
 

 

 

  

Abstract— Ensemble methods represent an approach to 

combine a set of models, each capable of solving a given task, 

but which together produce a composite global model whose 

accuracy and robustness exceeds that of the individual models. 

Ensembles of neural networks have traditionally been applied 

to machine learning and pattern recognition but more recently 

have been applied to forecasting of time series data.  Several 

methods have been developed to produce neural network 

ensembles ranging from taking a simple average of individual 

model outputs to more complex methods such as bagging and 

boosting. Which ensemble method is best; what factors affect 

ensemble performance, under what data conditions are 

ensembles most useful and when is it beneficial to use ensembles 

over model selection are a few questions which remain 

unanswered.  In this paper we present some initial findings 

using neural network ensembles based on the mean and median 

applied to forecast synthetic time series data.  We vary factors 

such as the number of models included in the ensemble and how 

the models are selected, whether randomly or based on 

performance.  We compare the performance of different 

ensembles to model selection and present the results. 

I. INTRODUCTION 

n the computational intelligence world, significant 

progress has been made in the areas of time series 

prediction.  Ensembles methods which use multiple 

models to obtain better predictive performance have received 

increased attention.  Neural network ensembles have 

emerged as a popular method for time series forecasting.  

They work over a wide range of domains and applications 

with increased accuracy and robustness. A parallel approach 

occurs in the domain of operations research forecasting 

where extensive research has been conducted in the area of 

forecast combinations to increase the accuracy of time series 

prediction. Bates and Granger [1] was one of the first to 

show significant gains in accuracy through combination.  

Another early work by Newbold and Granger [2], combined 

various univariate time series forecasts and compared the 

combination against the performance of the standalone 

version of the individual models.  They show that for set of 

forecasts F, a linear combination of these forecasts could be 

obtained which would also be unbiased and achieve a 
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combined forecast error variance smaller than the individual 

forecasts.  They found that the better combining procedures 

did produce an overall forecast superior to individual 

forecasts on the majority of tested time series. Neural 

network ensembles have been used significantly to improve 

the accuracy over single network models in time series 

forecasting [3].   

How to combine models and under which conditions still 

remains a relatively open question. Makridakis and Winkler 

[4] suggest that using averages of forecasts provides  

improved forecasting accuracy and that the variability of 

accuracy among different combinations decreases, as the 

number of methods in the average increases. Makridakis et 

al. [5] show that taking a simple average outperforms taking 

a weighted average model combination. Elliott and 

Timmermann [6] however dispel the notion that equally-

weighted combined forecasts lead to better performance than 

estimates of optimal forecast combination weights stating 

that this is directly linked to the use of the mean squared 

error loss as the loss function.  More recently [7] use the 

weighted median because it is less sensitive to outliers than 

the weighted mean and gives better results under boosting.  

Evidence supporting the use of the arithmetic mean is 

extensive while taking the median over a number of time 

series forecasting models has emerged as a contender, with 

mixed results.  No one has however evaluated the 

performance of the arithmetic mean and median combined 

ensembles for time series forecasting within an empirically 

sound and established methodology.   

In this paper we use a multi-factorial approach to 

investigate two popular and widely used methods, the 

arithmetic mean and the median and evaluate their ensemble 

generating performance on time series with varying levels of 

noise and seasonality.  These methods are applied to produce 

ensembles of neural networks which are used to forecast 45 

artificial time series.  These time series are designed to 

reflect four different levels of noise; no noise, low noise, 

medium noise and high noise data. This study seeks to 

compute benchmark results using a naïve methodology based 

on the performance of conventional model selection.  

The paper is organised as follows.  In section II we 

provide a brief introduction to neural networks and neural 

network ensembles.  This is followed by a short discussion 

of ensemble methods, in particular the mean and median 

combination methods. In Section III an outline of the 

experimental setup is provided, followed by a presentation of 

the results and an analysis of the findings. 
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II. METHODS 

A. Neural Networks for Forecasting 

 Forecasting time series with NNs is conventionally based 

on modelling a feed-forward topology in analogy to an non-

linear autoregressive AR(p) model using the established 

Multilayer Perceptron (MLP), to which we will limit our 

analysis here. The functional form of these networks is 
 

∑ ∑
= =









++=

H

h

I

i

ihiih ygwYf
1 0

00),( γγββ  ,       (1) 

 

that describes a single layered MLP characterised by its 

input vector Y = [yt, yt-1, ... , yt-I+1], which captures the lagged 

observations of the time series in input nodes I, its number of 

hidden nodes H and a single output node. A non-linear 

transfer functions g(·) is used in the nodes of the hidden 

layer, conventionally this is the sigmoid logistic or the 

hyperbolic tangent functions [8]. The network parameters are 

denoted as weights w = (β, γ) connecting input, hidden and 

output layer respectively and the biases β0 and γ0i of each 

neuron. 

 For parameterisation, data is presented to the MLP as an 

overlapping set of input vectors formed as a sliding window 

over the time series observations. Consequently, the 

specification of the network architecture determines the time 

series components that may be captured in the AR(p)-lags of 

the input vector and the capability of approximation. MLPs 

offer extensive degrees of freedom in modeling for 

prediction tasks. The modeler must decide upon the selection 

and sampling of datasets, the degrees of data pre-processing, 

the static architectural properties, and the learning algorithm 

that characterized through the objective function or error 

function. For a detailed discussion of these issues and the 

ability of NNs to forecast univariate time series, the reader is 

referred to [9]. 

B. Ensemble Methods 

 Both within the world of computational intelligence, 

where model combinations are referred to as ensembles [10] 

and the domain of forecasting where it is explicitly referred 

to as forecast combinations a number of methods have been 

developed for combining models to improve forecasting 

accuracy.  Such methods predominantly have in common the 

generation of a set of weights which are assigned to each 

model.  Methods can be classed under two rather broad 

headings; methods that assign weights based on a direct 

reduction in error variance, so called error-variance-based 

methods, linear or non-linear, and those that produce weights 

based on a conditional probability of model-data fit using 

Bayesian theory to assign probabilities of model fitness 

which are then converted to weights representing confidence 

in the given model. It is interesting to note however that the 

literature continues to support the use of simple model 

combinations such as the simple average and the median 

which have shown to outperform its more complex 

counterparts.    As indicated in the introduction results of 

these have been somewhat mixed. 

Makridakis and Winker [4] discussed the impact of the 

number of forecasts included in a simple average concluding 

that the forecasting accuracy improves, and that the 

variability of accuracy among different combinations 

decreases, as the number of methods in the average 

increases.  Results of the M-competition involving seven 

experts, 24 methods and 1001 times series [5], showed that 

combining a simple average of six methods perform well 

overall and even better than the individual methods included 

in making the average. Furthermore, taking a weighted 

average based on the sample covariance matrix of fitting 

errors over the same methods, instead of the simple average 

also performs well, but not as well as the simple average. 

Palm and Zellner [11] go on to propose that the simple 

average is more robust with respect to specification 

uncertainty, time variation of parameters, and estimation 

errors than weighted averages and that perhaps it is more 

appropriate when there is insufficient information on past 

performances of individual forecasters.  The sensitivity of 

weighted averages is considered by [12], who show how 

relatively small estimation errors can lead to negative 

weights or weights much greater than one, and to weighted 

averages that are considerably outside the range of the 

individual forecasts being combined. Jose and Winkler [13] 

propose to extend the robustness of simple averages by 

performing trimming and winsorizing of forecasts to avoid 

errors associated with extreme values.  Makridakis et al. [14] 

mentioned that combining the exponential smoothing 

methods does not beat the best of the individual smoothing 

methods but later [15] found that the simple arithmetic 

average of three methods: Single, Holt and Dampen Trend 

Exponential Smoothing is more accurate than the three 

individual methods being combined for practically all 

forecasting horizons, although its difference from Dampen is 

small. 

In the context of computational intelligence methods 

recent studies by [16] who apply boosted recurrent neural 

networks to predicting chaotic time series, found that the 

weighted median performed better than the weighted mean 

as it was more robust against noise. Avnimelech and Intrator 

[17] reveal several interesting results in the context of time 

series prediction based on neural network ensembles using 

boosting and bagging. They find that the median 

combination appears best though in Adaboost it shows no 

significant difference over mean. More interestingly tests 

found the non-weighted averages may be at least as good as 

the weighted averages and that the mean may be at least as 

good as the median. Deng et al. [18] observed that for 

boosting, weighted median is a better choice for combining 

the regressors than the weighted mean. 

Out of the literature the two approaches found to be most 

widely used and accepted are the simple average and the 

median but mixed results have been obtained.  Agnew [19] 

find that the median performed better than the mean using 16 

macroeconomic forecasters while more recently Stock and 

Watson [20] found that the mean performed better when 



 

 

 

forecasting output growth in a seven-country quarterly 

economic data set covering 1959 – 1999, with up to 73 

predictors per country using AR model and a recursive 

random walk. Several of these claims are investigated in this 

paper, first to consider whether there is a significant 

difference in performance between the mean and median 

ensemble on noisy data and also on seasonal versus 

stationary time series.  To consider to what degree model 

selection based on random selection versus a selection of the 

top performing models influences overall ensemble 

performance and finally to assess the impact of ensemble 

size on performance. 

III. EXPERIMENTAL DESIGN 

A. Time series data 

 Forty five (45) synthetic time series are used in this 

experiment. These are equally split in three groups of 15 

time series, simulating three different levels of Gaussian 

noise; low, medium and high noise, with sigma of 1, 5 and 

10 respectively. The time series are generated following 
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For the deterministic case, µ is the level of the time series, 

which was set to 100, and bi the coefficients of seasonal 

dummies di, while S is the periodicity of  seasonality, which 

was set to 12, simulating monthly data. The coefficients bi  

were generated using a uniform distribution U(0,100) and 

consequently centered around zero. The noise zt follows 

N(0,σ
2
). All time series have 480 observations, which are 

split into training, validation and test sets of 288, 96 and 96 

observations each. Three time series, one for each noise 

level, are illustrated in figure 1.  

 

B. Experimental setup  

 The forecasting horizon is set to 12 observations, or 

equally one complete year. To assess the forecasting 

performance of the NNs the symmetric mean absolute 

percent error (sMAPE) is used. This has the advantage of 

being scale independent, allowing to aggregate results over 

time series and is less biased than the commonly used mean 

absolute percentage error (MAPE). It computes the absolute 

error in percent between the actuals Xt and the forecast Ft for 

all periods t of the test set of size n=h for each time origin:  
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 All models are evaluated using a rolling time origin 

evaluation, producing multiple forecasts for each time series, 

resulting in more accurate estimation of the forecasting error. 

Furthermore, the error estimation is robust against irregular 

origins [21].  

 

C. Methods 

 We construct nine different MLP models to forecast the 

times series. The rationale behind using multiple setups is to 

assess the performance of ensembles when models of varying 

fit to the data are available. The models differ in the 

specification of the input vector and the hidden layer. All 

other parameters remain constant. Given a time series Yt 

three different input nodes are defined: 

1. Use all Yt-1 up to Yt-12. Essentially, a full season is used 

as inputs to forecast the next season (next 12 

observations).  

2. Use only Yt-1 and Yt-12. This is a sparse specification of 

the previous setup. This setup can lead to 

underspecified models, given the deterministic nature 

of seasonality in the synthetic data. 

3. Use Yt-1 up to Yt-6. This is a shorter specification that 

aims to capture the same information more 

parsimoniously. This input vector is misspecified, as 

the seasonal lag Yt-12 is not included. 

All these input vectors follow naive heuristics that have 

appeared in the literature [22]. Although these might be 

inadequate to be used in automatic forecasting of 

heterogeneous datasets and complex time series, and several 

alternatives have been proposed [23-24],  they should be 

adequate to forecast the time series used in this experiment 

to a varying degree of accuracy. Note, that the first input 

vector can fully capture the data generating process of the 

time series, in contrast to the latter two. This is done in order 

to ensure that ensembles of models of varying performance 

can be constructed. 

 All MLPs use a single hidden layer with a varying number 

of hidden nodes. Three alternatives are considered, 2, 4 and 

8 nodes. In all setups the nodes use the logistic activation 

function. A single output node with the identity activation 

function is used for all networks. The MLPs are all trained 
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Fig. 1.First 250 observations of a low, medium and high noise time series 



 

 

 

using the simple back-propagation algorithm with 

momentum for 1,000 epochs and  employing an early 

stopping criterion. The early stopping criterion evaluates the 

mean squared error  (MSE) every epoch,  stops training 

when no improvement is made for hundred epochs. The 

initial learning rate is set to η=0.4, applying a cooling factor 

∆η to reduce the learning rate by 0.05 per epoch; the 

momentum term is kept constant at φ=0.5. All data is pre-

processed using linear scaling into the interval of [-0.5, 0.5] 

using the scaling function of  on the minimum 

 

( )
( )minmax

min
5,0

tt

tt

t
xx

xx
z

−

−
+−=  ,              (4) 

 

xt min and maximum value xt max of xt on the training and 

validation set.  The data is then presented to the MLP  using 

random sampling without replacement.  Each MLP candidate 

is  initialised 30 times  with random starting weights in the 

interval of [-0.8, 0.8] in order to avoid local minima during 

the training and to provide an adequate error distribution 

using sufficient results.  

 

D. Model ensembles 

 The aim of this paper is to evaluate the use of ensembles 

of neural networks to address the model selection problem. 

Therefore, it is important to determine which ensembles 

perform best and under which conditions. A large number of 

different candidate models are produced based on the 30 

initialisations used in training the model. Following the 

standard implementations in literature, we perform model 

selection by choosing the best MLP based on minimum error 

in the validation set. This becomes our benchmark model 

selection procedure, which we use to assess the performance 

of the different ensembles of NNs. To build the ensembles 

we considered different combination methods, different 

ensemble sizes and different ensemble member selection 

criteria. The combination methods considered are those of 

the mean and median.  Furthermore, model selection is done 

based on a selection of the top models (ranked from best to 

worst on the validation set) versus a random selection of 

models.  Ensembles are then generated at different ensemble 

sizes ranging from 10% to 100% by increments of 10% over 

all 30 models. Forty ensembles are produced altogether 

based on method of combination, ensemble model selection 

criteria and number of models included in the ensemble i.e. 

ensemble size. 

We perform two different sets of experiments. In the first 

set we use only MLPs that use as inputs all Yt-1 up to Yt-12 

and 8 hidden nodes, which were found to be the most 

accurate for this dataset. The hypothesis that we want to test 

is whether ensembles can increase forecasting accuracy in 

comparison to conventional model selection, when there are 

only multiple initialisations of a single model that can fit well 

on the data generating process of the time series. The second 

set of experiments uses all nine different MLP setups, 

resulting in ensembles of heterogeneous models, which 

follows the suggestions of the literature as discussed in 

section II. Again, we contrast the use of ensembles versus 

model selection, in terms of forecasting accuracy and 

determine the impact of the various factors on ensemble 

performance. 

IV. EXPERIMENTAL RESULTS 

A. Single model experiments 

 Firstly, we discuss the experiments that involve a single 

MLP setup. The purpose of this experiment is to assess the 

utility of ensembles for model selection when there is only a 

single NN producing the forecasts. This follows the first 

input vector option as presented in section III.C and 8 nodes 

in the hidden layer. This network was chosen being the most 

accurate overall. The results are presented in table I and 

summarized in figure 2. It is observed that ensemble 

performance based on a single NN remains stable across 

different ensemble sizes. For example, under low noise and 

top and random selection, mean and median performance 

error remain within 0.01% point accuracy across ensemble 

size.  Under high noise and top and random selection, mean 

and median ensemble are within 0.04% range with the only 

exception being the best ensemble which was 0.08% from 

the worst performing ensemble.  Mean and median 

ensembles are similarly robust across ensemble sizes. 

Moreover, mean and median ensembles perform similarly 

within ensemble model selection.  At all noise levels and 

within top ensemble model selection, mean and median 

ensemble performance are within 0.01% on average and at 

worst. However this robust performance appears to degrade 

under random selection where the maximum differences are 

noted. For example, under high noise and random selection, 

and at 40% ensemble size, mean ensemble performance is 

10.65% while median ensemble performance is 10.75%. Top 

selection of ensemble models therefore appears slightly more 

robust against ensemble method than random selection. 

 Across all levels of noise and all levels of ensemble sizes, 

whether considered separately or together, top selection 

outperforms random selection.  Best ensemble based on top  

selection at low noise produces mean error of 1.11% while 

the best ensemble based on random selection produces 

1.12%.  At the medium noise level the mean performance 

errors are 5.06% to 5.15%  respectively and at the high noise 

level it is 5.59% to 5.64%.  While performance varies 

minimally across mean and median ensembles, there is a 

relationship between ensemble model selection and noise 

level whichwhich appears to impact forecast accuracy. 

With regards to the performance of ensembles relative to  

model selection, the best ensemble based on top selection, 

both mean and median combined, outperform model 

selection at all levels of noise though not significantly. 

Where random selection of models is made, model selection 

outperforms the best ensemble created using either the mean 

or the median. The gains over model selection are minimal 

and model selection would be preferred where  computation 

of ensembles is an issue. If ensembles are used however, 



 

 

 

performance of the models across noise level should be 

considered. 

B. Multiple models experiments 

Following the findings of the single model experiments, 

we evaluate the benefits of ensembles when several NN 

models are considered. Now, models have a varying degree 

of fit to the time series and produce heterogeneous forecasts. 

First it is noticed that across almost all noise levels and 

ensemble sizes, median ensembles outperform mean 

ensembles.  At the low noise level and random selection we 

see than the best median ensemble performance (see data 

underlined in table II) has an error of 1.13% (mean measure) 

across ensemble sizes of 20%, 30,%, 60%,70% and 90% 

compared to the mean performance error of 1.66% only at 

the 30% ensemble size. Best mean and median ensemble 

TABLE I 

SMAPE ACCURACY OF SINGLE MODEL ENSEMBLES 

Mean Errors 

      
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% MS 

Aver. 

ENS 

L
o
w
 n
o
is
e 

Top 
Mean 1.11% 1.11% 1.11% 1.11% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.11% 1.12% 

Median 1.11% 1.11% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.11% 1.12% 

Random 
Mean 1.12% 1.13% 1.12% 1.13% 1.13% 1.12% 1.12% 1.12% 1.12% 1.12% 1.11% 1.13% 

Median 1.13% 1.13% 1.12% 1.12% 1.13% 1.13% 1.12% 1.13% 1.12% 1.12% 1.11% 1.13% 

M
ed
iu
m
 

n
o
is
e Top 

Mean 5.06% 5.07% 5.09% 5.11% 5.12% 5.14% 5.14% 5.15% 5.16% 5.17% 5.09% 5.12% 

Median 5.08% 5.07% 5.08% 5.11% 5.12% 5.13% 5.14% 5.15% 5.16% 5.17% 5.09% 5.18% 

Random 
Mean 5.11% 5.17% 5.16% 5.17% 5.16% 5.17% 5.17% 5.18% 5.16% 5.17% 5.09% 5.16% 

Median 5.24% 5.18% 5.15% 5.19% 5.19% 5.18% 5.17% 5.18% 5.18% 5.17% 5.09% 5.18% 

H
ig
h
 n
o
is
e 

Top 
Mean 10.64% 10.60% 10.64% 10.64% 10.64% 10.65% 10.66% 10.67% 10.68% 10.70% 10.61% 10.65% 

Median 10.65% 10.60% 10.64% 10.64% 10.65% 10.66% 10.67% 10.67% 10.68% 10.70% 10.61% 10.66% 

Random 
Mean 10.68% 10.75% 10.73% 10.65% 10.71% 10.71% 10.69% 10.70% 10.68% 10.70% 10.61% 10.70% 

Median 10.65% 10.72% 10.69% 10.75% 10.69% 10.74% 10.71% 10.71% 10.71% 10.70% 10.61% 10.71% 

A
ll
 

Top 
Mean 5.60% 5.59% 5.61% 5.62% 5.63% 5.64% 5.64% 5.65% 5.65% 5.66% 5.60% 10.65% 

Median 5.61% 5.59% 5.61% 5.62% 5.63% 5.64% 5.64% 5.65% 5.65% 5.67% 5.60% 5.63% 

Random 
Mean 5.64% 5.68% 5.67% 5.65% 5.66% 5.67% 5.66% 5.67% 5.66% 5.66% 5.60% 5.66% 

Median 5.68% 5.68% 5.65% 5.69% 5.67% 5.68% 5.67% 5.67% 5.67% 5.67% 5.60% 5.67% 

Median Errors 

      
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% MS 

Aver. 

ENS 

L
o
w
 n
o
is
e 

Top 
Mean 1.15% 1.16% 1.15% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.15% 1.16% 

Median 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.15% 1.16% 

Random 
Mean 1.16% 1.16% 1.15% 1.16% 1.16% 1.15% 1.16% 1.16% 1.16% 1.16% 1.15% 1.16% 

Median 1.20% 1.14% 1.18% 1.17% 1.16% 1.16% 1.16% 1.16% 1.16% 1.16% 1.15% 1.17% 

M
ed
iu
m
 

n
o
is
e Top 

Mean 5.13% 5.11% 5.10% 5.09% 5.10% 5.13% 5.14% 5.15% 5.17% 5.19% 5.19% 5.13% 

Median 5.11% 5.10% 5.11% 5.10% 5.10% 5.14% 5.16% 5.16% 5.18% 5.20% 5.19% 5.14% 

Random 
Mean 5.04% 5.25% 5.11% 5.16% 5.19% 5.21% 5.18% 5.19% 5.18% 5.19% 5.19% 5.17% 

Median 5.18% 5.18% 5.13% 5.25% 5.18% 5.19% 5.19% 5.20% 5.20% 5.20% 5.19% 5.19% 

H
ig
h
 n
o
is
e 

Top 
Mean 10.83% 10.80% 10.82% 10.80% 10.82% 10.80% 10.81% 10.82% 10.81% 10.79% 10.74% 10.81% 

Median 10.85% 10.82% 10.83% 10.80% 10.83% 10.82% 10.83% 10.84% 10.82% 10.80% 10.74% 10.82% 

Random 
Mean 10.76% 10.82% 10.76% 10.75% 10.84% 10.81% 10.78% 10.78% 10.78% 10.79% 10.74% 10.79% 

Median 10.74% 10.83% 10.80% 10.82% 10.86% 10.77% 10.84% 10.81% 10.80% 10.80% 10.74% 10.81% 

A
ll
 

Top 
Mean 5.70% 5.69% 5.69% 5.68% 5.69% 5.70% 5.70% 5.71% 5.71% 5.71% 5.69% 5.70% 

Median 5.71% 5.69% 5.70% 5.69% 5.70% 5.71% 5.72% 5.72% 5.72% 5.72% 5.69% 5.71% 

Random 
Mean 5.65% 5.74% 5.67% 5.69% 5.73% 5.72% 5.71% 5.71% 5.71% 5.71% 5.69% 5.71% 

Median 5.71% 5.72% 5.70% 5.75% 5.73% 5.71% 5.73% 5.72% 5.72% 5.72% 5.69% 5.72% 

Table 1: Ensemble performance (test set error – sMAPE) across different noise levels for the single model experiments. Each column presents results of ensembles of different sizes 

(10% - 100% of ensemble members). MS presents the results of model selection and Aver.ENS contains the average ensemble performance across different sizes. Underlined values 

represent the best model for each row. Boldface model selection results represent cases that ensembles are outperformed. 

 

 
Fig. 2. Boxplots of ensemble performance (test set error – sMAPE) across different noise levels for the single model experiments. 



 

 

 

performance is the same under top selection.  At medium 

noise and top selection performance of best mean and 

median ensemble is again the same while at random selection 

best mean ensemble error is 5.52% while the median is 

5.24%. Again, at high noise level performance of the best 

mean and median top ensemble is the same while the median 

outperforms the mean on random selection 10.99% to 

11.58%. 

When ensemble models are selected based on top 

performance, mean and median ensembles perform similar 

across all noise level as shown above and illustrated in table 

I.  However the median ensemble outperforms mean 

ensembles when models are selected randomly to be 

included in the ensemble. This adds something very valuable 

to the literature indicating that where model selection is done 

at random or as is the case in practice model performance is 

not know priori, it is best advised to use median ensembles 

which appear to be more robust against the performance of 

such models.  If the performance of models are known in 

advance and known to be quite good, then using mean or 

median ensemble makes no difference.  Ultimately, the 

choice however will depend on the ensemble size relative to 

the model population as we explain in the following 

paragraph. 

It is observed that median ensemble is also robust against 

ensemble sizes. One case was already referenced above 

where median outperforms mean across several ensemble 

sizes at low noise level and random selection.  Even at top 

selection where performance of the best mean and median 

ensemble is the same, the performance error of the mean 

ensemble ranges from 1.11% at 10% ensemble size to 1.80% 

obtained at 100% ensemble size.  This can be compared to 

the median ensemble where the range is 1.11% at 10% 

ensemble size with worst performance at 1.15% at 70% 

ensemble size. While median performance appears more 

robust against ensemble size this does not imply that the 

median ensemble performs better on accuracy than the mean.  

At random selection this is clearly the case as eluded to 

previously, however at top selection it is noted that mean 

ensemble performance is as robust as median ensemble 

TABLE II 

SMAPE ACCURACY OF MULTIPLE MODELS ENSEMBLES 

Mean Errors 

      
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% MS 

Aver. 

ENS 

L
o
w
 n
o
is
e 

Top 
Mean 1.11% 1.12% 1.12% 1.13% 1.14% 1.14% 1.14% 1.22% 1.36% 1.80% 1.10% 1.23% 

Median 1.11% 1.12% 1.12% 1.13% 1.14% 1.15% 1.15% 1.14% 1.13% 1.13% 1.10% 1.13% 

Random 
Mean 1.97% 1.84% 1.66% 1.89% 1.95% 1.77% 1.78% 1.81% 1.79% 1.80% 1.10% 1.83% 

Median 1.14% 1.13% 1.13% 1.13% 1.14% 1.13% 1.13% 1.13% 1.13% 1.13% 1.10% 1.13% 

M
ed
iu
m
 

n
o
is
e Top 

Mean 5.12% 5.16% 5.19% 5.23% 5.28% 5.33% 5.31% 5.30% 5.42% 5.73% 5.12% 5.31% 

Median 5.12% 5.16% 5.19% 5.23% 5.29% 5.38% 5.43% 5.36% 5.31% 5.29% 5.12% 5.28% 

Random 
Mean 6.13% 5.87% 5.52% 5.65% 5.70% 5.66% 5.67% 5.71% 5.72% 5.73% 5.12% 5.74% 

Median 5.25% 5.29% 5.24% 5.33% 5.33% 5.32% 5.29% 5.26% 5.29% 5.29% 5.12% 5.29% 

H
ig
h
 n
o
is
e 

Top 
Mean 10.62% 10.66% 10.71% 10.81% 10.94% 11.05% 11.05% 11.08% 11.34% 11.79% 10.71% 11.01% 

Median 10.63% 10.66% 10.73% 10.79% 10.91% 11.10% 11.23% 11.08% 11.02% 11.01% 10.71% 10.91% 

Random 
Mean 11.72% 11.58% 11.63% 11.86% 11.85% 11.86% 11.86% 11.92% 11.81% 11.79% 10.71% 11.79% 

Median 11.05% 10.99% 11.17% 11.03% 11.07% 11.01% 11.00% 11.02% 11.02% 11.01% 10.71% 11.03% 

A
ll
 

Top 
Mean 5.62% 5.64% 5.68% 5.73% 5.79% 5.84% 5.83% 5.86% 6.04% 6.44% 5.65% 5.85% 

Median 5.62% 5.65% 5.68% 5.72% 5.78% 5.88% 5.93% 5.86% 5.82% 5.81% 5.65% 5.77% 

Random 
Mean 6.61% 6.43% 6.27% 6.47% 6.50% 6.43% 6.44% 6.48% 6.44% 6.44% 5.65% 6.45% 

Median 5.81% 5.80% 5.84% 5.83% 5.85% 5.82% 5.80% 5.80% 5.81% 5.81% 5.65% 5.82% 

Median Errors 

      
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% MS 

Aver. 

ENS 

L
o
w
 n
o
is
e 

Top 
Mean 1.15% 1.15% 1.16% 1.17% 1.17% 1.18% 1.17% 1.21% 1.23% 1.64% 1.14% 1.22% 

Median 1.15% 1.16% 1.16% 1.17% 1.18% 1.19% 1.19% 1.18% 1.17% 1.17% 1.14% 1.17% 

Random 
Mean 1.82% 1.58% 1.55% 1.73% 1.82% 1.62% 1.58% 1.59% 1.65% 1.64% 1.14% 1.66% 

Median 1.17% 1.17% 1.16% 1.17% 1.17% 1.18% 1.17% 1.16% 1.17% 1.17% 1.14% 1.17% 

M
ed
iu
m
 

n
o
is
e Top 

Mean 5.11% 5.17% 5.23% 5.28% 5.32% 5.37% 5.36% 5.32% 5.34% 5.62% 5.30% 5.31% 

Median 5.11% 5.16% 5.21% 5.26% 5.33% 5.43% 5.47% 5.36% 5.28% 5.28% 5.30% 5.29% 

Random 
Mean 5.82% 5.73% 5.51% 5.55% 5.59% 5.60% 5.59% 5.62% 5.61% 5.62% 5.30% 5.62% 

Median 5.25% 5.29% 5.22% 5.33% 5.33% 5.32% 5.28% 5.26% 5.28% 5.28% 5.30% 5.28% 

H
ig
h
 n
o
is
e 

Top 
Mean 10.73% 10.73% 10.77% 10.86% 10.95% 11.08% 11.08% 11.11% 11.27% 11.70% 10.73% 11.03% 

Median 10.76% 10.75% 10.76% 10.82% 10.95% 11.14% 11.25% 11.14% 11.09% 11.07% 10.73% 10.97% 

Random 
Mean 11.69% 11.43% 11.71% 11.76% 11.78% 11.81% 11.78% 11.86% 11.73% 11.70% 10.73% 11.73% 

Median 11.08% 11.07% 11.23% 11.01% 11.08% 10.99% 11.04% 11.08% 11.05% 11.07% 10.73% 11.07% 

A
ll
 

Top 
Mean 5.66% 5.68% 5.72% 5.77% 5.81% 5.88% 5.87% 5.88% 5.95% 6.32% 5.72% 5.85% 

Median 5.67% 5.69% 5.71% 5.75% 5.82% 5.92% 5.97% 5.89% 5.85% 5.84% 5.72% 5.81% 

Random 
Mean 6.44% 6.25% 6.26% 6.35% 6.40% 6.34% 6.32% 6.36% 6.33% 6.32% 5.72% 6.34% 

Median 5.83% 5.84% 5.87% 5.84% 5.86% 5.83% 5.83% 5.83% 5.83% 5.84% 5.72% 5.84% 

Table 2: Ensemble performance (test set error – sMAPE) across different noise levels for the multiple model experiments. Each column presents results of ensembles of different sizes 

(10% - 100% of ensemble members). MS presents the results of model selection and Aver.ENS contains the average ensemble performance across different sizes. Underlined values 

represent the best model for each row. Boldface model selection results represent cases that ensembles are outperformed. 



 

 

 

performance and slightly more accurate. This is only up to an 

ensemble size of 60% of model population however. For 

ensemble sizes 70% and greater mean ensemble performance 

significantly decreases e.g. at medium noise and top 

selection best mean ensemble performance error is 5.12% 

while at 70% it is 5.43% and at 100% it is 5.73%. Therefore, 

in addition to taking into consideration the type of selection, 

top or random, or prior knowledge of model accuracy as 

would usually be the case in practice,  one also needs to 

consider the ensemble size as a percentage of the model 

population.  If the best models are used from a larger mode 

population of models it would be advisable to include 50% 

of less of the total model population in the ensemble at 

which point the choice of method should be the mean.  

However as ensemble sizes become larger relative to model 

population, one runs the risk of including badly performing 

models which can significantly degrade the performance of 

the mean combiner.   

At this point it can be summarized that selection of 

ensembles really does not depend on the level of noise but 

rather on the combination of ensemble model selection and 

method of model combination. If the best models are 

selected to be included in the ensemble and the ensemble 

size is small enough relative to the model population, then 

mean and median ensembles perform similarly with only 

marginally better performance by the mean. 

 Results on the performance of model selection and 

ensembles indicate that at low levels of noise, model 

selection outperforms ensembles regardless of ensemble 

type.  Ensembles based on random selection perform even 

worst against model selection with a performance error of 

1.13% (median) and 1.66% (mean) compared to 1.10% for 

model selection. At other levels of noise, while model 

selection outperforms ensembles based on random model 

selection, it is outperformed by ensembles based on top 

selection whether combined according to the mean or the 

median.  It can be further summarised that ensembles offer 

no benefit over model selection on low noise data where the 

time series is less erratic. However the best ensembles, based 

on top selection, mean or median outperform model selection 

as noise level increases and the time series becomes more 

difficult to predict.   The results are summarised in figure 3. 

V. CONCLUSION 

 This paper investigates the performance of different neural 

network ensembles across several factors and compares them 

to model selection.  The investigation was divided into two 

experiments, the first investigating the performance of 

homogenous ensembles based on a single neural network 

with different initializations and the second based on 

heterogeneous ensembles with networks having differing 

architectures.  In both experiments ensembles created were 

evaluated across several factors: 

1. Ensemble size ranging from 10% of total model 

population to 100% by increments of 10% 

2. Ensemble model selection of two types; random 

selection where the models are chosen randomly 

from the population and top selection where the 

models are chosen based on top rank performance 

as evaluated by their validation set error. 

3. and ensemble method which were one of either the 

mean or median combination.  

In the first experiment based on the single network modeled 

over 30 initializations, no significant changes were noted 

across ensemble factors.  The mean ensemble performed on 

average as well as the median ensemble across noise level 

and seasonality.  It was however noted that ensembles based 

on random model selection perform worst than those based 

on top selection and that this performance worsens as noise 

level increases. When compared to model selection it was 

noted that mean and median ensembles based on top 

selection perform comparatively across all time series and 

therefore no benefits of ensembles over model selection were 

noted. 

 In the second experiment involving different networks, 

significant differences were noted across ensemble factors.    

Mean and median performance on top selection were similar, 

however if the prediction performance of individuals models 

are not known in advance, then the median is the preferred 

ensemble method.  It is also the preferred ensemble method 

across noise level where the mean is more volatile and also 

across ensembles sizes. As noise level increases mean and 

median ensembles based on top selection also outperform 

model selection. 

This research used synthetic time series to evaluate the 

 

 
Fig. 3. Boxplots of ensemble performance (test set error – sMAPE) across different noise levels for the multiple models experiments. 



 

 

 

performance of ensembles of NNs. Although this aids in the 

design of the experiments, allowing us to run the single 

model ensemble experiments using correctly specified NN, it 

also limits our confidence in generalizing the findings of this 

study. Similar experiments should be performed on real time 

series. These will have unknown data generating process, 

therefore testing the accuracy of single model 

ensembles/model selection schemes in practice, against 

multiple model ensembles that seem to perform at least 

equally well, without assuming that the true data generating 

process has been captured.  
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