Training data for Class1 was

pre-segmented characters from CEDAR/TRAIN/BINANUM

directory. The number of training samples for Class1 includes 1560

pre-segmented character images. In English, there are 52 alphabet

letters. Therefore, 1560 images consist of 30 images per each

alphabet letter. Training data for Class2 was generated by over-

segmenting words from CEDAR/TRAIN/CITY directory. From the

over-segmentation, 1560 rubbish look-like primitives were manually

selected for Class2 training data to balance with Class1 training data.

The number of hidden units and the number of iteration were

incremented by an interval for training. With optimal parameter

configuration, the neural classifier was trained to achieve around

79% classification accuracy at most and used in the experiments.

D. Use of TC and EngTC
The primary use of TC is to prevent re-introducing under-

segmentation errors during validation. TC and EngTC are the

working pair to reduce under-segmentation errors. For examples, two

neighboring primitives are combined into a single primitive. TC of

the combined primitive is extracted. If the TC is greater than EngTC,

the combination is not allowed; because it is regarded as containing

more than a single character. To measure the effectiveness of the TC

strategy, two criteria were used. The first one is to count the number

of occurrences of prevention. The second one is to inspect if the

prevention is correct or not. Prevention is defined as correct if the

two neighboring primitives belong to different character segments.

On the other hand, prevention is regarded as incorrect if the two

neighboring primitives belong to a same character segment.

The experiment was conducted by applying the proposed approach to

the 311 words described earlier in database section. The variable

EngTC is assigned with the maximum TC from Table 1. While

segmenting 311 words individually, the number of occurrences of

prevention was recorded. The prevented primitives were manually

inspected to check if the preventions were correct or not.

In Table 3, total 36 times of joints were prevented by the use of TC.

35 out 36 were correct prevention and only one joint between two

neighboring primitives from a same character segment was

prevented. In other words, 35 under-segmentation errors were

prevented during validation by EngTC strategy.

TABLE 3. THE EFFECTIVENESS OF USING ENGTC STRATEGY TO PREVENT FROM

RE-INTRODUCING UNDER-SEGMENTATION ERRORS DURING VALIDATION.

EngTC No. of Correct Prevention No. of Incorrect Prevention

5 35 1

E. Segmentation performance
One of the segmentation accuracy measurements is to check the

segmentation errors. Achieving higher segmentation accuracy means

lowering segmentation errors. The segmentation errors are

categorized into three types such as under-segmentation, over-

segmentation and bad-segmentation errors [15]. The under-

segmentation error is defined if segmentation boundary is missed

between two neighboring characters. The over-segmentation error

happens if a character segment is divided into more than two

(exclusive) primitives. The bad-segmentation error is defined as

incorrect segmentation boundary, which does not belong to under-

segmentation or over-segmentation errors.

Two experiments were conducted. The first experiment was to

applying the OSNBV with equation (1) individually to the 311

CEDAR words described in database section. The second experiment

was to applying the OSNBV with equation (2) to the same database.

From the final segmentation output of each word, the segmentation

errors were accumulated by manual inspection. For the both

experiments, the parameter, EngTC, was statically assigned with the

maximum value, 5, from Table 1. The figures for the segmentation

errors in Table 4 are calculated by dividing each categorical

accumulated error by the total number of characters in 311 words. In

the first experiment, the highest segmentation error was caused by

over-segmentation, followed by bad-segmentation and under-

segmentation in order. The overall average error rate was 6.94% for

the first experiment. From the second experiment, the highest error

was caused by bad-segmentation error, followed by over-

segmentation and under-segmentation respectively. The overall

average error from the second experiment was 3.35%.

TABLE 4. FINAL SEGMENTATION RESULTS OF THE PROPOSED APPROACH

Experiments Classifier No. of words
Segmentation Error (%)

Under Over Bad Average

OSNBV without TCM
79% 311

1.96 11.55 7.33 6.94

OSNBV with TCM 1.96 2.76 5.32 3.35

IV. ANALYSIS AND DISCUSSION
As shown in Table 4, it is obvious that the 1.96% of under-

segmentation error was re-introduced by the proposed neural binary

validation by combining two neighboring primitives, which belongs

to the different character segment. However, the under-segmentation

error is very minor compared to over or bad in both experiments.

Especially, over segmentation error in the first experiment was the

highest. The over and bad-segmentation errors during the proposed

neural binary validation can be contributed by getting incorrect

confidence value of primitives from neural classifier. The proposed

neural binary validation entirely depends on the confidence value

from neural classifier apart from the interruption by TC strategy. The

employed neural classifier was trained up to 79% classification

accuracy. However, it was very challenging to model the rubbish

class, which virtually has no pattern. Therefore, rubbish look-like

patterns could be unknown to the classifier because they weren‟t

included in the training data. Those unknown pattern could give

incorrect output values.

The use of TC and EngTC was investigated to find out the

effectiveness of under-segmentation error prevention. The

performance was measured by counting the number of correct and

incorrect prevention. Through the experiment, 36 preventions were

discovered. 35 preventions were correct and 1 was incorrect.

Therefore, the use of TC and EngTC was very effective to prevent

under-segmentation errors.

In the proposed approach, TCM was modeled from pre-segmented

characters and the use of TCM was injected into evaluation function

during validation. The ideal goal of its use was to reduce the overall

segmentation errors to improve the segmentation accuracy. To

investigate the objective, two different segmentation experiments

were conducted on the same database. The first experiment was to

apply OSNBV without TCM. The second one was to use OSNBV

with TCM. The overall segmentation error from the first experiment

was 6.94%. The second experiment showed 3.35% of overall

segmentation error. Through the experiment results and analysis, the

use of TCM was very effective to reduce the segmentation errors

from 6.94% to 3.35%.

TABLE 5. COMPARING THE FINAL SEGMENTATION PERFORMANCE OF THE

PROPOSED APPROACH (OSNBV) TO THE EXISTING SEGMENTATION

METHODOLOGIES IN THE LITERATURE

Methodology

in the literature
Database

Segmentation Error Rate (%)

Over Under Bad Average

[13] CEDAR 200 0.00 0.50 1.80 0.76

[24] CEDAR 317 10.00 0.20 8.70 6.30

OSNBV with TCM CEDAR 311 2.76 1.96 5.32 3.35

The final segmentation performance of the proposed approach has

been compared to the existing ones from the literature and shown in

Table 5. The over segmentation error rate of the proposed approach

was lower than [24], but higher than [13]. The under segmentation

error of the proposed approach was higher than [13,24]. The bad

segmentation error of the proposed approach was lower than [24], but

higher than [13]. Finally, the average error rate of the proposed

approach is lower than the approach presented in [24], but higher

than the approach presented in [13]. However, comparing our result

to [13] is unfair because authors in [13] used only 200 words by

excluding the distorted words from the same benchmark database. In

addition, approach in [24] uses over-segmentation and validation

strategies similar to the proposed OSNBV. Therefore, it could be the

fair comparison of the result of [24] and the proposed approach. As

shown in the result, the proposed segmentation strategy is promising

and better compared to [24] in terms of average segmentation error.

V. CONCLUSIONS
In this paper, a novel Over-Segmentation and Neural Binary

Validation (OSBNV) approach has been proposed as a segmentation

strategy for off-line cursive handwriting recognition. The

experiments using the proposed approach on CEDAR benchmark

dataset have been conducted. The results are very promising. The

over, under and bad segmentation errors were 2.76%, 1.96% and

5.32% respectively. A comparative analysis showed that the

proposed approach performed well in comparison to some existing

techniques in the literature. The analysis also showed that the

validation function with transition count matrix has played a major

role in reducing the over-segmentation and bad-segmentation errors.

REFERENCES

[1] H. Fujisawa, “Forty years of research in character and document

recognition--an industrial perspective,” Pattern Recognition, vol. 41,

Aug. 2008, pp. 2435-2446.
[2] B. Verma and M. Blumenstein, "Fusion of segmentation strategies for

off-line cursive handwriting recognition," Pattern Recognition

Technologies and Applications: Recent Advances, Information
Science Reference, New York, USA, ISBN: 978-1-59904-807-9,

2008.

[3] R.M. Suresh and S. Arumugam, “Fuzzy technique based recognition
of handwritten characters,” Image and Vision Computing, vol. 25,

Feb. 2007, pp. 230-239.

[4] N. Arica and F.T. Yarman-Vural, “An overview of character
recognition focused on off-line handwriting,” Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on, vol. 31, May. 2001, pp. 216-233.
[5] N. Arica and F.T. Yarman-Vural, “Optical Character Recognition for

Cursive Handwriting,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

24, Jun. 2002, pp. 801-813.
[6] R.G. Casey and E. Lecolinet, “A Survey of Methods and Strategies in

Character Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 18, Jul. 1996, pp. 690-706.
[7] E. Vellasques, L.S. Oliveira, A.S. Britto Jr, A.L. Koerich, and R.

Sabourin, “Filtering segmentation cuts for digit string recognition,”

Pattern Recognition, vol. 41, Oct. 2008, pp. 3044-3053.
[8] B. Verma, P. Gader, and W. Chen, “Fusion of multiple handwritten

word recognition techniques,” Pattern Recognition Letters, vol. 22,

Jul. 2001, pp. 991-998.
[9] S. Zhao, Z. Chi, P. Shi, and H. Yan, “Two-stage segmentation of

unconstrained handwritten Chinese characters,” Pattern Recognition,

vol. 36, Jan. 2003, pp. 145-156.
[10] A. Elnagar and R. Alhajj, “Segmentation of connected handwritten

numeral strings,” Pattern Recognition, vol. 36, Mar. 2003, pp. 625-

634.
[11] K. Hussein, A. Agarwal, A. Gupta, and P. Wang, “A knowledge-based

segmentation algorithm for enhanced recognition of handwritten

courtesy amounts,” Pattern Recognition, vol. 32, Feb. 1999, pp. 305-
316.

[12] J. Sadri, C.Y. Suen, and T.D. Bui, “A genetic framework using

contextual knowledge for segmentation and recognition of

handwritten numeral strings,” Pattern Recognition, vol. 40, Mar.

2007, pp. 898-919.

[13] X. Xiao and G. Leedham, “Knowledge-based English cursive script
segmentation,” Pattern Recognition Letters, vol. 21, Sep. 2000, pp.

945-954.

[14] Q. Xu, L. Lam, and C. Suen, “Automatic Segmentation and
Recognition System for Handwritten Dates on Canadian Bank

Cheques,” Proceedings of the Seventh International Conference on

Document Analysis and Recognition, 2003, pp. 704-708.
[15] B. Yanikoglu and P.A. Sandon, “Segmentation of off-line cursive

handwriting using linear programming,” Pattern Recognition, vol. 31,

Dec. 1998, pp. 1825-1833.
[16] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained

Oriya text,” Sadhana, vol. 31, Dec. 2006, pp. 755-769.

[17] S. Zhao and P. Shi, “Segmentation of Connected Handwritten Chinese
Characters Based on Stroke Analysis and Background Thinning,”

PRICAI 2000 Topics in Artificial Intelligence, 2000, pp. 608-616.
[18] R. Alhajj and A. Elnagar, “Multiagents to Separating Handwritten

Connected Digits,” Systems, Man and Cybernetics, Part A: Systems

and Humans, IEEE Transactions on, vol. 35, Sep. 2005, pp. 593-602.
[19] Z. Liang and P. Shi, “A metasynthetic approach for segmenting

handwritten Chinese character strings,” Pattern Recognition Letters,

vol. 26, Jul. 2005, pp. 1498-1511.
[20] A. Dawoud, “Iterative Cross Section Sequence Graph for Handwritten

Character Segmentation,” Image Processing, IEEE Transactions on,

vol. 16, Aug. 2007, pp. 2150-2154.
[21] C. Renaudin, Y. Ricquebourg, and J. Camillerapp, “A General

Method of Segmentation-Recognition Collaboration Applied to Pairs

of Touching and Overlapping Symbols,” Proceedings of the Ninth
International Conference on Document Analysis and Recognition,

2007, pp. 659-663.

[22] M. Suwa, “Segmentation of connected handwritten numerals by graph
representation,” Document Analysis and Recognition, 2005.

Proceedings. Eighth International Conference on, 2005, pp. 750-754.

[23] H. Lee and B. Verma, “A novel multiple experts and fusion based
segmentation algorithm for cursive handwriting recognition,” IEEE

International Joint Conference on Neural Networks, 2008, pp. 2994-

2999.

[24] B. Verma, “A contour code feature based segmentation for

handwriting recognition,” Proceedings of the Seventh International

Conference on Document Analysis and Recognition, 2003, pp. 1203-
1207.

