
 
 

 

  

Abstract— Metagenomic studies inherently involve sampling 
genetic information from an environment potentially contain-
ing thousands of distinctly different microbial organisms. This 
genetic information is sequenced producing many short frag-
ments (<500 base pair (bp)); each is tentatively a small repre-
sentative of the DNA coding structure. Any of the fragments 
may belong to any of the organisms in the sample, but the rela-
tionship is unknown a priori. Furthermore, most of these or-
ganisms have not been identified and correspondingly are not 
represented in any of the publicly available search databases. 
Our goal is to be able to predict the taxonomic classification of 
an organism based on the fragments obtained from an envi-
ronmental sample that may include many (some previously 
unidentified) organisms. To elucidate the diversity and compo-
sition of the sample, we first use a supervised naïve Bayes clas-
sifier to score the fragments of known genomes, followed by an 
unsupervised clustering to group fragments from similar or-
ganisms together. We are then free to analyze each cluster sep-
arately. This is challenging since we are not interested in simi-
lar sequences, but sequences that come from similar genomes, 
which are known to vary widely intra-genomically. Our dataset 
comprises of an extremely challenging scenario involving clus-
tering fragments at the phyla level, where none of the phyla 
have been previously seen or identified. We present two varia-
tions of our proposed approach, one based on ART and K-
means. We show that ART can cluster 500bp fragments from 
17 novel phyla at an overall isolation/grouping that is 10% bet-
ter than K-means and nearly 7 times over chance. 

I. INTRODUCTION 

Metagenomics is primarily concerned with the composition 
and community function of microbial organisms in their 
native environments on a molecular basis. Understanding 
which microbes are present in an environment permits the 
characterization of the community in terms of diversity. Ad-
ditionally, and perhaps more importantly, the function and 
current state of the environment may be described. It is well 
understood that communities of microbes have substantial 
impact on the behavior of their environment [1, 2].  

For example, it is estimated that humans are comprised of 
approximately 100 trillion cells [2]. Surprisingly, it has been 
suggested that there are 10-to-20 times as many microbes 
inhabiting the human body collectively accounting for 1-2% 
of our body mass [2]. These microbes are believed to be 
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incredibly diverse across the body varying between sites and 
between individuals [3]. The majority of these microbes are 
known to form a symbiotic relationship with the body, for 
example, microbes in the intestines assist in the production 
of vitamins such as vitamin B12 [4].  

Studies are currently under way investigating the impact 
of microbial communities in the human gut causing ailments 
such as obesity and Crohn’s Disease [5]. The findings of 
such studies may not only elucidate the cause of the disease, 
but hopefully will lead to novel medical treatments. The 
impact of microbes inhabiting the human body is thought to 
be so significant that the Human Microbiome Project has 
been commissioned by the National Institutes of Health to 
catalog the diversity and function of all of the microbes in-
habiting the human body. A few studies under this project 
already have targeted microbes inhabiting the human gut 
environment [6].  

II. BACKGROUND 
To study a microbe from an environmental sample, tradi-

tional genomics prefers first to isolate a microbe from its 
environment, and culture a small population in the laborato-
ry. The genomic DNA is extracted from this microbe and is 
sent to a sequencer to call the bases (nucleotides) of the 
strand of DNA (i.e. Adenine, Cytosine, Thymine, and Gua-
nine).  Contemporary sequencing technology produces short 
fragments of sequenced DNA anywhere from 35 to 1000bp 
in length. Pyrosequencing technology such as Illumina® 
produces read lengths of about 35bp while 454 Sequen-
cingTM   produces 400bp reads. Traditional Sanger sequenc-
ing produces reads in length upwards of 1000bp.  Regardless 
of the sequencing technology, the outputted contiguous 
fragments are aligned and assembled to produce the finished 
sequence of DNA. Baring any contamination in the experi-
ment, we know that this assembled sequence of DNA is 
germane to the microbe under study since there is only one 
type of microbe in the culture and therefore one genome. 

Metagenomics on the other hand involves characterizing 
the entire environmental sample, which potentially contains 
thousands of different microbe strains. It is nearly impossi-
ble to isolate and culture each of these strains since most 
cannot exist outside of their environment. Notably, approx-
imately 98% of all microbes cannot be isolated and cultured 
and therefore must be studied in their natural environment 
[7]. In order to circumvent this hurdle, genomic DNA is 
sampled from the entire environmental sample and is passed 
through the sequencer. Contradictory to traditional genom-
ics, the fragments cannot be immediately assembled since 
we do not know a priori which fragment belongs to which 
microbe. Therefore a logical first step before analysis is to 
classify fragments that come from known genomes using 
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prior knowledge from a database (for example, using super-
vised learning).  For notational purposes, we will refer to 
these methods as supervised classification while unsuper-
vised/semi-supervised clustering will be referred to as bin-
ning. 

Most supervised classification methods for metagenomics 
employ either a homology-based alignment or a composi-
tion-based frequency model [8, 9, 10, 11].  However, as 
mentioned above, either of these techniques can only identi-
fy the 1-2% of organisms (those that are known), and per-
haps classify another 50-70% to a higher taxonomic level 
(such as order or phylum).  But if no examples of this higher 
taxonomic level exist in the database, accuracies have been 
shown to decrease sharply [11].  Therefore, it will be desira-
ble to group metagenomic reads into taxonomic subdivisions 
when the higher order taxa is not known.  For example, if we 
conclude sequences obtained from an environmental sample 
must be from a new species – we can use clustering to help 
us discern if all the fragments are from the same species or 
cluster into different species, which can then help us to infer 
new organisms.  The total number of clusters created reflects 
the diversity of the environmental sample; namely the num-
ber of different taxonomies of microbes that are present, 
even if they are unknown.  

Currently, most methods for genomic data classification 
are supervised approaches, with unsupervised and semi-
supervised binning only recently emerging. The only fully 
unsupervised method to our knowledge is LikelyBin, an 
algorithm that learns the different “source” genomes via a 
Monte Carlo Markov Chain approach [12]. However, the 
method is only valid for low complexity samples (2-10 spe-
cies) and was tested on samples that were sufficiently diver-
gent according to derived criteria. CompostBin is a semi-
supervised algorithm for grouping fragments that uses an 
initial set of sparse labeled data and principle component 
analysis [13].  They have demonstrated error on several da-
tasets bounded by 10%; however, their datasets are also low-
complexity with only 2-6 organisms. Also, self-organizing 
maps (SOMs) have shown promise, with SOM [14] and 
Growing-SOM [15] being implemented, with the latter 
achieving 99+% on low-complexity and 90% on medium 
complexity samples.  The caveat with SOMs is that it was 
shown to work well only on DNA fragments that are longer 
than 8kbp and lose much accuracy by 1kbp.  Nonetheless, 
the G-SOM method by Chan uses sparsely labeled data and 
does not require knowledge of known genomes, making it 
less supervised than many semi-supervised methods.  So far, 
all clustering methods are infeasible for next-generation se-
quencing (that produces fragments that are much shorter 
than 1kbp, some as short as 25bp) and on high complexity 
samples. 

III. METHODS 
In this paper, we propose a semi-supervised approach that 

uses the output of a supervised classifier (e.g. Naïve Bayes 
classifier) as features that can be fed into an unsupervised 
clustering method.  The novelty of this approach is based on 
using features as outputs of the supervised classification in 
such a way that allows us to place the fragment in context to 

all organisms currently known. In turn, such an approach 
provides a basis to launch from when attempting to cluster 
an unknown fragment with like organisms.   

Conceptually, the proposed method of processing metage-
nomic fragments is similar to processing a segment of rec-
orded speech. First, the DNA (audio signal) is extracted 
from the environmental sample (recording). Next, the DNA 
is run through a sequencer producing fragments (audio seg-
mentation) of sequenced DNA. The features are then ex-
tracted from the fragments via the supervised classifier and 
then clustered using an unsupervised algorithm (e.g. K-
means/ART/SOM). Finally, the results are validated using 
confidence measures such as bootstrapping or cross valida-
tion. The intended result is to produce clusters of fragments, 
each of which originate from a similar taxonomic class of 
microbes. 

Our unsupervised clustering pipeline begins with scoring 
each fragment against a training database of known microbe 
genomes using a Naïve Bayes classifier. This classifier was 
first implemented for organism classification by Sandberg in 
2001 on a small set of just 28 genomes, and has since been 
further extended to a larger database of 635 genomes by 
Rosen [9, 16]. The outputted scores for each fragment are 
then submitted as features to an unsupervised clustering al-
gorithm. In this paper two clustering algorithms have been 
implemented; K-Means and Adaptive Resonance Theory 
(ART). [17, 18, 19, 20].  The contents of the clusters are 
then evaluated and a final score is assigned. The flowchart in 
Fig. 1 depicts the algorithmic pipeline. A detailed pseudo-
code of the algorithm is provided in Fig. 2. 

The Naïve Bayes classifier (NBC) begins with calculating 
the occurrence profile (or frequency profile) of each motif 
present in a training genome. A motif is an N-mer sequence 
of DNA, that is, a sequence that consists of N nucleotides. 
Since there are 4 possible nucleotides, there are 4N possible 
different motifs in a genome, and many may occur more 
than once.  

 
Fig. 1: Proposed algorithmic pipeline. Metagenomic reads (fragments) 
obtained from sequencer are input to the Naïve Bayes Classifier that has 
been trained on annotated microbial genomes. Each fragment is scored 
against each genome in the training database and a corresponding feature 
vector containing the scores is outputted for each fragment. The fragments 
are then clustered based on their feature vectors using an unsupervised 
clustering algorithm. At completion all fragments should be grouped to-
gether based on similarity of class (e.g. Phyla). 
 

To run the classifier, a fragment of length S is input to the 
NBC and all J overlapping motifs are identified. The proba-
bility of the fragment belonging to each genome, constitut-



 
 

 

ing the motif frequency profile, is calculated according to 
Equation (1).    
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where Mj denote the jth motif, M is the total number of mo-
tifs in a given genome, and G is the total number of genomes 
in the database. Generally, given a fragment f that consists of 
J motifs, the genome (from the training dataset) with the 
highest score is selected as the classification decision, where 
the scores are computed as in Equation (2). 
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In other words, the NBC chooses the genome whose fre-
quency profile most closely matched that of the given test 
fragment. However, the proposed algorithm does not neces-
sarily care about the winning genome, but rather the entire 
vector of scores of each fragment across all genomes for 
subsequent unsupervised classification. 

For each fragment we use its score across all training ge-
nomes as a G-dimensional feature. We handle the unsuper-
vised clustering with an implementation of Fuzzy Adaptive 
Resonance Theory [19, 20, 21] and alternatively K-means. 
Our intent was to utilize this tool to classify unknown frag-
ments based on similarity of their feature vectors corres-
ponding to the fragment’s strain of origin.  
 

 
Fig. 2: Description of the proposed algorithm in pseudocode. This algorithm 
is also represented in block diagram form in Fig. 1.    
 

 



 
 

 

ART analyzes a fragment and assigns it to a category or 
cluster. If a fragment is found to be substantially different 
from the existing clusters than a new cluster is created. The 
stringency of the ART algorithm to discern the similarity 
between fragments is controlled by a vigilance parameter. 
This parameter varies between 0 and 1 with 1 imposing the 
most stringent requirement for similarity. Therefore, one 
would expect the number of clusters to increase as the vigil-
ance parameter is increased. 

The network may grow according to the diversity of the 
fragment feature vectors without erasing previously assigned 
clusters. For example, if three clusters have already been 
formed based on fragments belonging to three different phy-
la and a fourth fragment has been determined to be signifi-
cantly different that the other three clusters, a new cluster is 
formed and thus we have learned (or discovered) a fourth 
phyla. 
We also chose to implement the K-means clustering algo-
rithm for comparison purposes since it is a ubiquitous, easily 
accessible method [17]. The K-means algorithm clusters the 
fragments together based on the Euclidean distance between 
their G-dimensional feature vectors. Therefore we would 
expect excellent performance from this algorithm if our data 
were distributed spherically.  

To assess the performance of the algorithm on our test da-
tasets we invoked two different figures of merit. Our first 
figure assesses the accuracy of the algorithm to cluster simi-
lar classes together as shown in Equation (3).  
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Where fc,p is the number of fragments in cluster c that be-
longs to the taxonomic class (phyla) p, P is the number of 
such taxonomic classes, and F is the total number of frag-
ments in all of the phyla. In our database, we had P=17 pre-
viously unseen phyla. For a test dataset including fragments 
from 17 different phyla, we would ideally expect to see 17 
different clusters each containing a different phylum. In such 
cases, this figure of merit obtains its highest value of 1.  

The second figure of merit assesses the accuracy of the 
algorithm to isolate dissimilar classes as described by Equa-
tion (4). 
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where fc is the total number of fragments in cluster c, ft
’ is 

the total number of fragments from the taxonomic class p, 
and C is the total number of clusters obtained by the unsu-
pervised algorithm.  Ideally, we would expect each cluster to 
contain one class (e.g. one phylum); in which case this fig-
ure of merit obtains its highest value of 1, but it’s possible 
that a cluster may contain many classes so it’s important to 

understand the class forming the majority of the distribution 
within each cluster. 

The integrated approach of using unsupervised and super-
vised techniques together stems from the fact that we have 
very limited labeled data, and potentially unlimited unla-
beled data with unknown future classes. We note that be-
cause the number and nature of the classes that may appear 
in future data are also unknown, most semi-supervised ap-
proaches are not immediately applicable to this vast and 
challenging genomic data. In summary, we use the limited 
data with available labels to determine the frequency profiles 
of the features with respect to the known genomes using the 
naïve Bayes classifier.  The posterior probability scores of 
these features, a measure of how close a given feature vector 
is to existing genomes - are then used in an unsupervised 
fashion to establish the inherent clusters in the data obtained 
from previously unknown genomes. While the number and 
nature of future classes are unknown, the feature vectors 
themselves are fixed, since we use all combinations of nuc-
leotides for a given N-mer. 

IV. DATASET 
To evaluate the performance of our approach, we have 

developed three different experiments, each consisting of a 
different subset of test data. All experiments were geared 
towards grouping the test fragments at the phyla taxonomic 
level. We selected this level since it is comprised of micro-
bes that are much more diverse than those belonging to the 
levels of genus or species. Therefore, our experiments focus 
on analyzing extremely challenging scenarios for the classi-
fication of short metagenomic fragment reads for taxonomic 
purposes. 

The 635 strains that comprised our dataset were obtained 
from the National Center for Biotechnology Information 
(NCBI) repository. These are strains of microbes that have 
fully sequenced genomes. We have found that the strains in 
this database span 19 different phyla. Our goal was to use 
our algorithmic pipeline to cluster fragments that were ran-
domly sampled from these strains into groups based on their 
phyla class. Each strain was randomly sampled 100 times 
with each sample consisting of a fragment 500bp (base-pair) 
in length.  

In experiment 1, we set aside the strains belonging to the 
two largest classes of phyla for the NBC training dataset. 
This training dataset consisted of 431 strains. The remaining 
204 strains spanned 17 different phyla and were used as the 
test dataset. Therefore, we attempted to cluster fragments 
500bp in length into 17 different groups using a training 
database that did not include any examples of the test data-
set, or even any examples of any of the phyla in the test da-
taset (in other words, the instances in the training dataset did 
not include any samples from any of the classes in the test 
dataset). This is an extremely challenging scenario, different 
from the standard procedure of just keeping training and test 
datasets mutually exclusive, but consisting of examples of 
the same classes. This is because our entire set of test frag-
ments is novel to the classifier. 

In experiment 2 we reversed the set up of experiment 1. 
We trained the NBC using the 17 phyla used as the test set in 



 
 

 

the prior experiment. We then attempted to cluster the 2 
largest phyla into 2 groups. Again, the test fragments were 
completely novel to the NBC classifier, resulting in a simi-
larly challenging scenario for classification. 
In experiment 3, we followed a different approach from the 
prior two experiments by partitioning the number of strains 
of each of the 19 classes into two groups. One group of 320 
strains was used for training the NBC while the remaining 
315 strains were used in the test set. As in all of the experi-
ments, the test set consisted of 100 fragments, 500bp in 
length, for each strain while the training set consisted of 
whole-genomes for each training strain. 

The results of all three experiments are provided in the 
next section. Each experiment was bootstrapped 25 times to 
provide a level of confidence in the results [22, 23].  

V. RESULTS 

A. Experiment 1: Training on 2 large phyla to cluster 17 
smaller phyla 
A training dataset of 431 strains was constructed spanning 

2 phyla. The remaining 204 strains spanning 17 different 
phyla were used as test strains as described above. The train-
ing dataset consisted of whole genomes while the test frag-
ments were obtained from the test strains by randomly sam-
pling each of them 100 times extracting 500bp nucleotide 
reads each. Both K-means and ART were implemented to 
cluster the fragments using the NBC scores as feature vec-
tors. The results are summarized in Table I. 

 
Table I. The results of clustering 20400 fragments spanning 17 different 
phyla when trained on another 2 different phyla using the two figures of 
merit described in the methods section. The free parameter for K-means 
was set to 17 and the vigilance parameter, ν, for ART was set to 0.1. Group-
ing these fragments by chance into clusters of similar phyla we would ex-
pect accuracy of 1/17 or 5.9%. 
 

Both algorithms grouped all of the fragments into 17 dif-
ferent clusters as intended. The ART algorithm performed 
better using both figures of merit than the K-means algo-
rithm. Interestingly, K-means was able to isolate different 
phyla better than it was able to group similar phyla together 
while for ART the converse is true. The results imply that 
ART is grouping similar phyla together, but the clusters are 
containing more than 1 phyla thereby driving down the score 
for isolating different phyla. The opposite is true for K-
means, suggesting that similar phyla are distributed among 
several clusters rather than one, but not across all clusters, 
otherwise we would expect a similar score for isolating dif-
ferent phyla. 

B. Experiment 2: Training on 17 smaller phyla to cluster 
2 large phyla 
A training dataset of 204 strains was constructed spanning 

17 phyla; the opposite of experiment 1. The remaining 431 
strains spanning 2 different phyla were used as test strains. 
The training dataset consisted of whole genomes while the 
test fragments were obtained from the test strains by ran-
domly sampling each of them 100 times extracting 500bp 
nucleotide reads each. Both K-means and ART were imple-
mented to cluster the fragments using the NBC scores as 
feature vectors. The results are summarized in Table II. 

 
 
Table II. Results of clustering 43100 fragments spanning 2 different phyla 
when trained on another 17 different phyla using the two figures of merit 
described in the methods section. The free parameter for K-means was set 
to 2. Grouping these fragments by chance into clusters of similar phyla we 
would expect accuracy of 1/2or 50%. ART grouped these fragments into 4 
clusters with the vigilance parameter, ν, set at 0.025. 
 

While K-means was programmed to group all of the frag-
ments into 2 clusters, the ART algorithm exhibited the best 
performance when grouping all fragments into 4 clusters. 
The ART algorithm performed slightly better using both 
figures of merit than the K-means algorithm. K-means was 
able to isolate different phyla marginally better than it was 
able to group similar phyla together and the same is true for 
ART albeit at a larger margin. The performance of the algo-
rithms appear to be much better for experiment 2 than the 
previous, but it is important to note that chance was 5.8% in 
experiment 1, while chance is 50% in this experiment. 
 

C. Experiment 3: Training on examples of each phyla to 
cluster the rest 
A training dataset of 320 strains was constructed spanning 

19 phyla. The remaining 315 strains also spanned the same 
19 different phyla and were used as test strains. The training 
dataset consisted of whole genomes while the test fragments 
were obtained from the test strains by randomly sampling 
each of them 100 times extracting 500bp nucleotide reads 
each. Both K-means and ART were implemented to cluster 
the fragments using the NBC scores as feature vectors. The 
results are summarized in Table III. 
 

 



 
 

 

Table III. The results of clustering 31500 fragments spanning 19 different 
phyla when trained genomes belonging to the same 19 phyla using the two 
figures of merit described in the methods section. The free parameter for K-
means was set to 19. Grouping these fragments by chance into clusters of 
similar phyla we would expect accuracy of 1/19 or 5.2%. ART grouped 
these fragments into 18 clusters with the vigilance parameter, ν, set at 
0.105. 

 
K-means was programmed to group all of the fragments 

into 19 clusters, but the ART algorithm exhibited the best 
performance when grouping all of the fragments into 18 
clusters. K-means was slightly better at grouping similar 
phyla together, but substantially worse at isolating different 
phyla. ART scored nearly the same for both figures of merit 
implying that the distribution of fragments is similar across 
all of the clusters. 

VI. DISCUSSION 
Grouping unknown metagenomic fragment reads is inhe-

rently a challenging problem. We simply do not know the 
distribution of classes of taxa in a metagenomic sample prior 
to sequencing. Therefore we need to rely on clustering these 
fragments to provide a sense of diversity of the sample. Fur-
thermore, we need the fragments grouped together if we 
wish to further investigate the sample for functionality since 
a single fragment by itself may not contain enough informa-
tion to describe a gene.  

The challenge we face is that we cannot simply cluster 
fragments together that are similar in composition as many 
clustering methods tend to do. Our problem is to group 
fragments that belong to similar groups of taxa (e.g. phyla) 
together. The difference is that fragments belonging to a 
strain vary greatly in composition because each one 
represents a different part of the genome. While two strains 
may be similar inter-genomically, each generally will vary 
greatly intra-genomically. Since the fragments we are clus-
tering represent short samples of each strain’s genome, we 
expect that the fragments in each cluster will vary greatly. 
We therefore need clustering methods of greater complexity 
over simply using basic unsupervised clustering algorithms. 
This has motivated our use of the NBC for feature extraction 
in our algorithmic pipeline. 

Our experiments have been constructed to simulate chal-
lenging scenarios for clustering unknown fragments. The 
experiments purposely ensured that no class in the test set 
was represented in the training database. This reflects the 
current state of metagenomic analysis since most fragments 
obtained from a metagenomic sample are novel and need to 
be clustered based on their relation to known classes.  

. The first two experiments purposely ensured that no 
class in the test set was represented in the training database. 
The third experiment on the other hand was constructed so 
that the training database contained an example from each 
class in the test set. This enabled us to observe the perfor-
mance of the algorithm on the other extreme; complete re-
presentation in the training database. 

From our experiments we have found that the proposed 
approach is able to cluster the test fragments substantially 
better than chance. For example, we expect 5.8% of the test 
fragments in experiment 1 to group together by chance since 

the test set spans 17 phyla. ART was able to cluster the 
fragments with accuracy of 42.9% and 33.5% using the two 
assessment criteria respectively. Accuracy increased in Ex-
periment 2 and Experiment 3. As anticipated, the accuracy 
further increased in Experiment 3 over the prior experiments 
since there was full representation of the test classes in the 
database.   

Throughout all experiments using both assessment crite-
ria, we find that ART generally performs better than K-
means. K-means is a simple clustering method that creates 
clusters based on the Euclidean distance between points. In 
our experiments the K-means algorithm is calculating the 
distance between the feature vectors of fragment scores 
against strains in the database. If the feature vector scores 
were spherical in nature, then we would expect K-means to 
perform rather well on the test set. However, the further that 
the feature vectors deviate from spheres the poorer the per-
formance of the algorithm will be. It is clear that our feature 
vectors are not spherical in nature. The ART algorithm is a 
more sophisticated neural network based model that “learns” 
the pattern of feature vector scores associated with a set of 
fragments and groups them together based on their similari-
ty. Therefore, we expect that ART would have an advantage 
over the K-means algorithm since we are grouping based on 
pattern and not distance. 

VII. CONCLUSION 
Compared to other unsupervised and semi-supervised ap-

proaches, we cluster shorter reads (500bp) and more strains 
(200 to 400) than any other method, to show the clustering 
method’s feasibilities on real metagenomics datasets.   Most 
current un/semi- supervised methods have only discrimi-
nated up to 10 strains using short reads or long fragments of 
over 5Kbp for medium complexity samples. Each of these 
constraints makes these methods disadvantageous for next-
generation sequencing of environmental samples.  Also, we 
demonstrate that adaptive resonance theory is able to cluster 
novel phyla better than K-means when there are a large 
number of fragments to cluster.  We believe this is due to the 
incremental learning capability of ART and its ability to 
learn non-spherical clusters.  In conclusion, on an extremely 
challenging dataset of grouping 500bp reads from 204 
strains spanning 17 phyla, ART is able to accomplish this 
with 43% accuracy, demonstrating that this problem is a 
challenging one.  
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