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REINFORCEMENT LEARNING USING ASSOCIATIVE 

MEMORY NETWORKS 

Ricardo Salrnon 

l\llaster of Science, Computer Science, Ryerson University, 2009 

It is shown that associative 1nemory networks are capable of solving immediate and 

reinforcement learning (RL) proble1ns by con1bining techniques from associative 

networks and reinforcernent learning and in particular Q-learning. The 1nodified 

••.••..••••. u.~.•v-u.·~.._ is shown to outperform native RL techniques on a stochastic grid world task by 

correct policies. In addition, we formulated a analogous 1nethod to add feature 

···•········ ""'"+•·, .... n+,rn~ as di1nensional reduction and eligibility traces as another rnechanism to help 

the credit assignn1ent problen1. The network contrary to pure RL 1nethods is based 

on associative n1emory principles such as distribution of information, pattern cmnpletion, 

Hebbian learning, and noise tolerance (limit cycles, one to 1nany associations, chaos, etc). 

'·"'''··"''h''' of this, it can be argued that the model possesses more cognitive explanative 

than other RL or hybrid models. It may be an effective tool for bridging the gap 

between biological mernory rrwdels and computational memory models. 
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Introduction 

Associative Inemory (ANI) can be seen as a possible computational model of the brain and 

hmnan control for the reason that it appears to be one of the Inost important functions in 

many cognitive processes. 1v1any brain structures can be rnodeled as associative memories. 

This is evident by our ren1arkable ability at pattern recognition and pattern completion 

which A1v1 networks excels at. vVe know the brain is capable of many fonns of learning 

and specifically supervised and unsupervised learning. If these theories are correct, then 

our models must also be able to perforn1 the various learning tasks a human could do 

including reinforcement learning. 

Supervised learning can be thought of as being taught the correct action from a 

However, for unsupervised learning, no correct action is given, instead, the 

agent must establish order on its own by some rneasure1nent of desirability. In contrast, 

reinforcement learning sits between both in that there is no teacher available with the 

correct action, but a response is received fron1 the environ1nent that quantify the desir

of taking that action in sorne state. A case can be n1ade that associative n1en1ories 

are well suited to model human learning because of their dynamical properties. These 

include the ability to exhibit attractor behaviour such as fixed-points, lilnit cycles and 

strange attractors which are essential to dealing with noisy inputs and have been sup

ported by Sharda and Freeinan [3, 4] as fundamental to the way the brain stores and 

recalls infonnation. 
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1.1 Problem 

The problem this work atternpts to address is to allow Arvi networks to perfornr reinforce

rnent learning on pattern sequences with associated rewards. Pattern sequences can be 

seen as states changing over time in response to sonre actions taken in the environn1ent. 

Therefore, anticipating and rnaxirnizing the rewards over states by taking the right action 

are in general the reinforcement learning (RL) problem. For this to be feasible, we will 

build on previous work in both the associative rnenrory and reinforcernent learning prob

lem that includes solving the temporal credit assignment problem. The temporal credit 

assignrnent problem is to deternrine which actions are responsible for certain behaviours 

fron1 a sequence of actions by using states, actions, rewards and optionally a rnodel of 

the environrnent. There are quite a few proposed solutions and techniques within the 

reinforcement literature that we will leverage to our advantage such as the Q-Learning 

algorithm [5] and Eligibility traces [6, 7, 8) together called Q(>.) . 

1.2 Motivation 

So far the AM networks has been applied to perfornring supervised and unsupervised 

learning task. The in1portance of this work is that it will provide a unified model of 

learning that is capable of three types of learning: supervised, unsupervised, and rein

forcenrent learning. This is sought after because cognitive science researchers are looking 

for solutions to apply to rnultiple perceptual and cognitive tasks without assuming an 

arbitrary nun1ber of rules and architectures. The significant contribution would be a 

working n1odel of the associative men1ory architecture applying reinforcenrent learning 

solutions to solve ternporal decision problems. 

The reason we are tackling this problenr is because we find the biological ranrifications 

exciting and the dynanrical nature of the model interesting enough to warrant the effort. 

Furthennore, the applications in psychology and neuroscience from having a unifying 

nrodel of learning based on associative memory networks. The explanatory power of the 

model would be valuable on it's own in addition to robotics control, control problems, 

and planning systems. These would be ideal applications especially when the problem 
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domain is new in cases such as large scale problmns where a good enough solution is 

desired over a computationally optimal method that rnight not be feasible or when tabular 

representation would be too costly storage wise or the problem cannot be represented by 

a small set of key features in this case we could atten1pt to reduce its dimension. The 

in1portance of this work, however, is to investigate the feasibility of using Hebbian [9] 

inspired learning rule to solve reinforcernent problen1s. Our objective, therefore, is to 

derive a reinforcernent learning systern by using associative n1emory network principles 

while n1aintaining its advantages. 

By using the network state, we were able to store arbitrary values in the network as 

the energy of that particular state, and use these values to make further estilnates. These 

were used as a basis to sin1ulate Q-learning action values within the Al\1 network and 

successfully solved a stochastic Gridwork-! problem and a modified game of Tetris. Q

learning is a con1mon algorithm used solve reinforcement learning problems. l\1oreover, we 

already know that associative networks can store sequences using lixnit cycles encodings 

[10] as well as one to n1any associations [2]. Furthennore, recent work by [11] has shown 

progress in using chaos as a search process through state space. This works by adjusting 

a pararneter of the network which has the effect of influencing the output of the network 

frorn cmnpletely chaotic to chaos bounded within a region to fixed-point attractors. It 

is proposed that this value could be reduce as we enter more desirable regions until 

the network converges to a fixed-point . vVe can simulate a searching process using the 

dyna1nics of the network itself instead of incorporating a stochastic elexnent into the 

network. The purpose behind this is to sirnulate exploration in the netvvork which is 

required to learn optin1al policies from experiences (i.e., E-greedy polices). In addition this 

seems like a more biologically plausible technique than more complex searching algorithn1s 

frmn the perspective of associative networks. 

1~3 Related Work 

In the past few years researchers have been exploring the idea of inserting prior knowledge 

into bidirectional associative me1nory (BAM) neural networks. One method by Chartier 
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[11] involved using an asyrnn1etry parameter in the output function of the network. This 

has the desired effect of biasing the state space of the network into particular region for a 

n1on1ent during recall. Furthermore, this asymrnetry parameter can be set and controlled 

by the environrnent or controlled by a second network trained by a supervised learner. 

For instance, the XOR problern has been solved using this nrethod by Chartier by 

a collection of BAMs, which was never achieved before using Hebbian learning. vVe 

first associate each input and output pairs as usual. Then when the model failed to 

associate the right pair the environment would suggest a different value for the asyrnmetry 

paran1eter until it has perform the correct association. Then the parmneter value would 

be used for future recalls. The process has many siinilarities with reinforcement learning, 

however, only irnmediate success or failure is possible to learn at the moment . 

Another project by Zhu [12] was based off Palm networks. These are a special kind 

of associative rnen1ory model with neuron connections and neurons output only taking 

binary values. Zhu used two networks, one to represent the policy, the other to represent 

the value function. By iteratively updating both networks as a function of the other it 

was able to converge to the correct policy. This system was shown to perfornr well on a 

deterministic gridworld task against Q-learning. 

1Q4 Limitations and Key Results 

Our proposed model was cmnpared with two RL rnethods on a stochastic gridworld 

problem where the task was to find the optimal path to a correct tern1inal state. In this 

task, our model outperfonned both methods by a significant nrargin and validated our 

objective that Al\!I can be used to solve RL problerns. A lirnitation of our method is that 

we were not able to successfully use the dyna1nic policy as an optinral action selection 

procedure for both greedy and exploratory actions. Then on a rnodified game of Tetris 

the n1odel's performance over various ranges of the pararneters was analyzed including 

a pure greedy policy where we see signifi.cant improvements within two episodes. In 

particular, we use the ability to extract features from the original problem space to a 

lower dimension and use this as a basis to nrake decisions. The purpose of doing this was 
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the reduced nun1ber of operations required and in effect trading tirne for accuracy. 

1.5 Outline 

In the next chapter we will discuss the necessary background knowledge for our work and 

any related work frmn the literature. In particular we will cover associative n1emory, chaos 

in associative networks with applications to neuroscience, the theory of reinforcement 

learning and related work using associative rnernories. Afterwards we will present our 

work in chapter 3 with our contributions to the field and what we have accmnplished. 

In chapter 4 we will explore and analyze the effectiveness of our work on two problerns 

from the literature. The results will be analyzed and compared against prior work in 

the reinforcen1ent learning literature. Finally to conclude with we will sununarize our 

contributions and discuss possible issues and areas of future work that were not covered 

in this document. 
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Chapter 2 

Literature Revie-w 

Associative memories are an irnportant class of neural network rnodels that have seen 

strong growth since its original inception in a wide scope of applications. These models 

are a convenient tool for modeling human thinking and intelligent systems. Associative 

menrories can be divided into two categories: Autoassociative and Heteroassociative. In 

the following sections, we will briefly go into detail regarding chaos, neuroscience and 

reinforcement learning. 

2.1 Autoassociative Memory 

Since Hopfield's original paper[13] there has been significant interest in cornputational 

nrodels of the brain for applications in control systems, optimizations, knowledge rep

resentation and neuroscience. The autoassociative networks are one of the first well

understood recurrent neural networks. 

These networks are constructed frmn a large numbers of identical neurons (also called 

units) based on the Ising n1odel from physics. In these networks, the input and output 

units are identical. However, collectively the n1odel is able to recover data given a partial 

sample of sufficient size frorn the input space. In addition ernergent properties such as 

ability to generalize, fan1iliarity recognition, pattern cmnpletion, categorization, noise 

reduction and error correction were possible. This work was later extended [14] to the 

continuous real valued states. 

6 



The autoassociative network is described by a collection of n binary or bipolar state 

units tha.t are connected to every other unit except itself and weights are synnnetric, i.e., 

wii = 0 and 'l.OiJ = Wji· Figure 2.1 is an illustration of a 4-state autoassociative network. 

neuron 3 neuron 4 

Figure 2.1 : Four state Hopfield network. 

The constraints on the structure of the network guarantee convergence to a local rnin

innrnr, however, this does not rule out undesired patterns. The la.ck of self-connections in 

each unit is necessary to avoid the potential periodic or chaotic behaviour in the transi

tion between states while synunetric connections are necessary to guarantee convergence. 

The output of each unit is deterrninistically calculated by whether the surn of all its input 

exceeds a certain threshold () as ;:rt+ l = sgn(:L·rW) for 

+ 1 ifai>Bi 

sgn,(a.J = 0 (2. 1) 

-1 if ai < ei 

where \V is the weight rnatrix, :r is the unit state, ai = ;r;i W the activation of unit i, 

and ei is the threshold of neuron i. The output units have been shown to converge in 

asynchronous mode as well [1.5], i.e., when each unit's state is updated independently of 

each other. The ccnnputation is emnplete when the systern has settled to a. stable pattern 

such that :1; = sg'n(:rW). The particular pattern t he netvvork settles to is referred to as 

the attra.ctor. 
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Hopfield ~s description of cornputation within this nrodel was to imagine a physical dy

namical systen1 and each rnernory corresponds to a stable state of the systern. Isornorphic 

to an Ising nrodel a scalar quantity E can be used to describe the state of the systern 

known as the energy. The energy is proportional to the degrees of freedorn available a.t 

each state: 

(2.2) 

It can be shown that the energy of the systenr decreases or rernains the same for each 

state update and fixed points corresponds to local rninirna of the energy function [13]. 

Furthennore, the recalling procedure would be to present a pattern ;r to the network and 

a search through state space \vould coincide with following the gradient of the energy 

function to the lowest energy state ;r* frmn the initial pattern. Illustrated in Figure 2.2 

is the energy function of a 2-dirnension hopfield network with states {[1,1],[1~-1L[-1,1],[-

1,-1]}. If we were to start in one of the higher states of [1,-1] or [-1,1] we would decent 

to a lower state of either [1,1] or [-1,-1]. In the search process, a randorn neuron can be 

updated at each tirne step. This stable state x* would represent the output of the systen1. 

-1.0 

Figure 2.2: Energy function of a two state flip-flop with weight set to -1. 

Training can be achieved using any rnethod capable of rnaking arbitrary points in the 

systen1 stable states by lowering the energy level of those states. For exarnple, a rnenlo

rization of vector ( 1, - 1, - 1, 1) would have the effect of pulling on near by vectors such 
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as ( 1, -1, 1, 1) and (1, 1, -1, 1). The network can also be trained using the Perceptron 

learning [16] or genetic algorithn1s [17]. However, a comrnon approach is to use Hebbian 

learning [9] and update the weights (initially set to zero) according to the rule: 

'Wij *- 'Wij + :rfxj, i, j = 1, ... , n and i =/=- j (2.3) 

for each pattern p to be stored in the network but this can also be written in matrix form 

as 

W = ~r:I Xr + xi X2 + ... + 1:'fn Xm - rni (2.4) 

where ·m, is the nunrber of patterns. We do a subtraction at the end to remove the sun1 

in the diagonals that corresponds to self connections. However, the storage capacity of 

an n dimensional space is limited to n1axirnum of n memories or fix points. It is known 

from the n1atrix W eigenvectors that to achieve this maxirnum requires n orthogonal 

n-dimensional vectors. \tVithout orthogonal vectors we have undesirable attractors that 

are fonned from interaction with other patterns and smne quite arbitrarily. Furthermore, 

from the systen1 of equations we have 

sgn( - xW) = - sgn(xW) = - ::c (2.5) 

indicating that using Hebbian learning with a syrnmetric weight matrix will always pro

duce the pattern and its complernent as attractors in the network in addition to linear 

and non-linear combinations of our initial patterns. The limitation of orthogonal vectors 

can be relaxed by using the pseudo-inverse algorithnr for training instead. Unfortunately 

the pseudo-inverse is non-iterative and non-local, that is, each unit can no longer be 

arbitrarily updated based only on the sum of its neighbours. 

In addition to the abilities mention, the autoassociator networks are able to perforn1 

optirnization computations. To do so, the optirnization task can be written in a forn1 

ismnorphic to the energy function. So the difficulty is in encoding the constraints of the 

problem in the connections of the network and traversing the state space to the least 

energy. Local minimum in the energy function will correspond to sub-optirnal solutions 
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and the global rninimurn to optinral solutions. Such encoding has been shown to find 

near optimal solutions on the traveling salesrnan problen1[18] and with better results by 

[15] on the multi-flop problen1, eight rooks problern, and eight queens problen1. 

However, this n1ethod does not provide a way of solving NP problerns in polynomial 

time since the number of units required to solve each task scales exponentially con1pare 

to the size of the problem [15]. In addition, there is no guarantee of finding the optirnal 

solution while using gradient decent to drive the searching process as the number of local 

solutions grows so large. This motivated research into other methods, in particular Boltz

rnann machines. Boltzmann machines use the concept of a temperature frorn statistical 

mechanics to allow movement to higher energy state proportional to the temperature [19). 

As the temperature slowly cools over tirne the probability of jumping to higher energy 

states decreases. 

2.2 Heteroassociative Memory 

Later, Kosko [10] proposed a bidirectional associative memory (BAJVI) 1nodel that asso

ciates pair of patterns. BAI\1 is the link between unsupervised and supervised 1nodels. 

The network architecture can be viewed as a bipartite graph and the two groups are the 

pair (x, y) that feedback to the other layeL Probing the network with x will retrieve the 

pattern y and visa versa for y will retrieve ;r 

y = sgn( x W) and :~r = sgn(WT y) (2.6) 

The units used are identical to the autoassocative n1odel with either binary or bipolar 

states and symmetric connections without any self-connection. A simple Hebbian learning 

rule is employed as before but with vector pairs x and y 

(2.7) 

The same reasoning for the autoassociator can be used to show that the energy func

tion of the network can be describe by the function 
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E(X, Y) = -xrwy (2.8) 

If ::r = y the BAM collapses into a Hopfield network of equal dimensions and si1nilar 

capabilities. The BAivi is also able to store complex spatial-temporal patterns that are 

equivalent to Grossberg outstar avalanche coding [20] such as li1nit cycles. The temporal 

coding works on a sequence of patterns 

by training the pairs 

on the network. 

The issue of binary /bipolar encoding has been dealt with in [10] where it was shown 

that bipolar coding is better than binary coding in tern1s of strength and sign of the 

correction term coefficients. 

Since Kosko's paper there has been many variants that tries to overcon1e its initial 

weaknesses in storage capacity [21, 22], expressive power, biological plausibility, syln

rnetric relations and recall perforn1ance. These approaches varied in sophistication from 

modifying the architecture, learning rule, and output function. 

Changes to the architecture include adding a second layer with its own separate weight 

1natrix [2] that recurrently sends inforn1ation to each other in synchronization. This 

in1plies that the weight matrices need not to be transposes of each other. This n1odel 

tries to find solutions to the non-linear equation of the form: 

X= f(VY) andY= f(WX) (2.9) 

for an output function f. By using a separate weight rnatrix, the network is now able 

to perform task such as feature extraction [23], categorization [24] and other com1non 

unsupervised task [25]. 
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If we add a context unit to the BA.!VI for sequence recognition we will be able to 

perform one to many associations. Each additional context unit allows us to do more 

associations with longer context. vVhile learning the XOR problem, a second BA.!VI can 

be used to provide additional information to the prirnary BAJ\ti by associating the desired 

bias for the correct pattern [26]. This will be relevant later for imn1ediate reinforcement 

learning. 

An in1proved learning rule by Haykin [27], i.e., Hebbian cross correlation learning 

based on Hebbian (but with an anti-Hebbian correction tern1) can be expressed: 

W k+l = W k + TJ(Yo - Yt) ( xo - ~r;t)T 

V k+l = Vk + TJ(~-co - ~-ct) (Yo - Yt)T 

(2.10) 

(2.11) 

where W and V represent the weight matrix, x0 and y0 are the original patterns to 

be learned, Xt and Yt are the patterns iterated through the network t times and TJ is 

the learning parameter. An autoassociative learning rule can also be derived frmn these 

equation if we let xo = y0 this reduces to a much sin1pler rule: 

(2.12) 

In fact by re1noving the initial connections for y0 we can get a new architecture [23, 24] 

with feature extracting (FEBAl\II) abilities similar to principal component analysis in 

addition if the network output is limited to bipolar states then clustering or categorization 

is performed. The process to derive the vectors necessary for training are illustrated in 

Figure 2.3. To start training, the weights are initially set to small randmn values and the 

output of the initial vector x0 is used as the initial vector y0 . In this network, the srnaller 

the dimension of y relative to x the greater compression is achieved for the extracted 

features. 

vVe can go even further by constraining the amount of units that are able to fire 

in the compressed (y) layer. This would allow the network to simulate k-w'inner-take

all (kWTA) [28] characteristics and hence categorical behaviour and as k is increased 
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Figure 2.3: Update process without initial connections frmn UO· 

towards the nurnber of units in y we get back our original network. and Giguere 

[25] were able to show the netvvork achieve n1ultiple categoriza.tions and in addition being 

able to store exernplars. Also by constraining the :y layer, the network was able to group 

sirnilar topological patterns in a. neighbourhood while also reducing the di1nensions like 

seU-or:qanizing feature ·maps. 

The advantage of these rnethod over other rules such as Hebbian, optirnal projection 

and the pseudo-inverse are online lea,rning by incorporating feedback into the weight 

updates: 1naintaining the sirnplicity of the Hebbian rule and preserving locality. The 

a.lgoritlun is very sirnple in nature reducing the error between the patterns and its 

state after being iterated through the network t tirnes. A fixed-point attractor is reached 

iff the two tern1s are equal, i.e., :ro :rt and Yo Yt· 

A new non-linear output function departing from the step function is: 

( - ) - :3 b + 1 ai - oai 

vvhere ai is the activation of unit i written ai 

if ai > +1 

if 

the transrnission pararneter. Sin1ilarly if we replace :ri+l by :Yi+l and ai by Vyi. The 

parameters value should be set according to: 

TJ< 
1 
... S=£~ 

2(1 - 28)rna:r(JV, 111)' 1 2 
(2.14) 
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for guaranteed convergence where Nand AJ are the nun1ber of units in each layer. The 

third condition in equation (2.13) allows the network to develop non-bipolar attractors for 

when ( 6+ l)ai + R = 5ar for some real-valued constant R in addition to bipolar attractors. 

This is in contrast to previous n1odels that were only capable of forming attractors on 

the corner of a hypercube inn-dimensions [30] or by using special encoding schemes. The 

result from these modifications is the BAlV1 can now associate grey level patterns such as 

the various shades of an image [31]. Furthennore by changing the learning rule Xu el la 

[32] were able to infer asynunetric relations with a BAl\ii. 

In a typical autoassociative and heteroassociative systern the network is trained with 

the following procedure: 

l. weights are initially set to zero. 

2. randon1ly select a pair of patterns. 

3. iteration pattern through the network k times ( cmnmon for k = 1) using equation 

(2.13). 

4. update weights by using equations (2.10) and (2.11) . 

5. repeat steps 2-4 until desired error or number of trials is reached. 

2.3 Chaos and Neuroscience 

Although previous changes to the BAl\11 were driven by perfonnance, the inclusion of chaos 

was partly inspired by work from neuroscience [33]. There were 1nounting evidence that 

the brain is a dynamical system with inherit chaos. Stored patterns may be stationary, 

tin1e-varying, quasi-chaotic or chaotic. Different attractors are associated with different 

functions such as n1emory, n1otor behaviour, and classification [34, 35]. 

Work by Freernan, Skarda and Kay [4, 3] uncovered that chaos is fundainental to 

odour perception in animals. The results fron1 these findings suggest that anin1als do 

not directly respond to external stimuli but internal stiinuli created from chaos in the 

olfactory bulb, olfactory cortex, and the hippocampus. This suggests a complex interplay 
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at both n1acroscopic and microscopic scales that is in direct contradiction with the widely 

held static view of memories, that is, rnemories exist rnerely as fixed-point attractors in 

the brain. 

Kaneko and Tsuda [1] later described a so-called Chaotic Itinerancy (CI) as an ex

planation for how the brain stores memories. CI is essentially the result of destabilizing 

a systen1 with a stable attractor such that the attractor is neither totally ordered or 

disordered. A consequence of these phenmnena in high din1ensional space is that strange 

unpredictable orbits forn1 that give rise to states that switch between ordered motion and 

total chaos. Nioreover, CI has been identified in rnany real world dynan1ical systen1s, e.g., 

coupled rnaps, optical turbulence, dynarnics of water rnolecules, climate changes, animal 

brain, biochen1ical reaction dynamics in cells are arnong son1e of the areas studied. 

Figure 2.4: Diagran1 of itinerancy in high dirnension space 

Situations equivalent to the ones described above could arise between attractor ruins 

(see Fig. 2.4). For some stable strange at tractor in high dirnensional space a small per

turbation in the bifurcation paran1eter could cause instability of this attractor that causes 

it to fragrnent into many smaller attractors with chaotic orbits. A bifurcation diagrmn 

shows the fixed-points and periodic orbits of a system as a function of the bifurcation 

parameter in this case 6. Such groups of attractor are called attractor ruins. While in an 

attractor ruin the orbit is chaotic but eventually escapes to another attractor ruin. But 

in between, motion in high dirnensional space is in some circurnstances constraint to a 

low din1ensional manifold. An escape is possible if not all orbits in the trajectory of the 

15 



basin of the attractor are attracting. The path taken is seen as a type of dynarnic rnem

ory or a searching process. However, this path can be differentiated from noise since its 

past and future orbit is entirely deterministic. That is the distinguish chaotic behaviour 

frmn randomness we know a chaotic systern always evolve the san1e way starting frorn 

any initial state. A basic method is to pick a starting state and find a near by state in 

the systern and study how they evolve over tilne. In a stochastic systern the difference in 

the two states will be randomly distributed while in a deterministic systen1 the difference 

will be regular or increase exponentially for a chaotic systern. 

That's the idea behind Lyapunov exponents which are usually used to test for stability 

in a systen1 by n1easurernent of the separation between two adjacent states [36]. The 

Lyapunov exponent is negative for stable systerrrs and positive for chaotic systems as 

shown in Figure 2.5. 

Lyapunov Exponent 

0.5 

-I 

-2 

-3 

Figure 2.5: Lyapunov exponent for a lD network with weight set at 1 and initial system state 
at 0.9 for 5, 000 iterations. 

Earlier effort of including chaos into the BAl\!I are dmninated by more complex neu

ron models. These models seek to replace the sirnple neuron model with a more complex 

model [37, 38] that is capable of many behaviours such as periodic response and deternlin

istic chaos usually as a collection of differential equations or difference equations. Crisis 

behaviour is the result of adjusting son1e pararneter of the network the system swaps 

behaviours fron1 periodic to chaotic and vise versa. Auaujo et al [38] introduced a fanrily 

of chaotic bidirectional associative rnemories (C-BA:NI) represented by three equations to 

describe the states of each neuron. This rnodel uses four additional parameters that in 
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a certain range of values enable the network is able to show chaotic or crisis behaviour. 

However, when all the parmneters are set to 0 the network naturally defaults back to a 

standard BA:NI [10]. This fan1ily includes rnodifications to Chaotic BAJVI, Delay BAl\!I 

and Exponential C-BAIVL Adachi and Aihara [37] were able to show that transient state 

space depends on initial conditions and that such states are characteristic of a searching 

process. 

One recent method of injecting chaos into BAl\!I is through the output function on 

recall. This can be accomplish by increasing the transmission pararneter 5 in equation 

(2.13) to the chaotic region of its bifurcation diagram. Chartier et al [2, 11] were able to 

demonstrate that even with chaos the output of each unit can be bounded to a region 

of state space. Furthermore higher values of 5 allow unconstrained wandering of state 

space. 

Figure 2.6: Bifurcation diagram for new output function with transmission parameter 8 [2]. 

These results shows, that chaos can be used as a searching progress where the trans

rnission pararneter is set to unconstrained chaos region (e.g., 5 = 1.9 in Fig. 2.6) and 

reduced as the network approaches a region of state space which contains the desired 

at tractor (e.g., 5 = 0.1). This idea further reinforces concepts from. psychology and neu

roscience that recall is not a one shot all or nothing process. But a progressive process 

that also needs to be taken into account by our models. However, we should note that 

long transient phase would not be ideal for infonnation processing especially in biological 

systems since the agent needs to constantly react to its environn1ent that is continually 
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changing. 

2.4 Reinforcen1ent Learning 

Reinforce1nent Learning is the paradign1 of cletennining how to act in situations through 

trial and error. In contrast to supervised learning in which a teacher has to present 

n1atching input-output pairs to the agent to learn, and unsupervised learning in which 

the agent only receives input signals and is asked to 1nake sense of the data,. 

Reinforcernent Learning (RL) works by placing an agent into son1e unknown dynmnical 

environment, in which it can perforrn a set of actions each of which will return a certain 

reward in the next state. This is sho\vn in Figure 2.7. Here reward is used for both 

positive Etnd negative reinforce1nents. 

Reward rt+1 

Environment 
Action at 

State st+1 

Figure 2.7: Interaction behveen an agent and its environrnent . 

The goal of RL is to find a policy that 1naxilnizes the re-ward in the long tenn. A 

policy can be thought of as a n1apping of actions to take in any particular state. Such as 

pressing the elevator button corresponding to the upper floor while trying to get home. In 

addition, a policy is optilnal, if frorn all starting states in the envircmrnent the reward is 

rnaxiinized. A policy that does not change over tinw is called a stationary and inversely a 

policy that does change over tirne is non-stationary. However, for our 1nain focus we will 

only consider stationary policies. Going back to the recent exa.rnple, the optilnal action 

to take in the elevator would be to press the button corresponding to the floor you live 

on to rninirnize the an1ount of tirne it takes to get hmne. It is noted that rnaxin1izing the 

reward can be perceived as n1inilnizing sonw punislunent. 

It is often the case that RL proble1ns are frarned as a rv1arkov Decision Process (lVIDP). 
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By using IVIDP, each problmn can expressed in a unifonn nw.nner and 1nore generalize 

techniques can be develop. ~1DP is a well-known theory on how to rnake decisions in 

cmnplex envirornnent when outcon1es are partially randmn and partially under control of 

the agent [39]. Any JVIDP can be represented as a tuple (8, T, .A, R) where 8 is the set 

of states, A is the set of actions, R : 8 x A __,. 1R is the reward function of per:fonning an 

action in a. certain state and T : 5' x A x 8 __,. [0, 1] is the state transition function that is 

probability of being in the successor state after perforrning an action in the current 

state. 

A ~1DP assurnes the rna.rkov property holds in the envirorn11ent, that is the successor 

state only depends on the current state and action takerL In addition there always exists 

an optilnal policy for lVIDPs. There are two rnain ways to find policies, direct or indirect, 

however \Ve will only consider indirect rnethods. Direct rnethods entails representing the 

policy by a set of adjustable pararneters which are changed to get a. better policy. But 

since no gradient infonnation is available for discrete problerns smnples of return are 

used, e.g., variations of gradient rnethods, silnulated annealing, evolutionary algoritluns, 

etc. Indirect rnethods are lesser cmnputationally in the sense that for each sarnple the 

estirnates are shared by rnany policies and adjusted accordingly. These rnethods work 

by using states values or action values. For the state values we seek to place a muneric 

value on the desirability of a state when following the current policy and action values is 

the desirability of choosing an action in the current state and follow the current policy 

afterwards. 

Figure 2.8: Delayed reward for in a six state environrnent. 

Reinforcenwnt learning problerns can be categorized into two groups based on diffi

culty. The first of \vhich were nan1ed innnediate reinforcernent problerns. In these prob

lerns the optirna.l action is the action with rnaxirnurn reward for each state. Hcn,vever, the 
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rnore general reinforcement problern considers delayed rewards as shown in Figure 2.8. In 

other words, a significant reward could be only presented after a long sequence of states. 

Where the task is to give credit to the actions responsible for the reward. This is usually 

term the credit assignn1ent problem. 

In general reinforcernent problerns the transition function, sometimes called the model, 

and the reward function are usually unknown. The agent must decide what infonnation 

it needs to store. Agents that solve the RL problems without building a rnodel are 

called modelfree methods in contrast to agents using experience to build a rnodel. Three 

common approaches to solve the RL problem are by using Dynamic Progran1n1ing, J'\1onte 

Carlo simulations or Temporal Difference methods (40]. All these methods are derived 

frmn the Belln1an equations: 

(2.15) 
s' 

\i\Thich indicates that the value of state s while following policy 1r is the reward R(s) plus 

the value of all successor states condition on the probability of reaching the said state 

by taking action 1r(s ). 1r( s) the action taken in state s by policy 1r. Action selections 

are usually sirnple con1putations based on the value functions. A common deterministic 

approach is to always choose the action with the greatest action value. But most often, 

it is suboptimal to always choose the greedy action. Instead a better approach called 

E-greedy is to choose the greedy action with probability 1 - E and all other actions E of 

the time. [40] 

Dynamic Program1ning (DP) nwthods are derived frmn control systems and assume a 

n1odel of the environment. Two connnon algorithms to find solutions are Value Iteration 

[41] and Policy Iteration [42]. DP methods are optimal in the sense that it does as 

best as possible. However, they are not feasible for larger state space but are ideal 

to benchmark other algorithms against such as Nionte Carlo and Ternporal Difference 

methods. The reason DP is not feasible for large state space is that it updates all state 

values simultaneously regardless of the current state and the action taken. In addition 

the transition probabilities have to be cornpletely specified that requires order lSI x IAI 

20 



entries. For a state space with n = 10120 states, e.g., chess, that entails trying to solve 

n equations with n unknowns. For any reasonable problern, it becomes in1practical since 

it cannot be computed before hand or too large to store and maintain. Instead, it would 

be extrenrely efficient to only update the states that were visited after each transition. 

That's the idea behind Ivionte Carlo and Ten1poral Difference sampling rnethods. 

The Monte Carlo (MC) rnethod does not assun1e cmnplete knowledge of the environ-

ment. Instead it gains knowledge from sample experience or sequence of states, actions, 

and rewards. Because of this IviC methods only update their states at the end of an 

episode where an episode is defined as a sequence of experience that ends in a terminal 

state. Thus, to use MC nrethods we nrust guarantee that all experiences eventually ter

n1inate. However, the advantage of this approach is that it does not rely on previous 

state estimates for updating, also known as boosting, it is able to perform much better 

than other methods in non-rnarkovian environn1ents [40] . These n1ethods are ideal for 

situations where real work experience is costly but simulations are cheap [43]. 

2.4.1 Q-Learning 

In contrast to l\t1C methods, Temporal Difference (TD) methods update the state or 

action values after each step instead of after an entire episode. These methods are quick 

to adapt to changes in the environment and also do not rely on a nrodel. Instead, they take 

advantage of boosting by using previous estimates as a basis for making new estimates. 

One such off-policy method is Q-learning developed by Watkins [5]. The convergent 

proof was later provided by [44]. The general idea behind Q-learning is to store action 

values instead of states. This elirninate, the requirement to construct a rnodel of the 

environment when selecting actions. A greedy policy can be used to select an action a 

that maximizes rnaxQ(s, a). So we can update action values by: 
a 

Qt+r(s, a) f- Qt(s, a)+ a[r + 1maxQt(s', a')- Qt(s, a)] 
a' 

(2.16) 

Action values are updated by the TD rule that n1oves our estirnate of Q(s, a) closer to 

r + 1Q( s', a') which is assumed to be a better estirnate by the fact that it includes reward 
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frorn an experience. Furthermore, s' and a' are the successor state and next action. With 

an appropriately sn1all value for a Q-learning has been show to converge to the optimal 

value function Q* with probability 1. A full listing of the Q-learning algoritlun can be 

found in Table 2.1. 

Table 2.1: Q-learning algorithn1. 

Initialize Q(s, a) arbitrarily 
Repeat (for each episode) : 

Initialize s 
Repeat (for each step of episode): 

Choose a from s using policy derived from Q(e.g., E-greedy) 
Take action a, observer, s' 
Q(s, a) f-- Q(s, a)+ o:[r + 1rnc;xQ(s', a')- Q(s, a)] 

a 
s f-- s' 

until s is terminal 

2.4.2 Eligibility Trace 

TD n1ethods, (referred to as TD(O)), are quite an iinprovement over DP 1nethods in terms 

of con1putational tin1e. But only one state is updated at a time and the propagation of 

state values when a significant reward encountered can be quite slow [40]. On average it 

takes n episodes to propagate a tern1inal state value back n states if the same path is taken. 

In contrast a MC method would update all states visited after each episode. Eligibility 

traces, pioneered by Sutton [6, 7, 8] are a comprise between these two extren1es. The 

basic idea is to assign a nurnber (trace) to each state when visited which detennines its 

eligibility to be updated when the agent receives a reward in the future. The 1nost recent 

states will have higher traces and therefore share more responsibility for any imn1ediate 

reward. This can be seen as a rnechanism to help solve the credit assignment problern. 

if s = St and a = at 
(2.17) 

otherwise 

In (2.17) the parameter A controls how fast previous traces falls off from the current 
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state. By adjusting the paran1eter /\ towards 1 we move closer to a pure 1viC method 

TD ( 1) and inversely towards 0 we rnove back to the original TD ( 0) learning. In fact 

it was shown by [40] that better perforn1ance are attained with intern1ediate values for 

0 :::; ). :::; 1. To distinguish tracing rnethods fron1 non-tracing rnethods we will refer to 

them as TD(.A) methods and in particular Q(.A). 

Reme1nber Q-learning 1naintains two policies, the one it follows (behavioural) and 

the one which is being learned ( estin1ated). Since the behavioural policy will sometimes 

take actions that are sub-opti1nal with respect to the esti1nated policy it may not be 

best to indiscrim.inately apply eligibility traces. A non greedy action might take you to 

a completely different set of states. In other words, we are using exploratory actions in 

estiinating the value of following the greedy policy! As a result if you mark every action 

value as eligible, you backup the effect of non-greedy actions. Watkin's [5] proposed 

instead to look ahead only one step pass the next exploratory action. However because 

of the frequency of non greedy actions at the start learning will be slow from terminating 

traces. 

Peng's Q(,.\) [45] addresses this by having no distinction between exploratory and 

greedy actions. It tries to balance the two by updating the policy early on using ex

ploratory actions and later to greedy actions. The only disadvantage of this method 

is its complexity to implement. There is a third approach which we will be using that 

just applies the regular trace to TD learning called na'ive Q(,.\). Although backing up 

exploratory actions seerns bad, it has shown good perfonnance [46] in comparison to 

Watkin's Q(/\) and Peng's Q(,.\). 

In the previous section the traces defined, now call accumulating traces can be inl

prove if you consider what happens when a state is repeatedly visited by an agent. The 

eligibility for that trace becon1es greater than 1 and this would cause the agent to take 

n1ore responsibility than required for the reward and becon1e a proble1n for convergence. 

To overcome this we can consider replacing the trace (replacing traces [8]) instead of 

incrementing by one. Hence we do: 
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1 if s = St and a = at 

et(s, a) = 0 if s = St and a #- at (2.18) 

'f Aet-1 ( s, a) otherwise 

Thus the update rule for Q(,\) for all states turns out to be: 

(2.19) 

and the error is calculated only for the current state: 

(2.20) 

These eligibility values are then used in the full update rule to get Q(,\) algorithm 

which is listed in Table 2.2. 

Table 2.2: Q(-\) Algorithrn with replacing traces. 

Initialize Q(s, a) arbitrarily 
Repeat (for each episode): 

Initialize s 
Repeat (for each step of episode): 

Choose a frmn s using policy derived from Q(e.g., E-greedy) 
Take action a, observer, s' 
8 +--- r + rymaxQ(s', a') - Q(s, a) 

a' 
e(s, a)+--- 1 
For all s, a: 

Q(s, a) +--- Q(s , a)+ are(s, a) 

e(s, a) +--- {O 
ryAet-l(s, a) otherwise 

if s = St and a =/=- at 

s +--- s' 
until s is terminal 
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2.5 Exploration and Exploitation 

In RL problems we are not given the n1odel nor the reward function we must explore the 

environment to learn its structure. However this introduces a problern since R.L task are 

usually online we are faced with a dilemn1a. Whether to exploit knowledge we already 

have or be optimistic and keep exploring for better potential rewards. This is a problem 

face not just by action value agents but in addition those that build a 1nodel as well. For 

taking the optin1al action with respect to the agent's model of the environment may not 

be optimal at all because the agent's 1nodel could be incon1plete or outdated. 

A reasonable approach is to have an overly optin1istic start by over estimating the 

true state values. Using standard methods the agent will explore optimistically states 

only to learn its true value and possibility find the optin1al policy. This heuristic led 

to the development of a n1odel base learning algorithm call R-NIAX [47]. Additionally, 

we could use an exploratory policy such as an E-greedy for the behaviour policy while 

learning the optimal policy independent of the policy being followed. A provable optimal 

method of making the trade off between exploration and exploitation is based on the 

idea of computing Gittins indices [48] . Unfortunately, so far the method has not been 

extendable to the general reinforcement problem. 

2.6 Associative Reinforcement 

A sensible way to create an associative systen1 is to incorporate Reinforce1nent Learning 

on top of an associative 1nemory n1odel. A n1ajor system was developed by Zhu [12] using 

the PALlVI network. A plan1 network [49) functions like a BAl\1 with weight update rule: 

N 

W= V[YnX~] (2.21) 
n=l 

where the operator V is boolean OR. In other words, each weight connection is limited 

to either 0 or 1. A single layer feed-forward PALivi network Wcritic was used to store 

the critic (state-to-value) and Wact the policy (state-to-action) with a modified online 

learning rule: 
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(2.22) 

a~ W act W crit ic 
Wcritic ~ Wcritic + ,, .. 

L Wcr'itic[z ,J] 
(2 .23) 

i,j 

given that Qt = Wcrit:ic'St and Qt+l = Wcritic'St+l· Initially Wact is set to randmn values 

and W critic is given s1nall positive values, e.g., 0.1. The policy affects the state values by 

which actions are selected so the state could be updated and the state value affects the 

policy by influencing which action is chosen. Furthermore, on recall the system uses the 

rule below to extract an appropriate action while in some state St at time t: 

at= f(Wact · St- 8) (2.24) 

The action component uses a 'k winners take all rule' where only k bits in the output 

are activated (at = 1) as the action vector. If more than k units are active a randmn 

subset of k are selected. This is believed to be the source of exploration needed for 

optimal learning. This encoding mechanisrn forces the actions to self organize. The 

threshold parameter () is adaptively set to Inake sure only the top k bits are activated. 

Their system was reported to have good convergence and generalization with k = 1 

winner take all in cmnparison to Q-learning on a 15-by-15, detenninistic and stationary 

grid world task. The downside of this n1odel is that it is not based on dynamical system 

principles and hence cannot be used as a model of learning in the brain. 

However a si1nilar idea has been atten1pted in the literature recently by Chartier [26]. 

This approach requires adding an asymmetric parameter h to the output function from 

equation (2.13): 

xi+ I = h + (5 + l)ai- bar (2.25) 

The justification of this parameter is to bias the search space in the direction of the 

parameter h such that attractors near that region gains a larger radii during the recall 

process. Results show that recall performance was boosted for patterns near the region 

of para1neter h (i.e., patterns similar to h). A bias value was generated for each input the 
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network associated incorrectly by a secondary BAl\1 network. Chartier was able to use a 

collection of BAJ\!Is to learn a non-linearly separable task, the XOR problern, and solve 

imrnediate reinforcen1ent problems. This was thought to be irnpossible using Hebbian 

derived learning rules. However this approach required a secondary BAl\!I that is told the 

correct actions which in general is a form of supervised learning. The goal of our system 

is to extend the abilities of associative n1emories model to n1ore general reinforcement 

problems by considering ternporal sequences with delayed rewards. 
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Chapter 3 

Proposed Model 

The previous Inethods discussed in section 2.6 either used gradient based function approx

hnators to store the value function or supervised learning by giving the correct actions 

to the network. \Ve propose a method based on Hebbian learning that takes advantage 

of AlVf networks unique ability of pattern completion. In this section, we will outline 

the theory behind our approach, the network architecture and ilnpleinented details. Two 

sainple proble1ns from the literature will also be introduced and used as a benchmark for 

our system in the following chapter. 

3.1 Theory 

The key insight was to represent the value function by the energy function of an autoasso

ciative n1en1ory network. By using context units, we were able to store state-action pairs 

in the network and the energy of these states corresponds to the negation of action values. 

From here on, we will adapt the tern1inology of using x for the state the network is in 

and reserve s for the state received frmn the environment which the network associates 

with a reward. 

For now, without mentioning the detail of how the network would be trained to reach 

these very specific energy levels, we will briefly explain why this concept is sound. First, 

consider a fully trained network with the correct state-action pairs and action values 

(energy levels). Such as the 1-dimension network shown in Figure 3.1 that has a return 
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Figure 3.1: Energy function of 1 diinensional state systein with -1 stored as return for the states 
+1/-1. 

of -1 stored at states + 1 and -1 . For sorne particular state x the network might be 

in, a policy n1ust be present that chooses an action. This could work by atten1pting to 

c01nplete the pattern for the state-action pair (correct action vector is not available). But 

frorn this error correcting procedure the network converges to the action with the lowest 

energy which so happens to correspond to the action value with the highest return. It is 

by this reasoning the energy level is the negation of the action's return value. 

3.2 Design 

Our syste1n (V PT F) is com posed of four inter-connected components: value. function 

(V), policy (P), eligibility trace (T) and feature extraction (F). The cornponents work 

together by first receiving St from the envirornnent and the relevant features are extracted 

as shown in Figure 3.2. The current state is passed onto the policy where an action is 

taken that transfers the agent to the next state St+l which is filtered to St+l and the 

greedy action recmnmended is stored. These along with the current reward Tt+l are then 

used to update the action values of the old action and trace back in tin1e to update all 

previous experience. All the components will be discussed in Inore detail through the 

next 4 subsections. 
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Figure ~3.2: Overview of the interaction between the different components. 

3.2.1 Value Function 

Network V is the core component of the syste1n and will be used for associating state

action pairs to action values as shown in Figure 3.2. Network V will be represented by 

a single autoassociative network. Here, the environrnent state units are used as context 

units for the current action to disan1biguate betvv-een correct actions in different states. 

On each iteration the network update its estirnate of the optirnal value function by 

changing the weights according to the Q-learning update rule. But first the old action 

values are retrieved as the negation of the energy frorn the current network state ;:r0 = sa. 

(J(s, a) = -B(V, sa) 

Q(s', a') = rnax- E(V, .s' a') 
a.' 

Q(s, a) = Q(s, a) + o:[r + [Q(s' , a') - Q(s, a)J 

(3.1) 

(3.2) 

(3.3) 

where it is understood that we are in state s and took action a then transitioned to 

state s' and the greedy action is a'. After the new estinwte of Q(s , a) is used to update 

the \veights as: 

V = V + 17[-Q(s, a)- B(V, :ro)] · [:rox6- ~Tt :rf] (3.4) 
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It should be noted this learning rule is a generalization of the previous learning rule 

and collapses back to equation (2.12) when E(V, x0 ) = -Q(s, a)- 1. However that will 

not normally be the case and more generally there are two fixed-points. The original at 

xox'[ = Xtl:f and the other when E(V, x0 ) = -Q(s, a). 

Since roughly speaking the energy level of a bipolar pattern that is a fixed-point can 

be approxin1ated by: 

E(x) = ~[xT y- (c5 + 1)xTl¥y + ~c5xT(VVy) 3 + C] 
2 2 
1 1 T 3 

=2[n-(c5+1)n+
2

c5x x] 

= ~ [n - n - c5n + ~c5n] 
2 2 

c5n 
4 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

which is typically around -~n for a n-dimensional network. So we should rnake sure 

our return values are mapped to a higher interval to avoid interference with the first fixed

point in equation (3.4). vVe also assume for the energy function that the constant C = 0. 

For consistency with the theory of Reinforce1nent Learning theory we will consider the 

negation of the energy function instead: 

e(x) = -E(:r) (3.9) 

The effect this has on the shape of the energy function can be readily seen in Figure 

3.3 in comparison with a conventional trained network for the patterns (1 , 1) and (1 , -1) 

at energy levels -1.9 and -1.5. Note its structure compare to a conventional network 

trained with the san1e fixed-points. The original E(x) is scaled on the .1:1 and x2 axis 

until the desired energy level is reached at the bipolar points. This causes the original 

fixed-points to be shifted outwards to new coordinates. 

3.2.2 Policy 

The second cmnponent P implen1ents the policy the network follows by using the structure 

of the value function in the V network. By iterating the network V frmn a known initial 
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Figure 3.3: Original associative memory energy function of 2 din1ension network with fixed
points at the corners of the cube. Again, a network with (1, 1) and ( -1, -1) stored at -1.9 
energy level and (1, -1) and ( -1, 1) at -1.5 energy level. 

network state Xt = sa0 where a0 can be some arbitrarily chosen action or 0 and s is the 

current state from the environment. In addition having s clamped to St, the network will 

traverse the landscape of the energy function by following the path that leads to a local 

rninirnum but being restricted to the action subspace. An incren1ental approxi1nation to 

the next nearest action ak+ 1 with lesser energy is: 

(3.10) 

In that region, the action that minimizes the energy function will corresponds to the 

action with rnaxin1um return. This is analogous to having an attractor ruin in high 

dimensional space but orbits being limited to a srnall n1anifold. However outside changes 

(new state from the environment as a consequence of choosing an action) will cause 

the network to suddenty transition to a new stable rnanifold. We can irnagine these 

rnanifolds are represent by clouds in Figure 3.4 where different actions taken in a state 

corresponds to following an orbit to another state. It is in fact the agent's organization 

of the environment. 
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Figure ~~.4: States represented in high dimension and a.ctions as orbit between states. 

Fortunately the exact state values are not required to extract the opti1nal policy. 

Usually the optinu:d policy is available before the action values fully converge to the 

optirna.l value function so we will rnake use of this inside our policy. 

A second step is to take advantage of chaos as a searching process. In an e-greedy 

policy we usually select a random action with probability f: by using a. stochastic process to 

smnple fron1 this distribution. vVe propose to use an analogous rnechanisn1 with cha.os to 

sarnple frorn the space of actions. Consider a network Va that is trained in advance with 

all the valid actions the agent can perfonn. If the network is probed with an arbitrary 

vector it will converge to one of these actions or its cornplernent after a sequence of 

iterations. However if we initially set the transrnission pararneter 6 to an unconstrained 

chaotic region (e.g., 6 = 2) of the network's bifurcation diagra111. This will cause the 

network to arbitrarily cross boundary axes and transition betvveen patterns unpredictably. 

It is apparent frorn Figure 3.5 where we show a 2 din1ensional network with an initial 

state of (0.4, 0.5): 6 = 2, and weights: 

5000 iterations are plotted on the plane. It can be co1npared to points generated randornly 

in the sarne interval unifonnly where there is approxin1ately equal mnount in each quad-



rant. We will initially set the transmission parameter 6 to high values which corresponds 

to unconstrained chaotic region and reduce the value as the agent becomes rnore confi

dent in its value function where the optimal action we will slowly move to a rnore stable 

regions. The motivation behind this is to use a naturally occurring process of the network 

to our advantage as it can be seen as a very plausible technique for biological models. 

Furthermore recalling as we have explained is not a one shot process but a slow iterative 

process of reconstruction. If the two ideas mention above are con1bined then the state 

should be stored for the chaotic orbit to be resu1ned later. A simple m.ethod to combine 

these actions is a linear su1n based on the paran1eter E, i.e., a +-- ( 1-E)· agreedy + E · aexplore· 

A consequence of using the associative n1emory Inodel is the inverse of states and 

actions are also stored with the sanw energy level. That means on recall there is a 

possibility of retrieving the inverse action. On recall, our policy will recmnmend an action 

a, to detennine the correct action we take the action ai that has the greatest absolute 

correlation of all actions. i.e., nl?.X I coTr( a, ai) I· Actions will generally not interfere with 
2 

each other but the correlation between actions detennine how easy it would be for the 

network to transition to a near by action on recall. So for neutrality each actions should 

be equal distance (bitwise) fron1 all other actions. One sin1ple encoding of this is the 

1-of-d choice. For ad dimensional vector only one component is active while the rest is 

inactive, e.g., ( -1, -1, +1, -1). 

Chaos 

-1.0 -0.5 0.0 0.5 1.0 

Xl 

Randomness 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

XI 

Figure 3.5: Two dimensional network with transmission parameter ( 8) set to 2.0 and weights 
set to the 2-by-2 identity matrix with starting states of (0.4, 0.5). In contrast with randomness 
on the interval [ ~ 1.5, 1.5]. 
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3.2.3 Eligibility Trace 

The third network T stores a trace of the nwst recent states and actions taken. Sin1ilar 

to an eligibility trace any re·ward receive are propagated back to previous states. The 

attraction of this cmnponent is that it allows the systen1 to n1ore quickly propagate 

changes backwards by inforn1ing earlier state-action pairs of their responsibility. In fact 

the mechanisrn is a technique to help solve the credit assigrunent problem discussed 

ea,rlier. 

However only a fraction of states that are recently visited will have trace of a.ny 

significance since the rest \Vill have near zero values. Instead, we will only keep track of 

states that were visited recently. The list of recently visited states can be viewed a.s a 

lirrlit cyele at the BAr-/I network level. So the net\vork Tis represented as a BAI\1 and for 

each episode the initial state is stored as a fixed-point and inductively the current state 

is linked to the previous which fonns a chain as shown in Figure 3.6. The initial state is 

n1ade a fixed-point to place a tenninal state in the chain. 

Figure :3.6: BAJ\'1 network storing successive states iteratively. 

The propagation of rewards back-vvards would be done after each tirne step. 

( 3.11) 

This update is si1nilar to a regular Q-learning update of a state but here the error is 

stored in a tenn ll and used in all recently visited action values: 

(3.12) 

Also note the Qt(s, a) values are updated in network \/. 



3.2.4 Feature Extraction 

The last network F was inspired by the use of feature extracting abilities of the BAlVI. We 

want to compress the state space for large problen1s into srnaller sizes. This is a desirable 

property of any intelligent system since in many problems the state space is intractable 

to enumerate and furthern1ore only a fraction of states are necessary to visit in order to 

find a near optin1al policy. 

However it should be noted that this n1ethod builds generic states as attractors to 

represent con1mon states the agent encounters. In particular we would not expect rarely 

encountered states to be represented well. In fact , we expect our network to filter out and 

n1ap the most cmnmon or ilnportant states fron1 high dimensional to a low dimensional 

subspace. 

That means the previous networks n1ention (i.e., networks V, P, and T) will only see 

a lin1ited set of states from the original problern in a lower dimension. This brings forth 

another advantage of function approxirnators (FA), the ability to generalize from states, 

closer states will have similar state values. In fact with this extra layer our system has 

two levels of approximators. That is the original BAl\11 by itself can be used as a FA 

with fix-points defining areas of interest in state space and any near by points (basin of 

attractor) would naturally be attracted to the fixed-point as this is one of the fundan1ental 

capabilities of associative n1ernory networks. However it is known that standard RL 

algorithms, in particular QL has had problems converging when using t'A compare to 

tabular representations and have only been proven to converge on linear approximators 

and usually diverge on nonlinear approximators without extensive tweaking [50, 51]. 

\Vithout much Inodifications as illustrated in Figure 3.2 the incon1ing state St from 

the environment is trained on the network and its extracted features St are passed onto 

the other system as a lower din1ension state. So we will use the following equations for 

training weights F w and F v: 

Fw(k + 1) +--- Fw(k) + TJ(Yo- Yl)(.ro + x1)T 

Fv(k + 1) ~ Fv(k) + r;(xo- xl)(Yo + Yl)T 
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with Xo as the initial state St, :Yo= kwta(Fwxo, k), :r:r = Fv:Yo and Yr = Fwx1 . By deriving 

y0 we used the function kwta to limit the amount of units that can fire and control the 

sparseness of encoding, i.e., pick the top k units to fire. On recall, we are given a state 

St and one trial through the network we derive St: 

St = f(W f(V f(Wst))) (3.15) 

that is later use throughout the network. 

3.3 Implementation 

Our algorithm is based off a connnon RL solution called Q-learning. The algorithm was 

in1plernented in the l\1athernatica progrmnming environment. The reason being it was 

very expressive and supported many required features such as rnatrix operations and 

graphing. The source code is also available in Appendix A and the pseudocode of our 

algorithn1s are in Tables 3.3, 3.1, and 3.2. 

Initialize V a, aexplore in trial 0 
Initialize V, s, E 

aexplore ,___ f(V a · aexplorei J = 2.0) 
agreedy ,___ j(IO) (V ·sO) 
a(3 ,___ (1 -E) · agreedy + E · aexplore 

Let Ai = icov(a(3, ai) I for all i = 1, 2, ... lal 
. {m~xAj . if RandomReal(O, 1) 2 E 

J ;--- J 

Randomlnteger(1, lal) otherwise 

Return aj 

Table 3.1: Dynamic policy. 

An issue encountered during implementation was that it was problen1atic finding the 

chaotic region for the transmission parameter since the fixed- points has been moved out 

of the usual interval. Instead we used a fixed network Va with the original action vectors 

trained and conditioned on it 's chaotic region to regenerate exploratory actions. vVe used 
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the covariance of the recalled action against all actions to infer which action is closer to 

the attractor during action selection for the dynarnic policy. That is the action chosen 

by our agent. 

Initialize V, s, c 
Let Ai = e(V, sai) for all i = 1, 2, ... [a[ 

{ m~xAj if RandomReal(O, 1) 2 E 
j ~ J 

Randomlnteger(l, [a[) otherwise 
Return aj 

T11ble 3.2: Greedy policy. 

1 
For practical reason the trace depth was set to be 3 of the networks dimension. Also, 

to avoid infinitely updates by progressing backward within a lirnit cycle a list of previous 

updates was n1aintain and only unique state-action pairs were updated. 
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Initialize V, Cw, Cv = all weights 0 
Initialize F w, F v to small randmn values 
Set parameters a, 1, E, .A, rJ, 8 
Repeat (for each episode): 

Initialize E = all weights 0 
St <- state from environment 
Use St to train F w, F v 

St +----- recall St from Fw, Fv 
Repeat (for each step of episode): 

at +----- action recommend by policy in St (i.e., E-greedy or P-greedy) 
If first step: associate sa with sa using Cw, Cv 
Take action at, observe Tt+b St+l 

St+l +----- recall St+l from F w , F v 

at+l +----- action recommend by policy in St+l (i.e., E-greedy or P-greedy) 
qt +----- energy(V, Stat) 

qt+l +----- energy(V, St+lat+l) 

~ +----- r + '"'fqt+l - qt 

Associate St+lat+l with Stat using Cw, Cv 
Let Xt =Stat 

E = trainAu.to(E, Xt, 1) 
Repeat (for each step taken): 

q +----- energy(V, Xt) 

e +----- energy(E, l~t) 
V = trcL'inAuto(V, Xt, q + a~e) 

{ 
1 .Ae if s = St and a = at 

Let u = · 
0 otherwise 

E = trainAui:o(E , Xt, ·u) 
Xt-1 +----- traverse cycle backwards using Xt and Cw 

until cycle found 
until s is terminal 

until desired number of episode 

Table 3.3: Pseudocode of Associative l\!Iemory reinforcement learning algorithm. 
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Chapter 4 

Experin1ents 

In this section, we will support our objective with experirnental results that shows our 

systern performs well. To begin, we first dernonstrate our systern is capable of storing 

arbitrary values in the interval [ -1, 1] for a set of states . This region is sufficient because 

any other rewards interval can be rnapped to this interval by scaling all rewards by the 

rnax reward appropriately. Next, we will try to experimentally detennine the capacity 

of action values that could potentially be stored accurately with a fixed network size. 

Furthermore, we will demonstrate the network on a stochastic Gridworld and rnodified 

Tetris problenrs. For the stochastic Gridworld task, we will do a comparison with other 

RL algorithms and for the Tetris game we will show the perfornrance of the system over 

a variety of pararneter settings. 

4.1 Simulations 

A number of simulations will be performed to analyze the correct behaviour of our systern 

and its subcomponents before it is tested on a full problern. 

4.1.1 Value Function 

To dernonstrate the effectiveness of the system, we will confirm our hypothesis that the 

energy function is a viable means of storage for action values. The purpose of this 

experiment is to show the network is capable of storing the correct return values and it 
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System Parameter Value 

State dimension 40 
-

Associative 1\;femory 
Action dimension 4 

TJ 10-4 

8 0.01 

(}: 0.9 

Reinforcement Learning 'Y 0.9 
1 

E 
t 

Table 4.1: Parameter settings for the Gridworld learning problem. 

converges as a function of the nun1ber of iterations. The network size will be selected to 

be 44 din1ensions with 44 bipolar states. This leads to a network load of 44/44 = 100%. 

The parameter values are set according to Table 4.1. The results can be seen in Figure 

4.1. 

Precision of Energy Function 

2.0 

1.5 

~ 
1.0 

0.5 

0.0 
0 100 200 300 400 500 

Iterations 

Figure 4.1: :J\;lean squared error of setting the energy function of arbitrary bipolar states in the 
network to various values in the interval [-1 ,1]. 

As we would expect the Rl\!IS (root mean squared) error is reduced to alrnost zero 

after 500 iterations which is roughly 12 updates per state. These results are ilnpressive 

and confirm that the network can store action values to arbitrary accuracy in the interval 

[-1, 1]. However, as was stated earlier, ann dirnension network is limited to storing values 

only in the interval [ -n, n]. The sa1ne test was tried for the full range of values and we 

saw greater error as the network needs to be distorted at greater extren1es to reduce the 

error. For our purposes we will only consider the subinterval [ -1, 1] since larger intervals 

for rewards can be easily mapped to this range and it contains less variability for the 
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values being stored. 

4.1.2 Action Values Capacity 

In this section we will show the capacity of the network under different load factors and 

how this affects the error of the stored state return values. The objective behind this 

sin1ulation is to justify the ratio of state values relative to the dirnension of the network. 

I'vioreover, we theorize that the storage capacity (error in energy function) would be more 

than the comrnonly used load factor of 30% used in regular associative memories since 

we are not fully storing the state as a fixed-point. We are storing state value which is less 

inforrnation. In Figure 4.2 we see an increase in error and greater variance of a fixed size 

network of 20 dimensions storing varying nurnber of bipolar patterns from 1 to 40. The 

state values were generated unifonnly in the interval [ -1 , 1]. Each pattern was updated 

on average 50 times over .50 independent trials. 

Capacity of Energy Function 

::;---- --~ .. --~-~-----r··--fH ___ _ ~lhlffiDI_ 

~ 02 ~ - WPl [!' .• ,::.· 
t . 

0.1 ~ 

f._ e-r!-m 
0.0 L.J. ..... < ...... c ...... c 

j 
. --'------ ' -----~--- "' .... ::.1 

0 10 20 30 40 

Patterns 

Figure 4.2: Capacity of network as a function of different state values being stored for a fLxed 
network size in the interval [-1,1]. 

Frmn the graph we can see that the rate of increase in error appears to be linear in 

the load factor up to 200% ( 40 patterns). These results shows our system is robust over 

varying load factors and it is unlikely that a particular threshold will degrade performance 

critically. 
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4.2 Test Problems 

To show the success and generalization ability of our systern we will test it on two prob

lems . The first is a Gridworld problern and the second is a 1noclification of the popular 

Nintendo gan1e Tetris. 

4.2.1 Gridworld 

Our first test case is a stochastic Gridworld environment from [39]. The environment will 

consist of 4-by-3 cells shown in Figure 4.3. The two terminal state each give a reward of 

+ 1 and -1 while all other transitions are -0.02. In this world there are 4 possible actions 

{north, west, south, east} that correspondingly 1nove the agent fron1 a grid position {up, 

left, down, right} and remains in the smne position if rnovement is off the grid or towards 

cell (2, 2). However each action has a 20% chance of failure meaning the action north will 

rnove up with 80% success and 10% chance of n1oving left and 10% right. Taking action 

west would go 80% left, 10% up and 10% down and the san1e for the remaining actions. 

The objective for the agent is to reach the positive terminal state from the sta.rt state by 

moving as quickly as possible to n1inin1ize the accun1ulating negative rewards but safely 

and avoid falling into the negative terminal state from a faulty action. 

3 +1 

2 -1 

3 4 

Figure 4.3: Stochastic gird world environment with an action failure rate of 20%. 

For this problen1 we will represent actions as 4 dimensional vectors where { north=(1, -1, -1,

west=(-1, 1, -1, -1), south=( -1, -1, 1, - 1), east=(-1, -1, -1, 1)}. The 11 unique states 

are uniformly san1 pled fron1 { -1, 1} to produce a 40 cli1nensional vector. The remaining 

parameters that were used can be found in Table 4.1. Since the state vectors are not 

based on topographical features of the states according to its 2 dimensional representa-
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tion but instead were unifonnly generated we will not apply the feature extraction on 

this problem. In addition, on such a small world performing trace would not help much. 

Result 

Vve first cmnpare our system using the c::-greedy reinforcement learning policy against two 

standard algorithms: SARSA and Q-lea.rning. Afterwards, we will introduce the dynamic 

associative policy (network P). Based on tests from 200 trials and up to 200 episodes the 

perfonnance of these different systems can be seen in Figure 4.4. 

Figure 4.4: Performance from left to right of SARSA, Q-learning and the Associative Memory 
( E-greedy) model on the stochastic grid world task n1easure by reward per episode over 200 
trials and averaged over 200 episodes. 

The plot in Figure 4.4 shows three things for us a) how much exploration the agent 
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goes through b) the rnoment the system learns the optirnal policy, and c) the rate at 

which the system takes advantage of the optimal policy (exploitation). Frorn the curves 

we can tell that rnost of the learning in the system occurs between the first episode and 

before the graph of the accun1ulative rewards curve passes zero. Since on average the 

expected return following a purely random policy is negative returns. After which point 

the systenr rnainly exploit what it has learn for the ren1ainder of the trial. However the 

rate at which it exploit this knowledge is dependent on the E term that is a decreasing 

function of time so in the limit the policy will become entirely greedy. 

For this problern we did not test the optirna.l policy, instead our unit of measurement 

was the average accumulative reward received. The justification for this choice was that 

it was not required to know the full optinral policy since sonre states has such poor 

expected return our agent should never go there often enough to deternrine the optin1al 

action. Instead the shortest path that maxirnize our return would be sufficient. The 

rniddle solid line shows the mean over 200 trials and each bar is the standard deviation. 

\Ve decided to show the accumulated rewards instead of rewards per episode because 

the episodes are not independently sarnpled, but are influence by pass episodes. The 

poor results by SARSA can be explained by trials where convergence within 200 episode 

has failed and the systen1 accurnulates larger negative rewards. Huge negative rewards 

would easily overcome any positive gains by the systern. This would explain the increased 

rewards midway through and then a decrease below zero which is supported by a change 

in variance. From inspection we know QL and Al\11 Learning has done extremely well 

and most likely had to have found the optimal policy consistently. This can be inferred 

from the plots of the snrall bounds on their standard deviations which happen to get 

smaller centered around the mean as all trials eventually converge to the optimal policy. 

Furthern1ore, the Al\11 learning algorithm achieved accurnulative reward of 0.58 compare 

to Q-learning at 0.47. This rnarks a difference of over 0.1 with a p-value of 4.5·10-24 which 

is statistically significant for its scale and justifies our reasoning that Al\11 learning was 

able to learn the optimal policy faster. Our explanation for the increase in perforn1ance 

of Al\1 learning is the shared knowledge of state returns by distributed representation. 

That is, each states updates affect the estimates of other states. From this, we know the 
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A1'1 syste1n has done extren1ely well so for using the value function component (network 

V). 

Now we will atte1npt to use the dynaxnic associative policy outlined earlier. In QL 

there are two policies, the behaviour policy and the estirnated policy. For the behaviour 

policy, we will use a chaotic net\:vTork to select an action in each state the agent Inust 

follow while the optilnal action recmnmended by our estin1ated policy is found through 

the searching process policy described in section 3.2.2. In other words, our exploratory 

policy is to follow a chaotic action and the exploitive policy is to follow the reconnnended 

action at a local mininnun. 

0.95 0.995 1.0 
3 
~ ~ .. 

2 fo.76 fo.995 

fo.69 
0.60 0.125 0.0 - --

2 3 4 

Figure 4.5: Gridworld policy when using dynamic policy with chaos averaged over 200 indepen
dent trials up to 200 episodes. 

Results fro1n the experim.ent can seen In Figure 4.5. \Ve see the proportion of 

tirnes the net\vork learned the correct action for each state over 200 trials. Returns close 

to the positive tenninal state -vvere learned more successfully than others, in fact the 

correct action for state (4) 1) was never achieved in any of the trials. Even by chance 

this should be around since there is only 4 actions. Unfortunately, as the results 

show the exploratory chaotic policy could not be interleaved with the greedy associative 

rnernory policy successfully. \Vhat's rnissing is a function analogous to c-greedy that 

could over tin1e transition frorn a pure exploratory to an exploitive policy. Therefore, 

it was unable to exploit kno-vvledge gained frorn early exploration to its advantage and 

aftenvards continually explores. But, although it has not rnaxhnize its reward the correct 

returns are being learned nevertheless a. rnajority of the time. Additionally, it seerns the 

network smnetirnes forgets what it has learned previously. It has occurred before in the 
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literature and is comn1on in solutions employing function approxiination. In particular 

by [52] coincidentally on the Tetris problem which we willrnention shortly. Although the 

current network is not using feature extract it does indeed apply function approximation 

to fixed-points. In the next problen1, we will continue using theE-greedy policy based on 

the network V. 

4.2.2 Tetris 

Our other test case is the popular videogarne Tetris. A standard game of Tetris consist of 

a 10-by-20 size board and it is played with 7 different tetrominos. The basic rules are that 

the current tetron1ino is placed at the top center on the board. The player must guide it 

downward while being able to perfonn basic actions. An example of a garne in progress 

is shown in Figure 4.6 where the current tetrmnino is red at the top middle and the 

green tetrmnino on the side is the next piece awaiting to enter the game. Possible actions 

include shifting the tetrornino left or right, drop it to the bottom frmn it's current position 

or rotate it by incre1nents of 90°. vVhen a row contains the rnaximum filled cells, this row 

is rernoved from play and all occupied cells above are moved down a row. However, if 

the current tetromino cannot be placed on the board because of occupied cells the gan1e 

is over. The objective of the garne is to 1naximize the removed rows or equivalently play 

indefinitely as you will need to rernove rows to continue playing. A detail explanation of 

the rules can be found at [53]. A comn1on modification and for our purposes is instead 

of letting the agent guide the tetromino, the agent will siinply provide the position and 

rotatation from which the tetromino is dropped frmn the top in one action. 

This is an ideal problem because of the large state space and it's difficulty in conl

pressing. It was shown by [54] that Tetris is NP-complete. Also by playing a gan1e using 

an alternative sequence of 'Z' and 'S' pieces you are guaranteed to lose using the standard 

board dimensions [55]. Fahey [53] conjectured that it might be possible to predict the 

length of a gmne and hence the nurnber of completed rows by plotting the histograrn of 

the remaining pile height after a completed row. However, as a consequence of that fact 

we will only consider a simplified example for faster training of the network. 

In this document we will however limit our game to the '0' tetrmnino piece. By 
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Figure 4.6: State of a. game of tetris in progress. 

limiting ourselves to a subset of the game we introduce an opti1nal strategy that an 

agent can use to play indefinitely. The total number of states in Tetris is approxi1nately 

210·20 ~ 1060 . Although simpler than a regular game the agent n1ust learn to navigate 

the large state space and focus on the relevant features of the states. 

The purpose of this problen1 is to show our system on a challenging task where the 

state space is large enough that the extracted features would be quite beneficial and the 

length of episode sequence are sufficiently long to n1ake eligibility trace an influence. The 

representation we will be using is a 200 di1nension vector to represent the game's state. 

Since the orientation of the '0' piece is invariant under rotation we can reduce our action 

space to the width of the board which in this case is 10 cells. That is sufficient because 

the next piece is constant and we will not consider any look ahead strategy. A sin1ple 

representation was used for the action vectors. That is for action i, its corresponding 10 

dimensional vector would be v such that v'i = 1 and Vj = -1 for all j -=1 i. The parameters 

used for this problem are shown in Table 4.2 . 

Result 

In this section we will show our results and analysis of our experimental results described 

above. 
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System Parameter Value 

State dirnension 200 
Action dimension 10 

Associative I\!Iemory 1]1 lo-r 

7]2 0.001 
<5 0.01 

a 0.9 

Reinforcement Learning I 0.9 
1 

E 
t 

.\ 0.9 

Table 4.2: Para111eter settings for the Grid World learning task. 

Reward 
35000 

30000 

25000 

20000 

15000 
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Figure 4.7: The average accumulated rows removed by training the network for 150 episodes 
1 

with E= - over time. 
t 
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The n1ajor problem on this benchn1ark was that the network tends to forget what it 

has learned or 1nore precisely it has over learned specific action values. Since all action

value updates efFect all other actions as a consequence of the distributed representation. 

Our solution to overcorne this proble1n was to set the step size pararneter E to decrease 

over tinw and illustrated in Figure 4. 7. It could be seen that the network quickly rea.ched 

a certa.in peak perforrnance where it has learned the optin1a.l policy but unexpectedly 

n1akes a poor Inove every so often. That actually is related to E, the rate at which the 

network exploit kno\vledge it has. Since E is non-zero it will eventually n1ake a sub-optirnal 

rnove by placing a block on an even position thereby guaranteeing that row will never be 

ren1ove because of the cmnbination of block being used. 

Figure 4.8: Tetris player making a sequence of bad n1oves that guarantee the bottmn three rows 
can never be completed. 

Furthennore, the network develops serni-optinu1ol policy at n1ultiple heights in Tetris, 

which was surprising as shown in Figure 4.8. This is related to the fact that the agent 

ca,nnot recover frmn a bad m.ove although there always exist an optirnal action at each 

level to play indefinitely. On the san1e note, we ran the test with the smne parmneters 

but after 500 rows has been ccnnpleted we change frorn an E = ~ policy to the full greedy 

policy where E = 0 but still continue to update. \Ve speculate that the network ·would 

give better performance since by that tirne a correct policy is known. The results can 

be seen in Figure 4.9. \Ve see that in episode #44 the policy switch occurred and the 

network took only tvvo rnore episodes to reach the stopping eriteria of 50,000 cornpleted 

50 



rows in episode #46. At this point the network will begin to approach a fixed-point for 

the state values being updated and should continue playing indefinitely. 

Reward 
Reward 

~ 
I~ ___/ 

Episode 100 ~- / 

r -----lOr----
-+----1----L 

38 40 42 

Figure 4.9: Tetris agent following the greedy policy split between episodes 1- 37 and 37- 46. 

In the following experiments we will run the network with the default para1neters listed 

in Table 4.2 for up to 500 accumulated rows rem.ovecl and averaged over 20 independent 

trials. Each trial goes up to 200 episodes then is considered a failure if 500 completed 

rows was not reached. By that time we reason the correct policy should be learned. Now, 

consider the effect of the paran1eter a on the network performance. Different values of a 

are shown in Table 4.3. We see that better performance is achieve with lower values of a 

with sn1aller deviations from the mean at no lost of accuracy. 

Statistic a= 0.10 a= 0.25 a= 0.50 a= 0.75 a= 0.90 
!viean 44 43 58 48 48 

SD 16 13 41 26 34 
Accuracy 100% 100% 95% 100% 100% 

Table 4.3: Performance on Tetris for various values of a using only the network V. The data 
was collected by noting the number of episodes required to reach an accumulated total removed 
row of 500 averaged over 20 independent trials. 

In the next experilnent we vary the parameter A which controls the 1nagnitude of 

responsibility propagated back to previous states. For example as A approaches 1 corre

sponds to a l\1onte Carlo type of update while as A approaches 0 is the original TD update 

rule . In Table 4.4 we see that for lower and higher values of/\ shows better performance 

in the mean episode reached. This comes as a little surprising since intermediate values 

of A usually perform better. Similar results can be seen for the standard deviations and 

all variations had no failures. 
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Statistic A= 0.25 /\ = 0.50 A= 0.75 A= 1.00 
:1\tfean 87 90 100 83 

SD 20 24 35 21 
Accuracy 100% 100% 100% 100% 

Table 4.4: Performance on Tetris for various values of A using the Eligibility trace unit. The 
data was collected by noting the nmnber of episodes required to reach an accumulated total 
removed row of 500 average over 20 independent trials 

As was discussed before we can use an additional BAl\II to extract features from the 

environment states to a lower dinrension before being process by the other networks. In 

this experiment we show the results of different dimensions mapped fronr the fixed 200 

of Tetris in Table 4 . .5. Clearly the best range in this case for the Tetris problem is near 

100 where in scores it has the lowest mean episode, deviation frmn the rnean and perfect 

accuracy. If we go above, the extra con1putation introduced by feature extraction n1ight 

not be worth it for the less than perfect representation of states. In the case where the 

dimension is too high, the network tries to extract too many unnecessary features from 

the original domain. As expected, at lower di1nensions there is also a drop in performance. 

This might be explained by the network being less flexible in learning the correct features 

and its accuracy. But dealing with 2002 weights to update in the original problenr and 

1002 in the best state reduced version we may instead opted for 202 in a much sn1aller 

network with a longer training session. The lower computational requirenrents nright be 

ideal in smne circumstances and with network F we are able to make such trade offs. 

Statistic FE 20 FE 50 FE 100 FE 150 
1\fean 96 86 75 86 

SD 31 41 23 28 
Accuracy 95% 95% 100% 85% 

Table 4.5: Performance on Tetris problem by varying the size of the projected dimension using 
the Feature Extraction unit. The data was collected by noting the number of episodes required 
to reach an accumulated total removed row of 500 average over 20 independent trials. 
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4.3 Conclusion 

In this chapter we have demonstrated a working n1odel of our systen1 on various sinlula

tions and problems in particular a stochastic Gridworld problen1 and a modified game of 

Tetris. We first showed that our 1nodel can in fact store states returns using the network 

energy function. We later show the network is robust to varying number of returns being 

stored and performance gradually decrease with more states as expected. Afterwards we 

cmnpare the 1nodel to two familiar reinforcen1ent learning algorithn1s fron1 the literature 

that is SAR.SA and Q-learning of which our model is derived frmn. The results were 

supportive of our thesis as our model outperfonned the other methods with a p-value of 

4.5 · 10-24
, considering our system is approximating Q-learning, and Q-learning is using 

tabular storage. We later showed that the dyna1nic policy is incapable of combining its 

exploratory (chaos) cmnponent and exploitative (fixed-point convergence) component as 

a unifying policy. 

Afterwards we showed on the Tetris problem the network learning with a E-greedy 

policy was able to achieve up to 35, 000 cmnpleted rows but we later reveal that E = ~ 
was too large a probability of Inaking a subopthnal move and was the source of 1nany bad 

moves. Instead we switched to a completely greedy policy after .500 completed rows and 

the network exhibited unexpected advance1nent by reaching 50, 000 rows in two additional 

episodes. Furthernwre, the network is able to learn optimal polices on states projected to 

lower di1nensions using the Feature Extraction network. Performance steadily decreases 

with dimensions as the network has less flexibility in learning the correct features fron1 the 

original space but the computational de1nand was also reduce with sinaller network sizes. 

However, surprisingly there was a decrease in perfonnance when using the Eligibility 

Trace network. In fact performance increased as we approached a pure Ml\1 or TD 

update. 

Our explanation for this result is that the network is already capable of function 

approximation through its distributed representation. So after each update, all state 

values are 1nodified, however closer states should be affected 1nore in the direction of 

the error and move closer to this return. This follows from the fact that states are 
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topographically related in the problem space and not generated independently as in our 

Gridworld problern. Therefore, updating a sequence of states can be seen as a fornr of 

eligibility trace where the pararneter ). would be correlated with the density (distance 

between states) of valid states in all of state space. In summary our system outperform 

standard tabular Q-learning on the Gridworlcl problem and therefore supports our thesis 

that Associative rnemories can be used as a computational model to perfonn supervised, 

unsupervised and now reinforcernent learning. 
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Chapter 5 

Conclusion 

In this work we showed that previous models of associative n1err1ories were capable of 

learning both supervised and unsupervised learning task with properties that makes 

these rnodels ideal for a computation n1odel of hurnan learning. These include dynamic 

properties such as establishing fixed-points, strange attractors, Hebbian rule, pattern 

c01npletion, noise correction, self organizing with competitive learning. Our objective 

was then to incorporate an additional paradigm reinforcement learning into the model 

while preserving its current abilities. VVe proposed a new model to solve reinforcerr1ent 

learning problems by an associative rnemory network. We achieved this by the novel idea 

of representing state returns as the negation of the network state's energy level. However 

this required a modification of the learning rule to correct for the new error. A modi

fied Hebbian inspired learning rule that generalizes previous rules and as a consequence 

preserve the network properties. The effect this had on the energy function is to scale 

existing fix points to higher boundaries. Using this network we were able to outperform a 

native reinforcement algorithm, Q-learning, on a stochastic Gridworld task with p-value 

of 4.5 · 10-24 and cornpleted up to 50, 000 rows in a rnodified Tetris garne. 

Three additional networks were suggested that includes a new policy based on dynanl

ical network principles using chaos. However, a suitable tradeoff between exploration and 

exploitation could not be found to get con1petitive results with the E-greedy action selec

tion. The other was extracting features of the original problem state dimension to a lower 

dimension state for learning. This proved ideal as a trade off between the complexity of 
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the state space and the order of computations needed to learn correct actions. 

Our contribution to the research field is network V and representing states returns 

as the negation of the network's energy function. \Ve were able to encode Q-learning 

in the network and perfornr reinforcement learning. In addition, the dynmnic policy of 

encoding action selection as a searching process, similar to that of the 'm,ax operator used 

in E-greedy polices. Ideally this policy should be used since it is constructed from features 

native to AJVL Also, the technique of combining feature extraction into the RL algorithm 

instead of a separate preprocessing step that is done n1anually. 

5.1 Future Work 

Possible future directions we could go in includes determining a suitable tradeoff between 

exploration and exploitation in the dynanric policy as rnentioned before. This would 

be an ideal policy to use since we will be able to remove stochastic elements from the 

network and rely solely on chaos for any diversity. The advantage of this frorn a biological 

perspective is it would be n1ake more sense if we are to believe the brain is capable of 

being 1nodeled by a deterministic rnachine. 

We can also expect to extend the representation of states and actions from the discrete 

to include their continuous fonns since the underlying A1r1 network supports continuous 

states. Although discrete problems cmne up often in contrive exan1ples the real world 

is full of continuous problems worth exploring. One connnon method is to discretize 

continuous space to discrete intervals but this has a problem of scaling due to the large 

number of intervals required to guarantee good coverage of the original space or knowing 

in advance the optimal interval size. A solution based off the continuous fonn of the 

Bellman [52, 56] equations might be ideal in this case. 

Furthermore, we notice the network uses a union of the parmneters frmn associative 

memory and reinforcernent learning. It would be beneficial to reduce the number of 

parameters by cmnbining then1 or derived others from hyper parameters. \Ve have inten

tionally decided to focus on direct nrethods despite the advantage of having a rnodel of the 

environment. We will consider this a possible area for future work as a basis for planning 
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problems. In that case we will build a rnodel with a state value function instead of action 

values. The difficulty would be in estimating probabilistic outcomes frorn experiences. In 

addition to these, there are currently many open problems in RL that are under active 

research that we have not considered but techniques which we could incorporate into our 

network at a future tin1e such as hierarchical actions [57] and learning a model [43]. 
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Appendix A 

Source Code 

Standard Functions 

sgn := Function[x, Map[If[# >= 0, 1, - 1] &, x]]; 
bound := Function[u, 

Map[Function[x, If[x > 1, 1, If[x < -1, -1, x]]], u]]; 
auto := Function[{m, u, q, \[Eta]}, 

With[{U = next[m, u], Q = energy[m, u]}, 
With[{err = Outer[Times, u, u] - Outer[Times, U, U]}, 

m + \[Eta] ( ( -q) - ( -Q)) err]]]; 
AUTO := Function[{m, u, \[Eta]}, 

With[{U = next[m, u]}, 
With[{err = Outer[Times, u, u] - Outer[Times, U, U]}, 

m + \[Eta]*err]]]; 
hetero := 

Function[{m, u, U, v, V, \[Eta]}, 
m + \[Eta]*Outer[Times, u- U, v + V]]; 

bamT := Function[{w, v, x, y, \[Eta]}, 
With[{X = next[v, y], Y = next[w, x]}, 
{hetero[w, y, Y, x, X, \[Eta]], hetero[v, x, X, y, Y, \[Eta]]}]] 

bamR := Function[{w, v, x, y}, {next[v, y], next[w, x]}]; 
febamT := Function[{w, v, xO, k, \[Eta]}, 

With[{yO = wta[next[w, xO], k]}, 
With[{x1 = next[v, yO]}, 

With[{y1 = sgn[next[w, xi]]}, 
{hetero[w, yO, y1, xO, xi, \[Eta]], 
hetero[v, xO, x1, yO, yi, \[Eta]]}]]]]; 

febamR[w_, v_, x_, n_, \[Delta]_: 0.01] := 
Nest[next[w, next[v, #,\[Delta]], \[Delta]]&, 
next[w, x, \[Delta]], n]; 

wta[v_, k_: 1] := 
With[{pos = Map[List, Sort[Take[Ordering[v], -k]]]}, 

MapAt[1 &, Map[-1 &, v], pos]]; 
(* \[Delta] = 1.65 unrestrained chaos; \[Delta] = i.45 restrained \ 
chaos; \[Delta] = 0.1 behaved *) 

next[m_, v_, \[Delta]_: 0.01] := 

62 



With[{mv = Map[bound, m.v]}, (\[Delta] + 1) mv - \[Delta]*mv~3]; 

eg := -energy[#1, #2] &; 
energy[m_, x_, \[Delta]_: 0.01] := 

With[{y = next[m, x]}, (* lowest energy is -Max[n , 
m] *) 
-(x.y- (1 + \[Delta])*x.m.y + (\[Delta]/2)*x.(m.y)~3 + 

0)/2]; 
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Network V 

AMLearning := Function[{n, dimS, dimA, \[Lambda]}~ 

Module[{s, S, a, A, q, Q, r, ia, iA, 
v, sa, SA, \[Eta] = 10~{-4}, 
step = 1, ep = 1, R = 0, dim = dimS + dimA, policyz, Ar = {}}, 

v = ConstantArray[O, {dim, dim}]; 
Print ["Ep\t 11

, Dynamic [ep], "\tStep\t", Dynamic [step] , "\tRe/Ep\t 11
, 

Dynamic[R/(ep- 1) // N]]; 

policy := Function[{rn, s, \[CurlyEpsilon]}, 
If[RandomReal[] > \[CurlyEpsilon], 
With[{act = Map[energy[rn, Join[s, #]] &, actions]}, 

First[RandomChoice[Position[act, Max[act]]]]], 
Randominteger[{1, numA}]]]; 

For[step = 0; ep = 1, ep <= n, ep++, 
s = start[]; 
While[Not[terminal[]], 
ia = policy[v, s, 1/ep]; 
sa= Join[s, actions[[ia]]]; 
{r, S} = env[ia]; 

iA = policy[v, S, 0]; 
SA= Join[S, actions[[iA]]]; 
q = energy[v, sa]; 
Q = If[terrninal[], 0, energy[v, SA]]; 
With[{\[CapitalDelta] = r + \[Gamma]*Q - q}, 

v = 

Nest[auto[#, sa, q + \[Alpha]*\[CapitalDelta], \[Eta]]&, v, 
1]] ; 

s = S; R = R + r; step = step + 1; 

J ; 
Ar = Append[Ar, R/ep]; 
step = 0; 
] ; 

Ar]]; 
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Network VPTF 

AMLearning := Function[{n, dimS, dimA, \[Lambda]}, 
Module[{s, S, a, A, q, Q, r, ia, iA, 

v, c, C, e, E, f, F, 
sa, SA, \[Eta]2 = 0.001, \[Eta] = 0.00001*0.01, 
step= 1, ep = 1, \[Delta], R = 0, dim= dimS+ dimA, statea, 
Ar = {}, As = {}}, 

(*Print ["Ep\t" ,Dynamic [ep], "\tStep\t" ,Dynamic [step], "\tRe/Ep\t", 
Dynamic[R/(ep-1)//N]] ;*) 

Print[Dynamic[ep], "\t", Dynamic[step], "\t", 
Dynamic[R/(ep- 1) // N], "\t", Dynamic[R]]; 

{f, F} = {RandomReal[{-0.1, 0.1}, {dimS, dimState}], 
RandomReal[{-0.1, 0.1}, {dimState, dimS}]}; 

e = v = c = C = ConstantArray[O, {dim, dim}]; 

policy := Function[{m, s, \[CurlyEpsilon]}, 
If[RandomReal[] > \[CurlyEpsilon], 
With[{act = Map[energy[m, Join[s, #]] &, actions]}, 
First[RandomChoice[Position[act, Max[act]]]]], 

Randominteger[{1, numA}]]]; 

statea := Function[s, 
If[dimState ==dimS, s, 
{f, F} = 
Nest[febamT[#[[1]], #[[2]], s, Round[dimS/3], \[Eta]2] &, {f, 

F}, 1] ; 
sgn[febamR[f, F, s, 1]]]]; 

For[step = 0; ep = 1, ep <= n, ep++, 
s = statea[start[]]; 
While[Not[terminal[]], 
ia = policy[v, s, If[ep >= 90, 0, 1/ep]]; 
sa= Join[s, actions[[ia]]]; 

If[step == 0, {c, C} = bamT[c, C, sa, sa, \[Eta]2]]; 
{r, S} = env[ia]; S = statea[S]; 

iA = policy[v, S, 0]; SA= Join[S, actions[[iA]]]; 
q = energy[v, sa]; 
Q = If[terminal[], 0, energy[v, SA]]; 
\[Delta] = r + \[Gamma]*Q/ep - q; 

{c, C} = bamT[c, C, SA, sa, \[Eta]2]; 
e = auto[e, sa, 1, \[Eta]]; 
If[\[Lambda] <= 0, 
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v = Nest[auto[#, sa, q + \[Alpha]*\[Delta], \[Eta]]&, v, 1], 
Module[{x = sa, collect = {}}, 

While[Not[MemberQ[collect, x]] && Length[collect] <dimS, 
q = energy[v, x]; 
E = energy[e, x]; 
v = auto[v, x, q + \[Alpha]*\[Delta]*E, \[Eta]]; 

If[x[[1 ;; dimS]] == s && x !=sa, 
e = auto[e, x, 0, \[Eta]], 
e = auto[e, x, \[Gamma]*\[Lambda]*E, \[Eta]]]; 

collect= Append[collect, x]; 
x = sgn[next[c, x]]] 

] ] ; 

s = S; R = R + r; step = step + 1; 
] ; 

Ar = Append[Ar, R]; 
step = 0; 
] ; 

Ar]]; 
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