
 

 

 

 

Abstract—The value memristor devices offer to the 

neuromorphic computing hardware design community rests on 

the ability to provide effective device models that can enable 

large scale integrated computing architecture application 

simulations. Therefore, it is imperative to develop practical, 

functional device models of minimum mathematical complexity 

for fast, reliable, and accurate computing architecture 

technology design and simulation. To this end, various device 

models have been proposed in the literature seeking to 

characterize the physical electronic and time domain 

behavioral properties of memristor devices. In this work, we 

analyze some promising and practical non-quasi-static linear 

and non-linear memristor device models for neuromorphic 

circuit design and computing architecture simulation. 

I. INTRODUCTION 

HE neuromorphic computing hardware community has 

been re-energized by the discovery of the physical 

memristor device by researchers at Hewlett-Packard (HP) 

Laboratories, in Palo Alto, California, in 2008 [1]. The 

memristor device, whose name comes from the contraction 

of “memory resistor,” has been characterized as the 

functional equivalent to the synapse [1]. Leon Chua 

theorized the existence of the memristor device in 1971 as 

the fourth basic circuit element [2]. Given the non-volatile 

nature of the memristor device, applications containing such 

devices lay within memory and computing applications [1]. 

As mentioned, the memristor device operates analogously to 

the biological synapse [1]–[3]; therefore, it represents a step 

forward in the development of low power and large scale 

neuromorphic computing hardware and applications.  

In order to apply memristor device technology to large 

scale computing systems, it is important to accurately model 

and simulate its time domain electronic characteristic 

behavior. Memristor devices exhibit a strong hysteresis; 

therefore, based on the current device resistance (or 

memristance) state or initial conditions, we must be able to 

accurately predict its future electronic behavior. Several 

models have been proposed in the literature to describe the 

non-quasi-static electronic time domain characteristic 

behavior of memristor devices [4], [6], [7]. In this work, we 

present a memristor modeling simulation analysis and 

comparison of published linear and non-linear dynamical 

memristor device models. We believe that a solid 
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understanding of memristor modeling and simulation 

methodologies will lead to accelerated design and 

development of memristor powered technologies such as 

neuromorphic computing hardware. 

II. MEMRISTOR DEVICE MODELS 

A. Linear Boundary Drift Model  

The linear memristor device model reported by Hewlett-

Packard [1][4] states that the effective transport mechanism 

in TiO2 based memristor devices is through the drift of 

vacancies originating within an oxygen deficient TiO2-x layer 

[4]. The TiO2 based memristor devices’ physical quasi-static 

transport mechanisms have been recently described in some 

detail by Pickett et al. [5]. As the oxygen vacancies drift 

under an applied external electric field, the stoichiometric 

TiO2 will become doped with the ionized vacancies. 

Treating the doped (oxygen vacancy rich regions) and 

undoped regions of the device as a pair of resistors in series, 

the memristance corresponding to a given boundary position 

or state, w, relative to the device length or thickness D can 

be described as follows [4]: 
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where Ron is the resistance of the doped region and Roff is the 

resistance of the undoped region. A schematic representation 

of the memristor device model is shown in Figure 1.  

 The drift velocity, vD, at which the doped/undoped 

boundary interface moves is defined as [6] 
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where the oxygen vacancies have a characteristic drift 

mobility, µD, under any applied bias voltage. η indicates the 

polarity of the memristor, where η = 1 or  -1 for a device 

whose doped region is expanding or shrinking respectively 

under a positive voltage bias. For example, the memristor 

device in Figure 1 has an η = 1 polarity. 
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 Integrating both sides of (2) gives the state w as a function 

of time [6] 
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letting q(0) = 0. Substituting (3) into (1), we can solve for 

the device’s memristance, M, as a function of charge [6] 
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where, after grouping terms, the parameters R0, Q0, and ΔR 

are given by [6] 
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the initial resistance of the memristor; 
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the charge required to alter the state from w0; and 

 

ΔR = Roff – Ron .        (7) 

 

From Chua’s seminal memristance equation [2] 

 

dφ = M dq,          (8) 

 

one may derive essentially Ohm’s Law, 
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Using (4), we can rewrite (9) as [6] 
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Then integrating (10) over time, we can solve for the 

magnetic flux 
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which, in turn, provides an equation for q(t) via its quadratic 

solution [6] 
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again letting q(0) = 0. Substituting (12) into (4), we obtain 

an equation for memristance explicitly as function of the 

flux [6] 
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Finally, we can insert (13) into (9) to solve for the current 

flowing through the memristor device [6] 
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 The linear boundary drift model assumes that the oxygen 

vacancies are free to traverse the entire length of the move 

memristor unhindered by the boundary conditions of the 

device. The utility of this model lies within the ease of usage 

and closed form solution. 

 

B. Non-linear Boundary Drift Models 

The linear boundary drift model reproduces the 

characteristic time hysteresis behavior of memristor devices; 

however, the model suffers from oversimplifications of basic 

electrodynamics. First of all, even small voltages across the 

nanometer devices will produce a large electric field; thus 

the ion boundary position will move in a decidedly non-

linear fashion. Additionally, w could never reach a zero 

length because it would indicate that there are physically no 

oxygen vacancies present in the device, the identified charge 

transport mechanisms. On the other hand, the entire length 

of the device could potentially become doped with the 

oxygen vacancies. Modeling the state change as a mass on a 

spring, the boundary drift velocity, vD, should be greatest at 

the center of the device and reduced to essentially zero as w 

approaches either edge (w = 0 and w = D). These boundary 

value restrictions can be implemented by multiplying a 

windowing function to (2) as shown below [6][7] 
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where x = w/D is the normalized form of the state variable. 

The function F(x) should have its highest value at the center 

of the device (x = 0.5) and be zero at the boundaries, x = 0 

and x = 1. Joglekar et al. [6] proposed the window function 
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where p is a positive integer. Figure 2 displays a graphical 

representation of the window function described by (16) for 

various p solutions (p = 1, 5, and 10). From the figure, we 

observe that the maximum Fp(x) value occurs at the center of 

the device and that zero values are obtained at the two 

 
Fig. 1.  Schematic representation of the memristor device as two 

resistors in series. 



 

 

 

boundaries. Also, by varying the p parameter, we can control 

the rate of change of the function. Lower p values 

correspond to lower rates of change and vice versa. Inserting 

(16) into (15), we obtain the modified state change equation 
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We observe that (17) reduces to the linear boundary drift 

model described by (2) as p increases [6]. Equation (17) also 

utilizes the   parameter since memristor devices are 

asymmetric. During modeling and simulation it is important 

to consistently specify each device’s physical orientation.  

 The non-linear state change model described by (17) is 

more physically accurate when compared to the linear 

model; however, the window function makes solving for w 

as function of time challenging for an arbitrary p. Therefore, 

a time-step numerical solutions approach was employed for 

simulations. The following formulae were independently 

derived from the algebraic manipulation of (1), (9), and (17) 

as shown below 
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where ti in (18) corresponds to the initial time step and ti+1 in 

(19) - (22) the next integral time step. 

 The order of these time-step equations brought to light 

another challenge in the implementation of (16), specifically 

when the doped region covers the entire device length (x = 

1). It then follows that Fp(x = 1) = 0 for all p, (16). Thus, w 

in (21) does not change since vD = 0, (20). Therefore, x = 1 

once again for the next time-step during simulation. Then, 

this loop persists till the end of the simulation without 

respect to the change in the direction of the current, 

producing invalid results. 

 A new window function was proposed by Biolek et al. [7] 

 

         –    –    –    
  

 ,      (23) 

 

where  

       
        

        

 .        (24) 

 

This window function is displayed in Figure 3 for various p 

integer values (p = 1, 5, and 10). The state change is no 

longer modeled as a mass on a spring; rather, the function is 

asymmetric in the way it limits changes in vD. For example, 

when x starts at 0, the function equals 1. Then, as x 

increases, approaching D, the function approaches 0. Once 

the current reverses direction, the function immediately 

switches to 1. Then, as x decreases back to 0, the function 

also decreases to 0. When the current reverses, the cycle 

begins once again. In order to compute vD, (23) can be 

substituted into (20) without altering the other four 

equations. One advantage of Biolek’s window function is 

that it eliminates convergence issues at the device 

boundaries. 

 

 

III. RESULTS AND DISCUSSION 

 During model analysis and simulation, all memristor 

models were simulated in Matlab; and all bias voltage 

sources were of the form 

 

V(t) = v0 sin(ω0 t + θ),       (25) 

 

where v0 is the voltage amplitude and θ is an arbitrary phase 

shift. Typical simulation input parameter values are v0 = 1 – 

5 V and ω0 = 10 – 10
6
 rad/s. We can calculate the flux 

through the device as the time integral of the voltage across 

it from (25) 
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Fig. 3.  Plot of non-linear window function proposed by Biolek et al. 

for p = 1, 5, and 10. 

 
Fig. 2.  Plot of non-linear window function proposed by Joglekar et 

al. for p = 1, 5, and 10. 



 

 

 

 

A. Linear Boundary Drift Model 

 
The physical memristor device is characterized by the 

parameters µD, w0, D, Roff, and Ron. Adjustments to the 

dopant mobility parameter directly correlates to changes in 

the boundary drift velocity as described in (2). A slower 

(faster) velocity corresponds to smaller (larger) changes in w 

per cycle, which in turn decreases (increases) the resistance 

value spectrum available to the memristor.  Adjusting w0 

also directly alters the effective range of resistance values 

available to the memristor. In general, a higher w0 produces 

wider loops in the I-V plots. However, neither µD nor w0 can 

be set to completely arbitrary values; otherwise, imaginary 

numbers arise in the equations. Overall, the model operates 

over the widest range of parameter values when the initially 

doped region is less than half the device length. The 

maximum viable µD and w0 values are related to the 

frequency of the voltage source, where a high frequency 

allows for larger values in both parameters. Long devices, 

high D values, display less memristive effects than short 

devices because, as is seen in (4), memristance falls off as an 

inverse square function. 

 The Roff  and Ron resistance values can be arbitrarily set in 

accordance with their definitions. The ratio r = Roff /Ron 

should be greater than 10, though ratios of r = 100 – 2000 

are more commonly used.  Increasing r generally reduces the 

I-V curve to a straight line. Additionally, for any given D, 

hysteresis effects are most prominent when    >> R0 [6]. 

For the linear state change model, typical parameters were 

µD = (10
-12

 – 10
-14

 m
2
·V

-1
·s

-1
), D = (10 – 50 nm), x0 = (0.1 – 

0.6), Ron = (100 – 1000 Ω), and r = (100 - 2000). 

 Figure 4 shows typical simulation results. Figure 4(a) 

superimposes the input voltage in time (thin line) against the 

current in time (thick line). From the plot, it is apparent that 

while the current lags the voltage, both curves have the same 

period. This shows that the memristor does not store any 

charge itself but is a totally dissipative circuit element [2]. 

Figure 4(c) depicts the symmetric, smooth hysteresis loop of 

an ideal memristor. Figures 4(b) & 4(d) show the variation 

in width w and memristance over time, respectively. From 

the figures, we can observe that when w is greatest, 

memristance is minimum and vice-versa. Both parameters 

mirror each other. 

B. Non-linear Boundary Drift Models 

 For modeling and simulation of non-linear memristor 

models, the optimal time-step values, Δt = ti+1 – ti , were 

determined to be between 10
-2

 – 10
-4

 sec. The model 

simulation results using Joglekar’s window function are 

shown in Figure 5. From the results, we observe that the I-V 

plots, figures 5(a) and (c), exhibit a more pointed signature 

compared to the linear model results in figures 4(a) and (c). 

While both I(t) plots have the same period as their respective 

voltage inputs, figures 5(a) and (c) are sharper because of the 

usage of the window function. We also noticed, though not 

shown graphically, that for high p integer values, the non-

linear model behaves as its linear counterpart. It is important 

to notice that the memristance and w plots remain similar for 

both linear and non-linear models as shown in figures 4 and 

5. 

 Under certain sets of parameters, the memristor will 

fluctuate for a few cycles before it settles on a consistent 

pattern of behavior. However, an appropriate phase shift 

choice eliminates these initial fluctuations as is shown in the 

results of Figure 5, where a phase shift of 0.16 rad was 

employed. The window function also gives the model added 

robustness in terms of arbitrary parameter range selection. In 

addition, in terms of parameter selection and adjustment, 

both linear and non-linear models are similarly affected. 

 In terms of simulation stability, certain non-linear model 

simulations cannot be performed for an arbitrary length of 

time when employing Joglekar’s window function. This 

failure is caused by the convergence issue described in 

Section II B. To partially remedy this problem for additional 

 
 

Fig. 5.  Plots of I(t) & V(t) (a), w(t) (b), V-I hysteresis behavior (c), 

and M(t) (d) memristor simulation results using non-linear dopant 

drift model and Joglekar’s window function, with parameters µD = 6.4 
x 10-14 m2V-1s-1, D = 24 nm, w0/D = 0.6, Ron = 100 Ω, r = 100, p = 7, 

v0 = 1 V, ω = 8π rad/s, V(t) = sin(8π t + 0.16) V, Φ(t) =  
 

  
  

[cos(0.16) – cos(8π t + 0.16)] Wb, and Δt = 10-4 sec. 

 
 

Fig. 4.  Plots of I(t) & V(t) (a), w(t) (b), V-I hysteresis behavior (c), 

and M(t) (d) memristor simulation results using the linear 

boundary drift model, with parameters µD = 10-14 m2V-1s-1, D = 10 
nm, x0 = 0.2, Ron = 1700 Ω, r = 100, v0 = 1 V, ω = 2π rad/s, and 

V(t) = sin(2π t) V. 



 

 

 

simulation time, we could increase D (up to around 50nm, 

maintaining physical dimensions). However, it is not a 

comprehensive solution.  

In order to circumvent the convergence issues originating 

from Joglekar’s window function, we can employ Biolek’s 

approach described by (23) [7]. Simulation results 

employing Biolek’s window function are displayed in Figure 

6. From the figures, we observe that the results preserve the 

highly non-linear device characteristic behavior. In addition, 

Biolek’s model is unique because it allows for general 

asymmetric I-V device behavior modeling, which is not 

realizable except in extreme circumstances with the two 

previous models. This is significant because published 

physical memristor experimental data [4][5] exhibits 

asymmetric characteristic behavior.  

 

IV. CONCLUSION 

In this work, we analyzed various published, dynamic 

linear and non-linear memristor device models. From our 

study, we observed that the non-linear models offer closer 

dynamic device characteristic representations when 

compared to the limited physical published results as 

opposed to the linear model. The non-linear models, 

characterized by unique window functions, also provide 

insight into the dynamics of memristor devices.  

Future work will include performing model-to-hardware 

correlations to physical experimental data when device 

fabrication is completed. This will provide an opportunity 

for refining the non-linear memristor models and window 

functions. Once robust, compact memristor models are in 

place, circuit level simulations will allow for applications to 

neuromorphic computing architecture development. 
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Fig. 6.  Plots of I(t) & V(t) (a), w(t) (b), V-I hysteresis behavior (c), 
and M(t) (d) memristor simulation results using non-linear dopant 

drift model and Biolek’s window function, with parameters µD = 4.4 x 
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