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Abstract- In recent forecasting competitions, algorithms of 

Support Vector Regression (SVR) and Neural Networks (NN) 

have provided some of the most accurate time series predictions, 

but also some of the least accurate contenders failing to 

outperform even simple statistical benchmark methods. As both 

SVR and NN offer substantial degrees of freedom in model 

building (e.g. selecting input variables, kernel or activation 

functions, etc.), a myriad of heuristics and ad-hoc rules have 

emerged which may lead to different models with substantial 

differences in performance. The heterogeneity of results impairs 

our ability to compare the adequacy of a class of algorithms for 

a given dataset, and fails to develop an understanding of their 

presumed nonlinear and non-parametric capabilities. In order 

to determine a generalized estimate of performance for both 

SVR and NN in the absence of an accepted 'best practice' 

methodology, this paper seeks to compute benchmark results 

employing a naive methodology which attempts to mimic many 

of the common mistakes in model building. The naive 

methodologies serve primarily as a lower error bound, 

representative of a within class benchmark for both algorithms 

in predicting the 66 time series of the NNGC Competition. In 

addition, their discussion aims to draw attention to the most 

common mistakes in modelling that regularly lead to model 

misspecification of MLPs and SVRs in time series forecasting. 

I. INTRODUCTION 

T ime series forecasting with methods of computational 

intelligence (CI) has received increasing attention in 

theory and practice. Recently, both CI-methods of 

Multilayer Perceptrons (MLP) and Support Vector 

Regression (SVR) have shown promising performance in 

various scientific forecasting domains [ 1-2], offering non­

parametric, data-driven and self-adaptive approaches that 

learn linear or nonlinear functional relationships directly 

from data [3-4]. In order to objectively prove the efficacy of 

CI-algorithms in forecasting, outside of a controlled research 

experiment in which the test data is known to the researcher, 

their accuracy must be evaluated in a series of true ex ante 

comparisons against established statistical forecasting 

methods on empirical datasets [3, 5]. The 2010 Neural 

Network Grand Challenge (NNGC) provides a further 

opportunity to establish the forecasting accuracy of CI on six 

datasets of 11 empirical time series of transportation data. 

Recent competitions (including the NN3, NN5 and ESTSP 

contests) have demonstrated that despite the presumed 
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theoretical superiority of the model classes - founded in the 

promise of universal approximation for MLPs or statistical 

learning theory for SVR - multiple contenders from both 

classes have demonstrated substantial variability in their 

predictive accuracy, ranging from some of the top contenders 

of the competition to some of the most inaccurate predictions 

which failed to outperform even naive statistical benchmark 

algorithms. One potential explanation for the inhomogeneous 

performance of different MLPs and SVRs lies in the many 

degrees of freedom in modeling, requiring a data dependent 

selection of the meta-parameters. For example, MLPs require 

the setting of the number of hidden nodes and layers, choice 

of activation function etc. to name but a few. Similarly, SVR 

requires the selection of a suitable kernel function and its 

parameters from a set of potential functions, and two 

parameters to control the cost and epsilon-insensitive margin 

of interval scale. Both require the identification of an input 

vector, adequate pre- and postprocessing etc. Consequently, 

both MLP and SVR share common and well established 

challenges in model specification, offering near endless 

degrees of freedom in the choice of meta-parameters. As a 

result, a number of heuristics and ad-hoc rules-of-thumb 

have emerged in order to guide modeling decisions. It 

appears that it is this choice of combining different heuristics 

through an expert modeler, that determines the algorithms' 

performance and can result in highly accurate, or inaccurate 

predictions. As evidenced by the variety of approaches used 

in the competitions, to date no consensus exists on a valid 

and reliable 'best practice' methodology to specify MLPs or 

SVRs for forecasting. As a model class, this limits our ability 

to identify the efficacy of MLPs and SVRs in time series 

prediction in comparison to classes of statistical benchmarks, 

such as Exponential Smoothing or ARIMA for which best 

practices methodologies exist. 

To establish a benchmark of forecasting accuracy for both 

model classes of MLPs and SVRs in time series forecasting, 

both are applied to forecast the 66 time series of the in the 

NNGC competition. While no consensus exist on a 'best 

practice' methodology, research has identified a number of 

suboptimal modeling choices which should be avoided to 

achieve accurate predictions. In order to determine an 

objective benchmark for MLP and SVR accuracy in the 

competition, this study seeks to compute benchmark results 

using a naive methodology of a fixed parameter grid-search, 

which mimics common, often novice mistakes in model 

building. As a result, we create a lower bound of the 

algorithms' potential accuracy regardless of fine tuned 



methodologies, to which the accuracy of individual heuristics 

of MLP and SVR and other algorithms may be compared. 

The naIve methodology deliberately neglects relevant 

modeling guidelines in MLP and SVR modeling, such as 

input variable selection, data dependent learning rate or 

kernel selection, adequate scaling and preprocessing of data 

etc. Hence we develop a naIve benchmark as a lower bound 

to MLP and SVR performance. The naIve grid search 

estimates thousands of candidate models for 66 time series of 

the NNGC datasets. In addition to providing benchmark 

results for the NNGC competItIOn, this universal 

methodology already employed in the NN3 and NN5 

competition serves as a benchmark across competitions and 

datasets to derive generalized results of relative accuracy in 

comparison to other entrants. 

The paper is organised as follows. First we provide a brief 

introduction to the NNGC competition topic and its datasets, 

followed by the relevant model parameters in forecasting 

using MLPs and E-SVR including alternative methodologies. 

Section 3 outlines the naive methodologies for MLP and 

SVR, including input variable selection, data pre-processing, 

MLP and SVR parameter selection and candidate selection 

for the experimental setup. Due to yet undisclosed test data 

we provide conclusions without results of accuracy. 

II. THE CHALLENGE OF THE NNGC COMPETITION 

The NNGC competition aims to establish the empirical 

accuracy of different forecasting algorithms in the domain of 

short term transportation and traffic forecasting, using a 

representative dataset of heterogeneous time series (see 

www.neural-forecasting-competition.com). Transportation 

forecasting seeks to predict the number of vehicles, travelers, 

internet packages, waste water etc. that will use a specific 

transportation facility in the future. Examples include 

forecasting the number of vehicles using a tunnel, the 

number of passengers using a subway or railway line, an 

airport, flight route or flight destination, or the number of 

ships calling on a seaport. Transportation is considered an 

essential prerequisite to economic prosperity, mobility and 

wellbeing in a civilised world, in addition to providing one 
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of the largest service sectors worldwide. The task of the 

competition is to forecast a set of time series as accurately as 

possible, using methods from computational intelligence and 

applying a consistent methodology. The prediction requires 

regression modeling on time series data: a training set of 

time ordered observations is provided, representing 

transportation data at a specific entity, time frequency and 

with exogenous causal influences. The objective of the 

competition is to predict the next unknown realizations up to 

h observations into the future using a multiple step ahead 

forecast. The data consists of transportation data measured at 

different time intervals (yearly, quarterly, monthly, weekly, 

daily and hourly, see fig. 1 for examples), each containing 11 

time series and with an individual forecasting horizon h (i.e. 

for yearly h=6, quarterly h=8, monthly h=12, weekly h=26, 

daily h=14 and hourly h=48). Contestants may choose to 

compete on one, two or more (up to a selection of six) 

datasets (we are only considering datasets of the first 

tournament round in 2010). 

Forecasting time series of transportation demand and 

flows poses a number of challenges: depending on the 

frequency in which the time series data is sampled, it may 

contain a number of time series patterns including no 

seasonality for yearly data to multiple overlying seasonality 

in daily data, local time trends, structural breaks, outliers, 

zero and missing values etc. These are often driven by a 

combination of unknown and unobserved causal forces 

driven by the underlying yearly calendar, such as reoccurring 

seasonal periods, bank holidays, or special events of 

different length, impact, lead and lag effects. 

As the task requires the prediction of a large number of 

time series and the data properties vary depending on its time 

frequency and the context of the transportation data, model 

selection and model parameterization specific to each time 

series is required for accurate prediction (e.g. if a tunnel 

through which transportation is flowing is located in the 

Swiss alps it may exhibit impacts of holiday tourism in 

winter, while one in a metropolitan area may have only 

working day calendar effects). This requires a consistent, 

data driven methodology for specifying a MLP or SVR, of 
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Fig. I. Examples of yearly, quarterly, monthly, weekly and daily transportation data 



which some have been proposed in past competitions (with 

varying success). We review existing methodologies to select 

a simple, naive methodology eligible to serve as a lower 

bound on forecasting accuracy on the NNGC competition, 

and an objective benchmark across past competitions. 

III. FORECASTING METHODOLOGIES OF CI 

A. Modeling Computational Intelligencefor Forecasting 

Forecasting time series data with CI aims at constructing 

algorithms to map heteroassociative relationship between 

past time series observations and a dependent, predicted 

variable Y of the future. The task of the algorithm is to model 

the underlying data generating process during training, so 

that a valid forecast is made when the parameterised method 

is subsequently presented with a new input vector value [6]. 

CI-algorithms such as SVR or MLPs are capable of 

approximating different forms of time series: using only 

autoregressive (AR) inputs of n lagged realisations of the 

dependent variable Y, an algorithm can be modelled for time 

series forecasting, i.e. Yt+l = f(Yt, Yt-h ... , Yt-n+l), or by 

including only explanatory variables Xi of metric or nominal 

scale for causal forecasting, estimating a functional 

relationship of Y = f (x I, X2, ... , x,). An extension of these 

models to lagged realisations of the independent variables 

Xi,t-n and the dependent variable Yt-n constructs more gen�ral 

dynamic regression, transfer function and intervention 

models. To extend beyond the autoregressive models of 

lagged realisations, the design of moving average 

components (MA) of past model errors in analogy to the 

ARIMA-Methodology of Box and Jenkins [7] enables a 

large range of parsimonious dynamic regression models. 

However, this requires recurrent architectures of MLP or 

SVR beyond those conventionally used. For multiple-step 

ahead time series prediction with both MLPs and SVRs, at a 

point in time t an iterative one-step ahead forecast Yt+l is 

computed using p=n observations Yt, Yt-l, ... , Yt-n+l from n 
preceding points in time t, t-l, t-2, ... , t-n+ 1, with n denoting 

the number of input variables to the algorithm. 

Beyond the specification of the functional model form 

through the chosen CI algorithm, all algorithms require 

method independent choices, that equally apply to MLPs and 

SVRs in the next paragraphs, including the specification of 

the number and time lagged realisations of input variables as 

a rolling input vector window of fixed size over a time series, 

and adequate data preprocessing. 

B. Forecasting with Multilayer Perceptrons 

Forecasting time series with NNs is conventionally based on 

modelling a feed-forward topology in analogy to an non­

linear autoregressive AR(P) model using the established 

Multilayer Perceptron (MLP) [3], to which we will limit our 

analysis here. As MLPs provide many degrees of freedom in 

determining the model form and input variables, we provide 

a short overview of specifying MLPs for time series 

modelling; an introduction is in [8]. 
. 

The functional form of a single layered MLPs IS 

characterised by its input vector Y= [yf> Yt-l, ... ,Yt-n+d, which 
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Fig. 2: Autoregressive MLP for time series forecasting 

captures the lagged observations of the time series in input 

nodes I, the number of hidden nodes H and output nodes 0 
in the network, and the non-linear transfer functions gO used 

in the nodes of the hidden layer, conventionally using the 

sigmoid logistic (Log) or hyperbolic tangent (TanH) 

functions [3]. The network parameters are denoted as 

weights wij connecting input, hidden and output layer 

respectively, and the biases WOj of each neuron. The 

architecture and topology of a MLP is displayed in figure 1. 

For parameterisation, data is presented to the MLP as an 

overlapping set of input vectors formed as a sliding window 

over the time series observations. Consequently, the 

specification of the network architecture determines the time 

series components that may be captured in the AR(p)-lags of 

the input vector and the capability of approximation. To 

specify these meta-parameters for forecasting, a variety of 

trial-and-error approaches, simple heuristic rules-of--thumb 

and more objective, replicable methodologies have been 

proposed, with different validity and reliability and the 

resulting implications for forecasting accuracy. 

To date, the majority of publications employ a trial-and­

error-approach based on a modeller's educated guesses and 

intuitive judgments which are fundamentally irreplicable, 

and are rarely validated beyond the dataset of a publication. 

In order to overcome these limitations, a multitude of simple 

heuristic rules have been proposed, derived from a 

modeller's subjective experience [9], which often provide 

conflicting guidance on architecture specification. In 

specifying the number of hidden layers, the majority of 

researchers limit MLP architectures to a single hidden layer 

(see e.g. [10], based upon an interpretation of the proof of 

universal approximation), while others suggest to use 

multiple layers [11]. Similar disagreement persists in 

specifying the number of hidden nodes H for a single hidden 

layer, resulting in a myriad of conflicting heuristics, e.g. 

based on the number of time series observations n, or based 

on the number of input nodes I, including H=I/2 , I [12], 

1.5 I to 3 I [10], or 21+ 1 [3]. (As the underlying input 

vectors I were pre-determined using dissimilar rules as well, 

these heuristics permit no interpretation nor comparison.) 

Similarly, no consensus exists on the use of the logistic [6, 



12] or hyperbolic tangent activation functions [11] in hidden 

nodes, nor on linear functions in output nodes, etc. As the 

amount of competing rules almost matches the degrees of 

freedom in finding the architectural meta-parameters, this 

questions their help in solving the original problem and 

reveals the lack of consensus on how to specify MLP 

architectures. Only limited empirical evidence exists that the 

proposed heuristics resolve the problem of architecture 

specification [13], in particular in comparison to established 

statistical benchmark algorithms on larger datasets, rendering 

most heuristics of limited value. To guide the specification 

of MLP for forecasting, a number of methodologies have 

been proposed as a coherent collection of a set of procedures 

to specify NNs depending on the underlying data conditions, 

both for modeling generic data [9, 14] or for specific data 

properties of financial data [15], telecommunication data [9] 

etc. (for an introductory discussion see [3]). While these 

methodologies draw freely upon a mixture of theory, 

heuristics, statistical hypothesis testing procedures and 

algorithms they propose a consistent procedural structure to 

NN modelling [16]. However, most MLPs submitted to prior 

competitions such as NN3 or NN5 used completely distinct 

architectures and displayed varying accuracy, which allowed 

no inference on what architectural choices were beneficial, 

and made a coherent evaluation of the capabilities of the 

model class of MLPs impossible. Consequently, we seek to 

establish a very basic, Naive methodology (beyond mere trial 

and error) using heuristic rules to specify a lower bound to 

MLP accuracy and create a data dependent, universal 

benchmark across datasets and competitions. 

C. Forecasting with Support Vector Regression 

Also an algorithm of CI, the method of Support Vector 

Regression (SVR), based on statistical learning theory by 

Vapnik [17], estimates a linear or nonlinear function j(x) 
that minimizes the forecasting error on a training data set 

((X"YJ, . . .  , (XI'YI)) � (xxY)' while keeping the functional 

form as flat as possible [18]. SVR is formulated as convex 

optimization problem with slack variables Si,Si* to allow for 

model errors and to control the trade-off between overfitting 

and model complexity through a regularization parameter 

C> 0 [17]. We consider the special case of an B-SVR, using 

an B-insensitive loss function, that assigns an error only to 

those observations Si,Si* � 0 outside an epsilon-insensitive 

tube of width B [19], which are called support vectors. To 

handle non-linear functional relationships in forecasting 

problems, data is mapped from a low dimensional input to a 

higher dimensional feature space F using a kernel function 

�, where the problem may be solved by exact optimisation 

[20]. For an introduction to SVR see [4]. 

In forecasting with SVR, the input vector contains the lag 

structure of the time series, which results in dot products 

after combining them with the support vectors in the kernel 

function. The quadratic optimization problem is solved to 

determine Lagrangian multipliers ai' ai
* 

that specify the 

SVR's parameters as weights Vi = ai - a, [4]. The dot 

products are then weighted by Vi = ai - a; to calculate the 

one-step-ahead prediction output together with the threshold 

b [4]. The forecasting process can be visualised as in fig. 2. 

To apply B-SVR to time series forecasting, a number of 

method specific meta-parameters must be determined a priori 

by determining the costs C, the width of the epsilon­

insensitive loss function 8, the kernel function and its kernel 

parameters y [21], which have a substantial impact on the 

forecasting accuracy of the algorithm [22]. The 

regularisation parameter C determines the trade-off between 

the model capacity, reflected in the flatness of the 

approximated function, and the amount to which deviations 
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Fig. 3. Time series prediction with SVR 

larger then the 8-insensitive tube are tolerated [19]. A larger 

value for C reduces the error contribution but yields a more 

complex forecasting function that is more likely to overfit on 

the training data [21]. Hence, it appears reasonable to 

evaluate parameters of C between a very small lower bound 

to create SVR-models with simple, flat functions to handle 

strong noise and a large upper bound to also consider SVR­

models that describe more complex time series structures. 

Therefore, B-SVR requires an expert to determine model 

parameters a priori in dependence of the data properties. 

The B-parameter controls the size of the B-insensitive tube 

and consequently the number of support vectors and the 

error contributions of observations lying outside it [18]. As B 

corresponds to the level of noise in a time series, large values 

of B allow an approximation of the structure of the 

underlying functional relationship of a time series with high 

noise as opposed to overfitting to the noise. Prior 

publications use margin values of e-8�B�e-1 [23]. In order to 

determine the 8-SVR parameters various modelling 

heuristics exist. Some approaches such as [24] and [25] 

determine the parameter 8 as a linear dependency on the 

noise of the training data, which however assumes a priori 



knowledge of the noise level [23] and hence yields little 

empirical benefit. The kernel parameter y defines the width 

of the kernel to reflect the range of the training data in 

feature space and therefore the ability of an SVR to adapt to 

the data [26], using e-SsyseS [23] or TSSygl . 

A common approach to determine suitable parameters per 

time series follows a systematic, step-wise grid search over 

the parameter space [30]. As the evaluation of every possible 

parameter combination would be intractable for parameters 

of interval scale, a grid using equidistant steps in the 

parameter space limits the computational effort at the cost of 

missing accurate parameter combinations and assuming a 

continuous error surface across meta-parameter choices. 

Different grids are applicable and will lead to different 

results, using linear step sizes, exponential [30] or 

logarithmic increasing sequences [23]. See fig. 2 for an 

example grid with exponentially growing sequences. 

Fig. 4. A grid with exponentially growing sequences 

Although previous publications employed parameter 

bounds of grid searches of e-sSCSes [30] and T2SCS212  [31], 

they did so without theoretical justification, making the 

parameter bounds a further meta-parameter themselves. In 

addition, stepwise refinements of the grid size in parameter 

space are feasible, leading to an analytically simple yet 

computationally expensive parameter selection approach. 

Valuable insight into developing robust methodologies has 

been generated by estimating leave-one-out bounds for SVR 

parameters [23] and analysing the interdependency of 

parameters, such as the impact of C for a given I> which has 

only negligible effects on the generalization performance (as 

long as C is larger than a threshold determined from the 

training data) [21], although these simplifications to limit the 

number of relevant parameters have not been universally 

received. Similarly, advanced approaches to parameter 

estimation, such as Bayesian frameworks for Gaussian SVR 

[27] and Bayesian model adaptation [28], may yield superior 

results to simpler heuristics of parameter grid search [29], 

but these still dominate most applications. 

IV. NAIVE METHODOLOGIES FOR SVR AND MLP 

A. Input variable selection 

The forecasting accuracy of any method, including CI 

methods of SVR and MLP depends largely on providing 

adequate input information to learn from. In time series 

forecasting this takes the form of specifying significant timed 

lags of the dependent variable Yt-n and excluding irrelevant 

ones, hence determining the length of the input vector. 

Multiple methods exist to specify input vectors, based on 

simple heuristic rules such as using the full seasonal length 

[14], statistical autocorrelation analysis on the order of 

autoregressive (AR), integrated (I) and moving average 

(MA) processes or mixed ARlMA-processes of lagged 

realisations of the dependent variable [3] or using spectral 

analysis to detect multiple overlying seasonal patterns. 

In order to mimic a naive modelling approach we select a 

simple heuristic decision rule based on the observation 

interval of the time series, using a constant lag structure of 

one calendar year seasonality s, e.g. the past s = 12 

observations for monthly, s = 52 weeks for weekly, or 

s = 365 days for daily data etc. in order to account for 

possible annual or shorter seasonality, as suggested by 

Balkin and Ord [14] as part of their automatic MLP model 

building. The lag structure was adapted to the seasonality of 

each dataset and used identically for all 11 time series in 

each dataset, despite the possibility of requiring different lag 

structures for different time series, suboptimal inputs due to 

non-parsimonious and redundant input lags, the necessity to 

include more, e.g. s+ 1 lags for seasonal integrated 

autoregressive processes SARIMA(P,d,O)(P,D,O)s or even 

longer memory for the approximation of MA processes of 

SARlMA(O,O,q)(O,O,Q)s by extending the input vector to 

multiples of the yearly seasonality. Considering recent 

research on input vector specification, this approach will 

lead to overspecified input vectors, which include a number 

of irrelevant variables that superimpose noise on the training 

data rather than identifying only the relevant ones, e.g. via 

stepwise regression [32]. For high frequency data in 

particular, this results in long input vectors that extend 

learning time and impair accuracy through the unnecessarily 

inflated degrees of freedom from superfluous weights. 

B. Data pre-processing 

Each of the six datasets contains 11 time series of yearly, 

quarterly, monthly, weekly and daily data from the NNGC 

competition. The time series across and within a dataset are 

heterogeneous, show various non-stationary seasonal and 

non-seasonal patterns and noise levels, including missing 

values, outliers, level shifts, for time series of varying length. 

In data preprocessing, missing values and outliers are 

routinely corrected as they impair correct parameterisation: 

missing values are misinterpreted as valid observations of 

zero value by for statistical algorithms as well as MLPs and 

SVR. In addition, outliers in the form of single occurrences 

which are not representative of the normal behaviour of the 

data generating process, receive increased weight during 

parameterisation due to their large error contribution from 

squared error objective functions, focussing the attention of 



the learning algorithm towards abnormal observations and 

away from the regular behaviour of the time series. 

In addition to outlier removal, all data should be scaled 

prior to training in order to facilitate learning, speed up the 

computation process and to avoid numerical difficulties. 

While other forms of scaling are often employed, e.g. 

statistical normalisation using mean and standard-deviation 

[3], this distorts nonstationary patterns so substantially that it 

creates additional difficulties for the algorithm to learn, 

which are beyond even a naive methodology. In order not to 

bias results too naively, each time series observation Yt is 

linearly scaled as Zt into the conventional operating interval 

of a MLP of [0.0; 1.0], using the scaling function of 

(Yt - Ytmin) Z == ...,..-'---� t 
(Ytmax - Ytmin) 

, (3) 

on the minimum Yt min and maximum value Yt max of Yt on both 

training and validation set. This linear scaling does not allow 

for instationary time series, such as trends continuing their 

increase into the unseen test data, which will exceed the 

representation bounds of the algorithm, e.g through possible 

saturation effects of the nodes of a MLP. Although this 

shortcoming can easily be overcome by rescaling into a 

smaller interval, e.g. applying a headroom of 50% to avoid 

saturation effects, it is often omitted in experiments, further 

biasing naive CI-predictions. 

C.Naive Multilayer Perceptrons 

After pre-specifying the number of input nodes and data 

preprocessing ranges for the MLP, we employ an exhaustive 

approach of a grid search of the number of hidden nodes 

from none to 20 in steps of 2, Ji=[O, 1, ... , 20] in only a 

single hidden layer. In combination with the number of input 

nodes this creates MLP topologies from only a few to 

multiple hundreds of parameters and hence degrees of 

freedom, often exceeding the number of observations in the 

time series and creating potential to overfitting to the data. 

Each node uses a logistic transfer function, although 

evidence from experiments has shown faster convergence 

and improved results from a Hyperbolic Tangent [11]. 

For training, we initialise each MLP five times with 

random starting weights uniformly distributed in [-1, 1], a 

common number of initialisations for network training 

although research has demonstrated that substantially more 

initialisations are required to find robust minima in even a 

search space of small dimensionality, potentially biasing 

experimental results. We employ a conventional, stochastic 

backpropagation algorithm for pattern-by-pattern learning 

with a constant learning rate of 11=0.5 without momentum for 

a maximum of 1000 epochs, using early stopping if the MSE 

has not improved by 1 % in the last 50 epochs. The naive 

setting both benefits unwanted convergence and entrapment 

into local minima and premature stopping due to slow 

learning convergence. The resulting experimental design 

creates a large number of possible candidate models, many 

of them overfitted on either training or validation set, which 

creates problems in model selection (similar as for SVR). 

To summarise, we combine a number of common mistakes 

in MLP modelling to create a Naive methodology. This 

methodology may serve as a lower bound of performance to 

all methodologies developed for the class of MLPs, and 

hence an objective benchmark for the NNGC competition. 

D.Naive Support Vector Regression 

In this study we seek to explore the simplest grid-based 

approach, using a brute-force, exhaustive enumeration of a 

representative parameter space. Furthermore, we limit the 

choice of kernel function to radial basis kernels (RBF), as it 

is most commonly used in f:-SVR using just one parameter y 

to determine the kernel width a priori [1]. The number of 

centres, location of the centres, the weights of the RBF plus 

all thresholds are determined during training [26]. Similar to 

the MLP, we employ a simple grid search of costs C, epsilon 

e and the width of a Gaussian kernel y with exponentially 

growing sequences that cover a vast range of value 

combinations. Employing a grid search methodology 

requires the setting of valid and reliable lower and upper 

parameter bounds that define the search space of the grid. To 

follow an exhaustive approach, we set the lower bound to 

C1=TIO and the upper bound to C1=21 6, exceeding the 

parameter range of previous experiments (see section II.C) in 

order to provide the capability for a sufficient trade off for 

the different time series patterns. This implements an 

exponential grid with 36 steps of 2°.5 to evaluate the 

parameter values of C=[2·IO,T9,5, . . .  ,21 6]. Similarly, for the 

parameter e that controls the size of the e-insensitive tube 

and the number of support vectors we extend these search 

spaces of previous studies and use a lower margin of T8 with 

an upper margin of 2°, employing exponential grid steps of 

2°·2 5, evaluating 32 parameter values off:=[T8,T7,75, . . .  ,2°] for 

different noise. For the kernel width r we select an 

exponential grid with steps of 2°·5, evaluating 30 parameter 

values of y=[T12,Tl l ,5, . . .  ,2°] to provide feasible kernel 

parameters for the scaled time series data, again exceeding 

limits of prior studies. Due to the magnitude of this time 

intensive approach of parameter selection, we reduce the 

training time by applying a shrinking technique to speed up 

the decomposition used to solve the SVR optimization 

problem, iteratively removing bounded components so that 

reduced problems are solved (see [33] for details). All 

experiments are calculated using the LIBSVM libraries [34] 

and Intelligent Forecaster (www.bis-lab.com). 

As a result, we evaluate thousands of e-SVR candidate 

models on all time series of the competition. The evaluation 

of a wide range of parameter combinations for each time 

series by grid search, without a robust methodology nor 

coordination of interacting parameters, facilitates various 

problems in model building, in particular overfitting through 

excessive parameter combinations which increase the 

probability of fitting only on the validation performance, and 

increased time and decreased efficiency in modelling. 

Furthermore, this amplifies the problem of model selection 



of a single best candidate from thousands on small cross­

validation datasets, as discussed in the next section. As a 

consequence, the resulting SVR candidates may be 

considered a Naive model building approach. 

E. Model Selection 

Depending on the flexibility of model parameters, both MLP 

and SVR are capable of approximating the underlying data 

generating process of a time series to different degrees of 

accuracy, permitting overfitting to the training data though a 

combination of sub-optimal parameters and thereby limiting 

its ability to generalize on unseen data [4] Hence the 

selection of a robust model candidate for each time series 

requires particular attention. To select the 'best' MLP or 

SVR candidate model from the different parameter setups, 

each time series is split into two subsets of 65% training data 

and 35% validation data for single fold cross validation [35]. 

Considering the length of the series the validation set is 

selected to roughly match the undisclosed test set in length, 

serving as a first estimate of a quasi-out-of-sample accuracy. 

Each candidate model is parameterised on the training 

dataset and is selected exclusively on its validation dataset. 

As only a short validation dataset is used for selecting the 

best candidate model for that time series, overfitting on the 

validation set frequently occurs if the validation subset does 

not fully represent the true data generating process, which 

cannot be expected from small data sub-samples. Multiple 

approaches are feasible to avoid overfitting to the validation 

data in model selection and to derive an unbiased estimator 

on unseen data, including methods for data sub-sampling 

such as k-fold cross validation using different numbers of 

data folds or leave-one-out cross validation [36]. 

To adhere to a naIve approach of model building, short of 

avoiding the grave mistake of selection of the best candidate 

model on the in-sample training data itself, we compute only 

single cross-validation errors and select the best model on 

the prefixed validation set. Consequently all MLP and SVR 

candidates are parameterised exclusively on the training set, 

while the forecasting capability of the models is evaluated on 

the validation set and the candidate model with the lowest 1-
step ahead validation error is selected [37]. 

Empirical simulation experiments have proven that error 

measures play an important role in calibrating and refining, 

model selection and ex post evaluation of forecasting models 

in order to determine the competitive accuracy and rank 

candidate models [37-38]. Although they should be selected 

with care, we apply the suboptimal squared error loss 

function of the root mean squared error (RMSE), weighting 

each error deviation by the quadratic distance using: 

(4) 

Using quadratic error or lrloss emphasises the influence of 

large forecast errors over small ones, e.g. from outliers and 

missing values. Evidence in forecasting literature confirms 

that squared error loss should normally be avoided in the 

evaluation of model performance, although practitioners and 

academicians in CI regularly employ MSE and RMSE to 

draw conclusions about forecasting methods [38], biasing the 

objective and evaluation of the algorithms. Although squared 

error metrics are frequently used due to their established 

history in conventional least-squares-estimators and their 

mathematical simplicity, as the selection criteria they also 

diverge from the final forecasting error metric in the NNGC 

competition of the symmetric mean absolute percent error 

(SMAPE) [38-39] which introduces a further mismatch: 

SMAPE=� t IYI -YII .(100) 
n 1=1 (IYII+IYII)/2 

(5) 

The model with the lowest RMSE on forecasting multiple 

t+ 1 step-ahead forecasts on the validation set is selected and 

applied to predict the next h data points as multiple-step­

ahead forecasts t+ 1, t+ 2, ... , t+ 18 on the NN3 competition 

data sets. It is apparent, that this gives rise to another 

mismatch, as a method may show adequate accuracy on 

forecasting one step into the future, yet another set of 

parameters may perform better in forecasting multiple steps 

ahead. As this is commonly not aligned in previous studies, 

we comply with this malpractice in the naIve methodology, 

introducing further potential for misspecification errors. In 

addition to model selection, errors from multiple-step-ahead 

trace forecasts may also be used for error backpropagation 

and early stopping in training, in accordance with the 

forecasting horizon h rather than mere I-step ahead 

forecasts, rolled forward by each time origin to achieve 

rolling origin evaluation[40]. This could aid in further 

aligning the forecasting objective and model specification. 

V . EXPERIMENT AL RESULTS 

No true observations for the test data of the NNGC 

competition are available at this time, so no evaluation of 

out-of-sample accuracy may be conducted. More thorough 

evaluations of the naIve methodology would be feasible by 

splitting the available data into training, validation and test 

set, but these are not conducted due to the obvious sub­

optimality of the naIve approach. This limits the following 

investigation to an analysis of the relative performance of the 

Naive benchmarks of SVR and MLP in comparison to more 

sophisticated methodologies submitted by contestants, but 

only once the final results of the NNGC are published. 

VI. CONCLUSIONS 

We compute a naIve heuristic, making use of most 

frequent mistakes in MLP and SVR modeling for time series 

prediction in order to establish a lower bound of accuracy for 

the respective model classes in the NNGC competition. The 

naIve heuristics evaluate an extensive grid search of MLP 

and SVR parameter combinations for each time series, 



calculating thousands of candidate models with the ensuing 

problems in model selection. In aiming for a lower bound, 

we neglect the necessity to identifY a significant input vector 

per time series, evaluate different scaling schemes, evaluate 

different algorithm specific parameters such as activation or 

kernel functions, control for overfitting in model selection 

form the validation data using k-fold cross-validation, 

conducting model selection and evaluation on a 

representative error metric for the ex post evaluation of the 

performance or the true cost of the decision, and computing 

and evaluating one step ahead predictors instead of multiple­

step-ahead predictors as required in the final test evaluation. 

The naive heuristic identifies a set of parameters for each of 

the 11 time series of the 6 datasets, which are subsequently 

used to forecast the next h future steps for unseen data. 

While we hope to demonstrate the general ability of MLP 

and SVR to forecast linear and nonlinear time series with 

seasonal and non-seasonal patterns, showing their 

comparatively robust performance despite purposeful model 

misspecification, the discussion of the naive heuristic 

methodology also aims at drawing attention to the most 

common mistakes in MLP and SVR model building. Further 

research, and systematic evaluations of forecasting accuracy 

on multiple empirical time series are required to establish a 

valid, reliable and robust methodology for automatic MLP 

and SVR model building. For this, we hope that forecasting 

competitions such as the NNGC on empirical data serve as a 

valid and objective initial test bed. Until then, the naive grid 

search heuristic may serve not only as a negative benchmark 

and lower bound to forecasting accuracy, but also as a 

warning on the most obvious pitfalls to avoid in MLP and 

SVR model building. 
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