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Abstract—There has been no prior general purpose brain-
mind model for multiple events in complex backgrounds. I first
discuss that although the age of brain-mind seems to have
arrived, the current infrastructure does not well fit the need
of research and peer-review for the challenging and important
subject of brain-mind. Then, I present a general purpose model
of the brain-mind, called the Epigenetic Developer (ED) network
model. The model proposes five necessary “chunks” for the brain
picture: development, architecture, area, space and time. The
development chunk means that any practical brain, natural or
artificial, needs to autonomously develop through interactions
with the natural environments without any previously given set
of tasks. The architecture chunk handles (1) multiple objects in
complex backgrounds; (2) reasoning under abstract contexts;
(3) multiple sensory modalities and multiple motor modalities
and their integration. The area chunk addresses the issue of
feature development and area representation, without rigidly
specifying what each neuron does. The space chunk deals with
spatial attention to individual objects in complex backgrounds, to
satisfy the invariance and specificity criteria for type, location,
and other concepts. The time chunk indicates that the brain
uses its intrinsic spatial mechanisms to deals with time, without
dedicated temporal components. The model copes with temporal
contexts of events, to satisfy invariance and specificity criteria
for time warping, time duration, temporal attention, and long
temporal length. The theory and mechanisms are presented and
some related experimental results are summarized.

I. INTRODUCTION

TWO types of models have been used to model cognitive
architectures, symbolic and connectionist.

For the symbolic type, we assume that there is a one-to-
one correspondence between every selected symbol and their
meaning in a specified domain — each symbol has only one
or a fixed set of meaning and each meaning has only one or a
fixed set of symbol [20], [24], [26]. Because of the symbol use,
the modelers use “skull-open” approaches — the holistically-
aware central controller is the outside human designer. He
defines each internal entity (e.g., a module) using a symbolic
meaning, designs or trains each entity separately, and then
manually links the modules.

For the connectionist type, we draw inspiration from brain-
like emergent internal representation (e.g., [19], [9], [12],
[36]). By emergent representation, we mean that the internal
representation is not directly specified by symbolic mean-
ings, but rather, firing patterns. Because the representation is
indirectly related to symbolic meanings (e.g., the direction
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of edge features), the network learning mechanisms are not
specific to particular meanings either. This important property
is useful for understanding development, as the set of learning
mechanisms must work through different ages, through which
the agent (natural or artificial) learns an open number of
skills and performs an open number of tasks. Often, we use
some symbolic meanings as examples (e.g., the direction of
edge features for V1) to assist understanding of the functions
of emergent representations, but such explanations are not
necessarily precise.

As pointed out [20], connectionist approaches are bottom-
up (e.g., from pixels) and symbolic approaches are top-down
(from abstract concepts). Between the concrete (e.g., an edge
or an edge grouping) and the abstract (e.g., goal), “much in-
between” is missing.

In theory, the symbolic approaches may also link an abstract
symbol with concrete sensory signals (e.g., design a “V1”
module as one that generates symbolic edges). However, the
resulting systems are brittle in dealing with real environments
during its real applications. The holistically-aware human
controller has left the system and it is difficult to guarantee
that the human controller’s domain restrictions are all met
by real applications. This is because a symbolic system is
not able to generate internal representations to go beyond the
representations that have been handcrafted. This is also true
for hybrid approaches that use a mixture of both types of
approaches [5], [26].

On the other hand, purely connectionist models have shown
some power in processing sensory information, such as clas-
sification. However, connectionist models have shown their
limitations in reasoning.

Both types have not been effective in reasoning with the
concrete and the contrast, e.g., given an abstract goal (e.g.,
object type), find the object in concrete images that contain
complex backgrounds.

On the surface, this situation is due to the current lack of
engineering grade models of brain-mind. However, this view
is superficial. The true reason for this systemic situation is
deeper.

Supported by this author’s experience in the past 10 years,
this situation is further due to the need of improvement
of the infrastructure for cross-disciplinary education beyond
one’s home discipline. Thomas Kuhn’s convincing account
needs to be better taken account by the improvement of the
infrastructure.

The remainder material of this paper is organized as follows.
The following section discusses some major concepts of the



brain architecture. The section III explains the top-scale 5
“chunks” of the brain-mind puzzle. To facilitate understanding
of these 5 chunks, the section IV presents a basic model that
contains all these chunks. Section V presents the principled
architecture of two integrated visual pathways, ventral and
dorsal. Section VI outlines a cortical area, which consists of
layers. Section VII describes the model for a general-purpose
layer. Section VIII deals with general reasoning — reasoning
with the abstract and the concrete. The experimental results are
discussed in Section IX. Section X gives concluding remarks.

II. IMPROVING INFRASTRUCTURE

For many years, although there have been debates between
the symbolic approaches and the connectionist approaches, the
debates have been inclusive [20]. The “skull open” nature of
the former and the “skull close” nature of the latter have been
hardly raised. The lack of analyzable mechanisms of the latter
was sometimes called “black box”.

As far as we know, Cresceptron 1993 [32], [33] was the first
developmental model for visual learning from complex natural
backgrounds. By developmental, we mean that the internal
representation is emergent from interactions with environment,
without allowing a human to manually instantiate a task-
specific representation. Throughout nearly 20 years of cross-
disciplinary research along this line, we have faced various
doubts from domain experts. Examples include: (1) Artificial
intelligence does not need to follow the brain’s way. (2) Mod-
eling the human mind does not need to follow the brain’s way.
(3) Your commitment to understanding the brain is laudable
but naive; (4) Regardless a clear advance of knowledge and
its importance, I need to see X. (5) There is a need to improve
the infrastructure as documented by Thomas Kuhn [16].

Academically, this situation is mainly caused by a lack of
appropriate curriculum infrastructure for academic degrees and
a lack of lifelong educational programs for domain experts.
Many symbolic AI and Cognitive Science researchers do not
have sufficient knowledge in electrical engineering, neuro-
science and biology to understand signal-based processing
and learning in the brain. Many neural network engineering
researchers and Cognitive Science researchers do not have
adequate knowledge in computer science (e.g., formal reason-
ing and complexity), neuroscience and biology to understand
signal-based abstract reasoning and learning-to-reason in the
brain. Many computational neuroscience modelers do not have
a solid electrical engineering and computer science back-
ground to understand how the signal-based brain learns to deal
with large-size, high-dimensional practical problems. Many
neuroscience and psychological researchers do not have a
sufficient background for, and therefore interest in, quantitative
and computational aspects of their subjects of study.

The required knowledge to solve the grand puzzle of brain-
mind includes biology, neuroscience, psychology, computer
science, electrical engineering, robotics and mathematics.
None can be left out. The traditional curriculum designs
in developed countries were never meant for such a wide
scope of knowledge. Consequently, reviewers do not have

sufficient width and depth in their knowledge to evaluate
papers and proposals for brain-mind issues as confidently as
those for relatively more conventional well studied issues.
Serious improvements and investments for the infrastructure
for converging research on intelligence are urgently needed.
Such infrastructure is necessary for the healthy development
of science and technology in the modern time.

III. FIVE CHUNKS OF THE BRAIN-MIND PUZZLE

It seems that the grand picture of the brain-mind includes
five chunks at its top scale: development, architecture, area,
space, and time.

The “development” chunk has task-nonspecificity, emergent
representation, and skull-closedness as necessary conditions
for the brain.

The “architecture” chunk of the puzzle outlines how basic
units are put together.

The “area” chunk serves as the basic unit, the general-
purpose unit for the architecture, like the bricks for a building.

The “space” chunk describes how the brain deals with
spatial information, for elements in the external environment
(outside the brain) and elements in the internal environment.

The “time” chunk schematically clarifies how the brain deals
with time beyond the short time span of 50ms characterized
by the intrinsic biological properties of a single neuron (Bi &
Poo 2001 [2] and Dan & Poo 2006 [6]).

There are many other details, which seem to be under
these five chunks. For example, neuromodulation includes
reinforcement learning and emotion. The spiking model of
the neuron is useful to deal with finer temporal resolution.
However, all such more detailed mechanisms seem to be
embedded into the above 5 basic chunks.

All further phenotypes, such as behaviors due to the external
environment outside the brain, including learning to use the
limbs, skills for social interactions, emergence of language
and culture, should all autonomously emerge from the living
and developing experience of such developmental agents in a
human society.

IV. A BASIC BRAIN-MIND MODEL: ED NETWORK

First, I introduce a basic network, called Epigenetic Devel-
opmental (ED) network. “Epi” means post. “Genetic” means
conception — the origination of a life. It is useful as a
starting basic model to explain the above five chunks. An ED
network is not task-specific [37] (e.g., not concept-specific)
at the birth time. Its concepts are learned dynamically and
incrementally from its motor end, through interactions with
the environments.

Examplified in Fig. 1(b), an ED network lives and learns au-
tonomously in the open-ended, dynamic, real physical world.
Its motor vector z, is not only an output vector to drive
effectors (muscles) to act on the real world R but also an
input vector from the motor end because the environment can
set z, e.g., by a teacher in R. The ED network was taught
to attend to a spatiotemporal object in a complex background
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Fig. 1. Relate a “skull-open” Finite Automaton (FA) with a “skull-
closed” ED network. (a) An FA, handcrafted, static, and reason from
symbol to symbol. (b) A corresponding ED network that lives and
learns autonomously in the real world. Each Y neuron represents
a cluster in the X × Z space. It was taught to producs the same
equivalent actions as (a). The top-matched neuron in Y almost
perfectly matches its input p = (x, z) with its weight (vx,vz) which
requires both parts to match well. This each top-matched Y neuron
represents the transition from the corresponding state represented by
z and the input represented by x. Such nearest-neighbor match is
realized by the Lobe Component Analysis [35]. Each object in the
real-world environment generates a sample foreground patch. Any
human teacher cannot intervene directly inside its closed “skull”
other than indirectly through its sensory port X and motor port Z.
A circle represents a neuron. “Green” means a foreground image
patch among possibly many such patches in a practical system,
although only one foreground patch is illustrated here. In the brain, all
possible patches are present at different resolutions according to the
experience. The ED network autonomously self-organizes its internal
(inside the “skull”) representation through interactions with the real-
world environment. When the motor end is not supervised (imposed
or “clamped”), the network autonomously practice without changing
its operational mode. The pattern in Z not only affects the external
environment, but also serves as a concept (location, type, goal, etc.)
that operates on the internal environment — “skull-closed brain” as
top-down attention, which affects which neuron in Y wins and further
affects which object in X is attended or boosted among typically large
complex backgrounds. For simplicity, top-down connections from Y
to X are omitted. But for input attention, they should be present
and learned. (c) A comparison of the developmental and operational
mode of the FA and the ED network. Pink areas are human designed
or human taught. Yellow areas are autonomously developed.

according to the motor z which also represents any concept
(e.g., location, type, goal).

Given any FA, there is an ED network that, from the same
sequence of inputs, generates exactly the same output sequence
as the FA for infinitely long time.

As illustrated in Fig. 1, between the FA and the real physical
world is a human operator, who attends to an object from the
real world and interprets it as a symbolic label which is fed
into the FA. The FA outputs a symbolic output. The human
interprets the meaning of the output label from the FA. This
process continues. In contrast, a general-purpose ED network
deals with directly the real physical real world, including
human teachers. Its autonomous development is regulated by
a human designed or evolved, task-nonspecific developmental
program. A human in the environment can teach the ED
network to produce the exact equivalent action sequence that
the human-FA combination produces, while the ED network
gradually matures though its autonomous ‘living” in the real
world. The learning mode used in our experiment was type
2 — communicative motor-supervised learning. Additional
components of ED are needed for it to learn in 3 additional
modes of developmental learning [34], type 3 — reinforcement
motor-supervised, type 1 — reinforcement motor-autonomous,
and type 0 — communicative motor-autonomous.

The following sections provide more realistic examples of
such a basic model.

V. BRAIN ARCHITECTURES

A. Architecture considerations

Symbolic architectures use human handcrafted instantiation
of internal representation, as illustrated in Fig. 2(a). Artificial
neural networks have been largely used as classifiers or
regressors, as indicated in Fig. 2(b). In artificial intelligence,
an agent is modeled as something that senses the external
environment and acts on the external environment.

How the brain deals with internal attention is a fascinating
subject. Treisman 1980 [27] proposed the existence of a master
feature map inside the brain. This idea of internal master map
has been used by others [1], [23], [28].

The major new concepts of our brain architecture include:
(1) There exists no master map in the brain. (2) A receptive
field is in general dynamic, not appearance kept or even topol-
ogy kept. (3) Effective fields are also dynamic. (4) Motor areas
are hubs for abstraction and top-down attention through action
learning. (5) Abstraction, reasoning, generalization, planning,
decision making, multimodal integration, self-awareness, and
consciousness are all different aspects of the emergent re-
sponses of the same tightly integrated brain network. (6) The
brain is a giant skull-closed statistical machine that efficiently
records statistical relationships throughout lifetime.

B. Visuomotor example

Since the work of Ungerleider & Mishkin 1982 [29],
[21], a widely accepted description of visual cortical areas is
illustrated in Fig. 3 [10], [23]. A ventral or “what” stream that
runs from V1, to V2, V4, and IT areas TEO and TE computes
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Fig. 2. Three types of agent architectures: (a) symbolic, (b) con-
nectionist and (c) the SASE brain model. (a) Symbolic “open-skull”
architecture where each rectangular block corresponds to a module
with a handcrafted (defined) meaning, e.g., a word at the lower
level and a sentence at the higher level. A heavy node is the end
node of the module. Thus, this type cannot autonomously learn. (b)
Connectionist network with fully emergent representation. This type
can autonomously learn, like many variety of neural networks. This
type has not found ways to deal with (1) complex backgrounds,
(2) deliberative reasoning, (3) any desired temporal contexts. (c) An
example of the SASE model for the brain. Only major connections
are shown. For every unit, its sensory area is also an output port for its
top-down attention (self-effecting), and its motor area is also an input
port for its top-down sensing (self-aware). The brain is skull-closed
since no direct internal manipulation by the teacher is permitted after
the birth. The internal self-organization and representation emergence
is fully autonomous through the agent’s life. A lower brain is
developed earlier, so that the higher brain as basic areas can innervate
into lower ones later.

properties of object identity such as shape and color. A dorsal
or “where and how” stream that runs from V1, to V2, V3,
MT and the medial superior temporal areas MST, and on to
the posterior parietal cortex (PP) computes properties of the
location of the stimulus on the retina or with respect to the
animal’s head.

The ventral and dorsal pathways themselves are not suf-
ficient for understanding the developmental causality of the
pathways. I propose that we need to look further beyond

Fig. 3. (a) How does the brain generate internal representation? The
only external sources are sensors and effectors. The imaginary page
slices the brain to “peek” into its internal representation. (b) The
dorsal “where and how” pathway and the ventral “what” pathways.
The nature of the processing along each pathway is shaped by not
only sensory inputs but also the motor outputs.

Fig. 4. The system diagram: multi-sensory and multi-effector inte-
gration through learning.

the two pathways, as the development of the functions of
the “where” and “what” pathways is largely due to: (1)
Signals flow from motors. (2) Top-down connections. Put in a
short way, motor is often abstract. Any meaning that can be
communicated between humans is motorized: spoken, written,
hand-signed, etc. Of course, “motor is abstract” does not mean
that every stage of every motor action sequence is abstract.
However, the sequences of motor actions provide statistically
crucial information for the development of internal abstractive
representation, e.g., in the premotor area.

In this model, much of the frontal cortex is for multimodal
integration, not for abstraction. For example, the visual “car”
and auditory “cat” do not form sufficient abstraction till they
reach a motor area that produces motor signals to say “cat” or
another motor area that produces motor signals to write “cat”.

A system level multi-sensory multi-motor architecture is
illustrated in Fig. 4 with details illustrated for the visuomotor
model in Fig. 5.

VI. CORTEX SCALE

It is known that cortical regions are typically inter-connected
in both directions [10], [4]. However, computational models
that incorporate both directions have resisted full analysis [22],
[13], [7], [11], [3], [15]. Informed by the neuro-anatomic work
of [10], [4], our computational model illustrated in Fig. 6,
provides further details about the major connections within a
cortical area and across cortical areas.
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with four areas (image, V2, LM and TM) and its hextuple network representation. Each wire connects if the pre-synaptic and post-synaptic
neurons have co-fired. The weight is the frequency of pre-synaptic co-firing when the post-synaptic neuron fires. Within each cortical area,
each neuron connects with highly correlated neurons using excitatory connections (e.g., NMDA-ergic) but connect with highly anti-correlated
neurons using inhibitory connections (e.g., GABA-ergic). This forces neurons in the same area to detect different features in SRF and MRF.
These developmental mechanisms result in the shown connections. Every V2 neuron is location-specific and type-specific, corresponding
to an object type (marked by its color) and to a location block (2 × 2 size each). Each LM neuron is location-specific and type-invariant
(more invariance, e.g., lighting-direction invariance, in more mature networks). Each TM neuron is type-specific and location-invariant (more
invariance in more mature networks). Each motor neuron pulls all applicable cases from V2. It also top-down boosts all applicable cases in
V2 as top-down context. A two-way arrow means two one-way connections. All the connections within the same area are omitted for clarity.
Since V2 is the first area from the image here, V2 does not need explicit SEF connections but all LM and TM neurons have global SEFs.

A. Prescreening
Prescreening for both bottom-up and top-down signal

sources is necessary so as to disregard irrelevant responses that
are distractors before the bottom-up and top-down integration.

The cerebral cortex contains six layers: layer L1 is the
superficial layer and layer L6 is the deep layer. Weng et al.
[36] reasoned that L4 and L2/3 each has a prescreening layer
as shown in Fig. 6 with L5 assisting the one in L2/3 (red)
and L6 assisting L4 (green), in the sense of enabling long
range lateral inhibition. Such long range inhibitions encourage
different neurons to detect different features. However, there
needs to be an integration layer (yellow) in L2/3, integrating
the prescreened bottom-up and top-down inputs. The model
illustrated in Fig. 6 was informed by the work of Felleman &

Van Essen [10], Callaway and coworkers [4], and others (e.g.,
[8]).

B. Three source of information for each cortical area

The integration layer in L2/3 based on its current own con-
tent L(tn−1) takes three signal sources: prescreened bottom-
up input x(tn−1) as lower features, lateral input y(tn−1)
from its own layer as its last response, and top-down input
z(tn−1) from prescreened top-down input, all at time tn−1.
Through the feature development function modeled as the
Lobe Component Analysis (LCA) [35], the integration layer
generates its next response y(tn) at time tn as the attention-
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selected response and to update its level to L(tn):

(y(tn), L(tn)) = f(x(tn−1),y(tn−1), z(tn−1) | L(tn−1))
(1)

where f denotes the function of LCA. We call this process
attentive context folding, folding the spatiotemporal informa-
tion from the three sources into one response vector and the
updated cortical layer. LCA models the feature layer and
its assistive layer in the laminar cortex. For the bottom-up
prescreening in L4 and L6 combination, z(tn−1) is not needed
in the above expression. For the top-down pre-screening in
L2/3, x(tn−1) is not needed.

C. Temporal cognition and temporal action

Fig. 7 describes a generic unit for spatiotemporal process-
ing. As illustrated in Fig. 1, such a processing unit can develop
to connect any two cortical areas that needs input-to-output
attended regression and top-down attention.

Fig. 7 shows the temporal mechanism called Motor Assisted
Recursive Abstraction (MARA). LCA in area 2 enables the
area to develop (optimal) feature detectors for the input space
(x, z). The response vector from area 2 indicates the goodness
of match by each feature detector. The competition using
LCA allows only few neurons to fire, as “experts” for the
current input context (x, z). What is critically important is
that area 3 is supervised with desired (I care) output φ(p) for
p = (x, z), as the equivalent class (or action) of the spatially

 Top-match yn+1

tn+1

Care zn+2=

tn+2

Area 1:
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Area 2:
internal

Area 3:
target

Care zn

if link
if drop prefix
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Time:
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φ(zn, xn)
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Fig. 7. The Motor Assisted Recursive Abstraction (MARA) temporal
scheme. Area 2 learns features for (x, z). Area 3 learns the desired
output. Top-down projections from area 3 to area 2 shape the
representation in area 2. The output z can attend to subsets of
temporal contexts.

and temporally attend part of p, just like the state in an
FA. Suppose that the previous temporal context is represented
recursively by zn and the current context is pn = (xn, zn).
Fig. 7 illustrates three cases, link, drop prefix zn, and drop
postfix xn, depending on which subparts of pn that zn+2

depends on.
It can be proved [31] that the MARA scheme can learn to

attend to complex temporal subsets of a temporal sequence
pn−m,pn−m+1, ...,pn for any bounded m > 0. This proof is
consistent to the fact that any FA can be a special case of an
ED network.

VII. LAYER SCALE: THE DUALLY OPTIMAL LCA

As shown in Fig. 7, given parallel input space consisting
of the bottom-up space X and the top-down input space Z,
represented as X × Z, the major developmental goal of each
cortical level (L4 or L2/3 in Fig. 6) is to have different neurons
in the level to detect different features, but nearby neurons
should detect similar features.

The cortex inspired Candid Incremental Covariance-free
(CCI) LCA [35] has the desired dual optimality: spatial and
spatiotemporal, as illustrated in Fig. 8.

The spatial optimality requires that the spatial resource
distribution in the cortical level is optimal in minimizing the
representational error. For this optimality, the cortical-level
developmental program modeled by CCI LCA computes the
best feature vectors V = (v1,v2, ...,vc) so that the expected
square approximation error ‖p̂(V )− p‖2 is statistically min-
imized:

V ∗ = (v∗1,v
∗
2, ...,v

∗
c ) = arg min

V
E‖p̂(V )− p‖2. (2)

where E denotes statistical expectation. The minimum error
means the optimal allocation of limited neuronal resource: fre-
quent experience is assigned with more neurons (e.g., human
face recognition) but rare experience is assigned with fewer
neurons (e.g., flower recognition for a nonexpert). This opti-
mization problem must be computed incrementally, because
the brain receives sensorimotor experience incrementally.
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but two-way. Blue: neuronal input; red: axonal output. (b) For each neuron in a layer, near neurons (e.g., green for the center neuron)
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the positions for the neurons in the same layer: firing neurons are (context-dependent) working memory and those do not fire are (context
dependent) long-term memory. The lower layer indicates the very high dimensional input space of the cortical layer (X ×Z) but illustrated
in 2-D. The purple area indicates the manifold of the input distribution. The connection curve from the upper neuron and lower small circle
indicates the correspondence between the upper neuron and the feature that it detects. The neuronal weight vectors must quickly move to
this manifold as the inputs are received and further the density of the neurons in the purple area should reflect the density of the input
distribution. The challenge of fast adaptation at various maturation stages of development: The updating trajectory of every neuron is a highly
nonlinear trajectory. The statistical efficiency theory for neuronal weight update (amnesic average) results in the nearly minimum error in
each age-dependent update, meaning not only the direction of each update is nearly optimal, but also every step length.

The spatiotemporal optimality gives optimal step sizes of
learning. Each neuron takes response weighted input u(t) =
r(t)x(t) at time t (i.e., Hebbian increment). From the math-
ematical theory of statistical efficiency, CCI LCA determines
the optimal feature vectors V ∗(t) = (v∗1(t),v

∗
2(t), ...,v

∗
c (t))

for every time instant t starting from the conception time
t = 0, so that the distance from V ∗(t) to its target V ∗ is
minimized:

V ∗(t) = arg min
V (t)

E‖V (t)− V ∗‖2. (3)

CCI LCA aims at this deeper optimality — the smallest
average error from the starting time (birth of the network) up
to the current time t, among all the possible estimators, under
some regularity conditions. A closed form solution was found
that automatically gives the optimal retention rate and the
optimal learning rate (i.e., step size) at each synaptic update
[35]

In summary, the spatial optimality leads to Hebbian in-
cremental direction: response weighted pre-synamptic activity
(yp). The deeper spatiotemporal optimality leads to the best
step sizes, automatically determined by the update age of each
neuron.

VIII. REASONING FOR CONCRETE AND ABSTRACT

Interestingly, Fig. 7 reveals a process of autonomous sensory
motor process of ED network through time:

... ⇒ Abstract context z(tn)
⇒ Internal updates with y for (x(tn), z(tn))
⇒ Abstract context z(tn+2) updated ⇒ ...

Our above discussion indicates that the action z can shape
which neurons in area 2 fires: Consider that only one neuron
in area 2 is allowed to fire. Then, the firing neuron must match
both components in p = (x, z) well. In other words, the top-
down signal z is used as a top-down attention selector, one that
boosts neurons in area 2 that have matched z parts. As motor
output z is the abstract outcome of previous sensorimotor
context, the top-down input from z can be interpreted as the
goal, or any other abstract context needed at this time for
future processing. As z can be abstract and x is typically
concrete, the above type of reasoning is for the abstract z and
the concrete x both, not simply abstract-to-abstract in symbol
based mathematical logic.

IX. EXPERIMENTS

Due to space limit, some experimental results published
elsewhere are summarized here. A visual WWN-2 [14]
reached 92.5% in object recognition rate and 1.5 pixels in
average position error with 75% of the area in each image
filled with unknown natural backgrounds. The WWN-3 [17]



has shown a capability to deal with multiple learned objects
in complex backgrounds. The user can specify either goal
(location or type) and WWN-3 reports the reasoning results for
other concepts (from location goal to type, or from type goal
to location). A temporal version for visual recognition [18]
has reached an almost perfect recognition rate for centered
objects viewed from any of the 360◦ object views. The stereo
version of WWN [25] has shown that pre-screening is truly
necessary for the temporal mechanisms to improve the result.
A text processing version [38] has been tested for part-of-
speech tagging problem (assigning the words in a sentence
to the corresponding part of speech, about 99% correct); and
chunking (grouping sequences of words together and classify
them by syntactic labels, about 96% success rate) using text
corpus from the Wall Street Journal.

X. CONCLUSIONS

This seems the first general-purpose brain-mind model
for multiple events in complex backgrounds. The detailed
algorithm is available in the cited publications. This brain-
mind picture has 5 chunks, development, architecture, area,
space and time. Every feature in the brain is a mix of sensory
and motor information, not just sensory or just motoric. The
presented 5-chunk model has been supported by engineering-
grade experimental results. It seems that the age of brain-mind
has arrived, although there are other brain-mind problems.
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