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Abstract— Semi-Supervised Learning (SSL) is a machine
learning research area aiming at the development of techniques
which are able to take advantage from both labeled and
unlabeled samples. Additionally, most of the times where SSL
techniques can be deployed, only a small portion of samples
in the data set is labeled. To deal with such situations in a
straightforward fashion, in this paper we introduce a semi-
supervised learning approach based on neuronal synchrony in
a network of coupled integrate-and-fire neurons. For that, we
represent the input data set as a graph and model each of its
nodes by an integrate-and-fire neuron. Thereafter, we propagate
the class labels from the seed samples to unlabeled samples
through the graph by means of the emerging synchronization
dynamics. Experiments on synthetic and real data show that
the introduced technique achieves good classification results
regardless the feature space distribution or geometrical shape.

I. INTRODUCTION

In our digital age, information reaches us at remarkable
speed and the amount of data it brings is unprecedented. In
the hope of understanding such flood of information, data
mining and machine learning approaches are required. In
this scenario, one of the problems we often face is data
categorization (classification).

There are several approaches for data categorization in the
literature and one of the problems they need to address, in
almost every situation, is how to obtain labeled data to feed
the categorization systems in order to achieve operational
results. Notwithstanding, the labeling process of acquired
data is costly, time-consuming, and usually requires expert
knowledge. For these reasons, it is not uncommon to have
only a small subset of labeled data at hands.

Traditional classifiers are constructed based on supervised
learning; then, only labeled data are considered for the train-
ing process and unlabeled examples are simply ignored. On
the other hand, clustering techniques perform unsupervised
learning, where label information is ignored. To fill this
gap, semi-supervised classifiers are designed to learn from
both labeled and unlabeled data, becoming a new topic of
research that has received increasing attention in the past
few years [1]–[3].
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Some semi-supervised methods available in the state-
of-the-art include: generative models [4], [5]; cluster-and-
label techniques [6], [7]; co-training and tri-training tech-
niques [8]–[11]; low-density separation models, such as
Transductive Support Vector Machines (TSVM) [12]; and
graph-based methods, such as Mincut [13], Local and Global
Consistency [14], and label propagation techniques [15],
[16]. Amidst all these approaches, graph-based methods are
the most active research topic in semi-supervised learn-
ing [2].

Most graph-based methods can be viewed as estimating a
function on the graph that satisfies two conditions: closeness
to the given labels and smoothness over the graph [1]. This is
equivalent to a regularization framework, and most methods
are very similar differing only in their choices of loss
functions and regularizers [13], [14], [17]–[20]. In addition,
most methods are transductive and a relearning process is
needed when new data samples are added. Thus, the devel-
opment of alternative semi-supervised learning techniques
by introducing dynamics into the network is undoubtedly
important.

An interesting self-organization phenomenon observed in
several coupled systems in nature is the mutual synchro-
nization of coupled oscillators [21]. The synchronization has
been applied to solve several problems. In special, models
based on the oscillatory correlation framework proposed in
[22] have been developed and applied to several domains,
such as: image segmentation [23], [24], speech segrega-
tion [25], data clustering [26], visual and auditory selective
attention [27]–[29], among others. See [30] for an extensive
review. Basically, the oscillatory correlation theory describes
that each object/cluster is represented by an assembly of
oscillators with synchronous activity whereas distinct objects
are represented by desynchronized groups of oscillators.

Although some work have been done on developing os-
cillatory correlation models to machine learning problems
(e.g., [26]), the use of synchronization of neurons have not
yet been applied to semi-supervised learning problems. In
this direction, we propose a new method for semi-supervised
classification based on neuronal synchrony. We use the
local synchrony between neurons as an alternative way of
propagating labels in the network.

The motivation behind the study of semi-supervised learn-
ing techniques is twofold. First, it is extremely useful in
several practical situations, in particular when the labeling
process is expensive; second, it has theoretical importance in
understanding learning processes by machine and biological
systems. For instance, it has been argued that the temporal
correlation could be seen as a mechanism to bind together
different images of the same object into a perceptual whole.



This process is directly related to semi-supervised learning,
in which the label associated to one of those images is prop-
agated to the whole object allowing humans to recognize, for
example, a particular face viewed from an angle/position not
previously observed [31].

Finally, we believe our approach has several applications.
We can use label propagation in content-based retrieval
systems [32] as well as in supervised multi-classification
problems [33]–[36] when only a limited amount of labeled
data is available.

The rest of the paper is organized as follows. Section 2
describes our model. Section 3 presents experiments and
results. Finally, Section 4 draws some conclusions and dis-
cusses some future directions.

II. MODEL DESCRIPTION

Basically, semi-supervised learning consists of a training
process for a given data set in which just a small portion of
the samples is labeled (annotated). In this paper, we present
a new graph-based dynamic method for label propagation
of unlabeled data points. For this purpose, the input data is
firstly transformed into a graph (network); then, each node
of the graph is modeled as an integrate-and-fire neuron.
Class labels are propagated from seed samples to unlabeled
samples through the graph by means of the emerging syn-
chronization dynamics of the network. Figure 1 depicts an
overview of the proposed model.

A. Network Formation

As a graph-based semi-supervised learning method, the
first step consists of generating a network G = (V,E)
for a given data set. The input data set is represented
by the input samples X = {x1, x2, ..., xn} and a set
of labels L = {1, 2, ...c}, where n and c are the num-
ber of samples and classes, respectively. In the semi-
supervised scenario, the input data set X is divided into a
labeled subset Xl = {x1, x2, ...xl} and an unlabeled subset
Xu = {xl+1, xl+2, ..., xn}. Typically, the number of labeled
samples is much smaller than the unlabeled ones. Each
sample xi ∈ Xl has an associated label yi ∈ L.

Here, nodes V = {v1, v2, ..., vn} represent the data sam-
ples X and edges E represent similarity between them. We
can represent the edges in E using an adjacency matrix W
such that

wij =

{
1 if d(xi, xj) ≤ σ and i 6= j
0 if d(xi, xj) > σ or i = j

(1)

where wij defines if there is an edge between nodes vi and
vj corresponding to the samples xi and xj , respectively. σ is
a connection threshold that defines the minimum similarity
criterion where a connection between a pair of nodes can be
set. d(xi, xj) is any distance function.

We also define a set of connections between each pair
of samples in Xl. Given that we have a prior knowledge
about the samples in Xl, we can use this information to
set conditional label connections. Such connections have the
purpose of linking distant points if they belong to the same

class while removing links between samples of different
classes. These edges are defined as

∀i ∈ Xl and ∀j ∈ Xl and i 6= j

wij =

{
1 if yi = yj
0 if yi 6= yj

(2)

Finally, in order to ensure the graph G is connected, a new
edge linking each isolated node to its corresponding closest
neighbor is added

wik = 1 | arg min
k
d(xi, xk) (3)

where node i is not connected to graph G and d(xi, xk) is
a distance function.

B. The Integrate-and-Fire Network

In the proposed semi-supervised learning approach, each
node of the network is modeled by an Integrate-and-Fire
(I&F) neuron [37] with two types of connections to other
neurons: excitatory and inhibitory connections.
• Excitatory connections: represent a cooperative mech-

anism responsible for synchronizing a group of neighbor
neurons (a cluster of neurons) and also to propagate the
label between neighbors. These connections are defined
by the edges of graph G(v, e) (c.f., Section II-A).

• Inhibitory connections: connect each neuron to a
global inhibitor which creates a competitive mechanism
responsible for breaking the synchrony between distinct
groups of neurons.

According to the coupling strength set to each connection,
we may observe different situations in the network. If the
excitatory connection strength is set to a high value while
the inhibitory connections assume a very low one, we will
probably face a global synchronization among all neurons
in the network. If the contrary situation takes place, either
neurons will hardly reach a synchrony state, or this synchro-
nization state will result in several groups with a few neurons
within each one.

In this model, each I&F neuron is defined as

φ̇i = −φi + Ii + Ei(t)− Yi(t), (4)

where φi refers to the phase of the neuron i, Ii defines the
external stimulus, and Ei(t) and Yi(t) define the coupling
terms.

When the potential of a neuron i reaches a threshold
defined by θ (φi ≥ θ), the neuron fires and its phase is reset
to zero φi = 0. In addition, the neuron’s pulse is propagated
to neighbor neurons to change their potential.

The excitatory coupling term Ei(t) is defined as

Ei(t) =
∑
j∈∆i

ωijδ(t− tj) (5)

where δ is the delta Dirac function, tj represents the firing
time of neuron j, and ∆i is the cooperative neighborhood
of neuron i defined by the network connections. Finally, ωij
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Fig. 1. Illustration diagram of the proposed model.

represents the excitatory coupling strength between neuron i
and j defined as

ωij =
µe

|∆i|
, (6)

where µe ∈ [0, 1] is a parameter associated to the excitatory
coupling strength and |∆i| represents the degree of node i
in the network. The coupling normalization in Equation (6)
guarantees that all neurons have the same phase trajectory
by receiving the same amount of stimulus from its neighbor-
hood [24], [38].

If µe is set to a high value, the excitatory coupling strength
becomes strong and neurons can easily reach a synchronous
state. On the other hand, if a very low value is used, the
synchrony is hardly achieved.

By analyzing Equations (4) and (5), one can see that
whenever a neuron j in the neighborhood of a neuron i fires,
it instantly increases the potential of neuron i. Thus, owning
to the influence of a neuron over its neighbors, after a couple
of cycles, neurons start pulsing in synchrony. At the same
time that neighbor neurons reach synchrony, if this neuron
j represents a labeled sample, the sample xi represented by
the neuron i inherits this label and it is moved from the
subset Xu to the subset Xl. This label propagation dynamics
is valid to all neurons, except those representing the initial
pre-labeled samples. Those neurons have their associated
labels fixed once they were assigned by a specialist and not
by the technique itself. As a consequence, after a number
of iterations, the neurons, through the synchrony, tend to
propagate their labels over their neighborhood.

In order to avoid a global synchronization among all neu-
rons in the network, we also consider a global inhibitor [22]

Yi(t) =
µy

N

∑
j∈Xl&yi 6=yj

δ(t− tj) (7)

where µy ∈ [0, 1] is a parameter that defines the inhibitory
coupling strength, N represents the number of neurons
(nodes) in the network and Xl represents the subset of la-
beled samples. Different from previous oscillatory correlation
models [22], [30], here, the global inhibitor has a different
dynamics. Instead of inhibiting all neurons every time a
neuron pulse, only neurons representing labeled samples
(neurons representing samples in Xl) can activate the global
inhibitor. Moreover, if a neuron is associated to a labeled data
point belonging to class 1, for instance, the global inhibitor
will inhibit all other neurons except those also associated

to samples labeled as class 1. Thus, due to its conditional
inhibition dynamics, the global inhibitor allows a faster local
synchrony when compared to unconditional global inhibitors.

Generally speaking, the model’s dynamics can be de-
scribed as follows. Due to the excitatory connections mod-
eled by Equation (5), groups of neurons (nodes) densely
connected have their firing activity synchronized. At the same
time, neurons representing labeled samples propagate their
labels to their neighbors when synchrony is reached. On the
other hand, because of the presence of the global inhibitor
(Equation (7)), whenever a neuron representing a labeled
sample fires, the global inhibitor generates an inhibitory
signal which propagates to the whole network, thus the firing
activity of neurons coding distant samples or samples from
different classes are not synchronized. For this reason, the
proposed model is able to perform label propagation through
the network to all unlabeled samples.

An important characteristic of this approach is its simple
dynamics and fast synchronization, which result in an effi-
cient algorithm. Moreover, the dynamics of networks of I&F
neurons have been widely studied [24], [39]–[44] and the
parameters of these networks to ensure fast synchronization
can be easily determined.

Section III presents the experiments with the proposed
model using synthetic and real networks.

III. EXPERIMENTS AND RESULTS

In this section, we present results of the introduced model.
The simulations are divided into two parts. The first part
consists of experiments using several synthetic data sets
while the second part consists of experiments using real
examples. According to the discussion in Section II, the
following parameters are held constant in all experiments:
µe = µy = 0.2, Ii = 1.1, and θ = 1.0. Thus, the only ad
hoc parameter of our model that needs to be set according
to the input data set is the threshold σ used to generate
the graph (see Section II-A). The stopping criteria adopted
for all simulations are the maximum number of iteration
cycles (tmax) or complete classification (when all unlabeled
samples are associated to a label).

A. Semi-Supervised Classification on Synthetic Data

The first simulation illustrates the model’s label propaga-
tion dynamics by using the data set shown by Figure 2. This
synthetic data set consists of 1,000 points equally divided



into two linearly non-separable classes from which 10 sam-
ples of each class (2%) are pre-labeled. In this simulation, σ
was set to 0.33.

Figure 3 depicts a raster plot of the 1,000 neurons repre-
senting each data set sample. The first 500 neurons (1-500)
represent the class identified by red “×” in Figure 2, while
neurons from 501 to 1,000 represent the second class shown
by blue “+” in the same figure.
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Fig. 2. Input data set illustration. This data set consists of two linearly
non-separable classes with 500 samples each.
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Fig. 3. Raster Plot from the simulation using the data set presented in
Figure 2.

At the beginning, the neurons are not synchronized. How-
ever, modeled as an oscillatory correlation network, neighbor
neurons start to synchronize with each other at the same time
that distant groups of neurons remain desynchronized due to
the global inhibitor.

In addition, while groups of neurons get their firing activity
synchronized, those neurons representing pre-labeled sam-
ples propagate their labels to their neighbors. After a certain
time, due to the synchronization/desynchronization property
and the label propagation mechanism, all samples (neurons)
are classified according to their pre-labeled samples.

Figures 4(a)-(f) also illustrate the label propagation pro-
cess. Item (a) presents the input data set in which 2% of
samples are labeled. The additional items present different
instants of time, where one can observe how the labels are
propagated through the data set. Figure 4(f) shows the final

result of this simulation. The final correct classification rate
is approximately 97%.

To test the sensitivity of our model to different network
connection densities, we perform an experiment varying the
connection threshold σ to the same input data presented in
Figure 2. We have found that the connection threshold σ can
be computed using the information of the network average
degree 〈k〉. It is possible to observe that a better result is
achieved when σ = 0.3, which represents an average degree
〈k〉 = 27. The worst case considered was found setting
σ = 0.6, which led to a network with 〈k〉 = 92. Figure 6
presents the results of this simulation. The same experiment
was performed considering another data set and the best
results were obtained when σ was chosen in order to generate
a network with 〈k〉 = 25± 10. Thus, it is an indication that
the network average degree can be used as a parameter to
define an optimal, or at least, an initial value for σ.

In order to establish an initial value for σ, one can
randomly select as few as 1% of the samples from the data
set and calculate the distance distributions from those points.
Based on this value, a σ can be set to ensure that, at least,
a network with a certain 〈k〉 is generated.

Figure 5 shows the temporal evolution of the model for
three distinct values of σ. When σ = 0.1, the network aver-
age degree is small, thus the neighborhood of each neuron
has just a few units which leads to a slow synchronization
process. This phenomenon can be observed in the temporal
evolution of the black line in Figure 5, where the correct
classification rate increases slowly.

When σ is set to a larger value, (σ = 0.6, in Figure 5),
network average degree 〈k〉 becomes larger and the commu-
nity of neurons are not easily separated. By observing the
red line of Figure 5 we see that the correct classification rate
oscillates near 0.5. We can explain these results as follows.
Due to the large connectivity in the network, all neurons
tend to synchronize with each other, which means, a global
synchronization is achieved. In this situation, the label of
just one class (the dominant class) is propagated to almost
all neurons.

In the experiment of Figure 5, the best result is achieved
when σ = 0.33. The best σ value was obtained by a further
analysis (Figure 6) over the results just presented. The blue
line in Figure 5 presents the temporal evolution of the correct
classification rate achieved by our model when σ = 0.33.
In this case, the synchronization among neurons is quickly
obtained and the labels are correctly propagated through the
network leading to a classification rate of ∼ 97%.

To conclude this section, we present a set of simulations
using synthetic data sets with different data distributions as
we show in Figure 7. Such data sets were built by using
a Matlab toolbox named PRTools [45] in order to generate
scenarios close to real data distributions.

Data set 1 (Figure 7(a)) consists of 1,000 samples drawn
from two linearly non-separable classes having 300 and 700
samples, respectively. Data set 2 (Figure 7(b)) consists of
five Gaussian classes with 300, 200, 250, 300, and 150
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Fig. 4. Label propagation illustration. (a) The data set presented in Figure 2 where only 2% of samples are labeled (input). (b) A snapshot at t = 300.
(c) A snapshot at t = 700. (d) A snapshot at t = 1200. (e) A snapshot at t = 2, 000. (f) A snapshot at t = 5, 000 (final result – classification achieved
by our model).

samples, respectively. Data set 3 (Figure 7(c)) consists of
two classes of 300 samples each. Data set 4 (Figure 7(c))
consists of two classes, one with 300 samples and the other
with 400 following the Highleyman distribution. Data set 5
(Figure 7(e)) comprises two classes of 800 and 400 samples,
respectively. Finally, data set 6 (Figure 7(f)) consists of three
classes with 400 samples each. In this data set, a class does
not correspond to a cluster, thus, the cluster assumption is
not presented.
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Fig. 5. Classification evolution (label propagation) for different values of
σ. Each line represents the correct classification rate.

Figures 8(a-b) present the experimental results using the
data sets depicted in Figure 7. For each simulation, the
labeled data items are randomly chosen from the data set in
a proportion of 1% to 10%. The remaining samples are left
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Fig. 6. Correct classification rate vs. connection threshold (σ) for the
data set presented in Figure 2. Each point in the trace is averaged by 200
realizations. tmax = 20, 000. The error bars represent standard deviations.

unlabeled. We also guarantee that at least one sample of each
class is labeled. We see that the model achieves good results
even when only 1% of the samples are labeled. However, it is
worth noting that the correct classification rate is improved
when the labeled subset is increased. With just 1% of the
examples pre-labeled, for data set 1, the system achieves a
correct classification rate of ∼ 85%. For a more difficult
data set, such as the one in Figure 7(d), the system achieves
a correct classification rate of 70% with the same amount of
pre-labeled data. The results presented here are the average
result of 200 realizations where the model parameters were
held constant and a different labeled subset was generated
for each realization.
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Fig. 7. Synthetic data sets used in simulations. (a) Banana-shape data set
with 1,000 samples in which 300 belongs to the blue class and 700 to the
red one. (b) Gaussian data set with 300, 200, 250, 300, and 150 samples
in each class, respectively. (c) Two classes with 300 samples each. (d) 700
samples, 300 in the blue class and 400 in the red one. (e) 1,200 samples,
800 and 400 in the red and blue, respectively. (f) Three classes with 400
samples each.

B. Semi-Supervised Classification on Real Data

We now turn the method’s evaluation to real-world data
sets. For this analysis, we select four benchmark data sets
proposed and studied in [2]: USPS, COIL, BCI, and TEXT1.
Table I presents a summary of these data sets.

TABLE I
REAL-WORLD DATA SET DESCRIPTION.

Dataset Classes Dimension Samples
USPS 2 241 1,500
COIL 6 241 1,500
BCI 2 117 400
TEXT 2 11,960 1,500

For the sake of comparison, we follow the same method-
ology adopted in [2] in which the labeled subset for each
experiment consists either of 10 or 100 randomly selected
samples.

In [2], the authors have tested and compared several
techniques. Here, we compare our approach to the worst and
the best results reported in [2]. It is worth noting that in [2]
the authors have reported only the average results for each

1Available online at http://www.kyb.tuebingen.mpg.de/
ssl-book
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(a) Results for the data sets showed in Figure 7(a-c)
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(b) Results for the data sets showed in Figure 7(d-f)

Fig. 8. Semi-supervised classification results in the data sets presented in
Figure 7 with a different number of pre-labeled samples. Each point in the
plot is the average of 200 realizations. tmax = 10, 000.

technique and no information about the standard deviations
was provided.

For each data set, we present the average correct classifi-
cation rate for 200 realizations and the standard deviation for
the two mentioned scenarios (10 and 100 labeled samples).

The USPS data set is a subset derived from the USPS
handwritten database. It consists of 1,500 samples equally
divided into two classes. The feature dimension of this data
set is 241. The first simulation is carried out using only
10 labeled samples. With this input, our approach achieves
a correct classification rate of 80.65 ± 0.91%. When 100
labeled samples is considered, the classification rate reaches
84.77±1.83% on average. In the benchmark results reported
in [2], the worst result with 10 and 100 labeled samples were
74.64% and 90.23%, respectively. The best result with 10 and
100 were 83.93% and 95.32% respectively.

The COIL data set was obtained from the Columbia object
image library, which is a set of color images of several
objects. It consists of 1,500 samples divided into six classes.
The feature dimension of this data set is 241. For this data
set, our model achieves 36.83±7.61% and 81.49±3.43% to
10 and 100 labeled samples, respectively. These results are
also coherent to those presented in [2], in which the worst
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Fig. 9. Raster Plot from the simulation using the TEXT data set.

results to 10 and 100 were respectively, 32.50% and 71.29%,
and the best results were 45.46% and 90.39%.

The third experiment is performed using the BCI data
set. This data set was generated from the studies of a
brain computer interface development. It consists of two
classes of 200 samples each. The feature dimension is 117.
Here, our approach achieves a correct classification rate of
51.03 ± 1.75% and 64.07 ± 2.15% for 10 and 100 labeled
samples respectively. In [2], the worst reported results were
49.64% and 52.11%, and the best results were 52.05% and
66.75% for 10 and 100, respectively.

In the last experiment, we use the TEXT data set. This
is a Newsgroup data set comprising 1,500 samples with two
classes (750 samples in each class). The feature dimension
of this data set is 11,960. For this data set, the best results
reported in [2] were 72.85% and 76.91% to 10 and 100
labeled samples, respectively. Our model achieves 79.77 ±
11.82% and 94.34± 2.69% for 10 and 100 labeled samples,
respectively. Such results show that our technique can be
successfully used in real-world scenarios. In Figure 9, we
also provide a raster plot depicting the synchronization and
the label propagation phenomena over the considered classes.

Tables II and III summarize this section’s results. In these
tables one can see that our model can achieve good results
when performing on real data sets. Moreover, in the TEXT
data set, our model achieved the highest classification result
among all techniques analyzed in [2].

TABLE II
RESULTS USING 10 LABELED SAMPLES. THIS TABLE SHOWS OUR

RESULTS AVERAGED FROM 200 REALIZATIONS COMPARED TO THE

WORST AND THE BEST RESULTS REPORTED IN [2].

Dataset Our result Worst result [2] Best result [2]
USPS 80.65% 74.64% 83.93%
COIL 36.83% 32.50% 45.46%
BCI 51.03% 49.64% 52.05%
TEXT 79.77% 54.68% 72.85%

TABLE III
RESULTS USING 100 LABELED SAMPLES. THIS TABLE SHOWS OUR

RESULTS AVERAGED FROM 200 REALIZATIONS COMPARED TO THE

WORST AND THE BEST RESULTS REPORTED IN [2].

Dataset Our result Worst result [2] Best result [2]
USPS 84.77% 90.23% 95.32%
COIL 81.49% 71.29% 90.39%
BCI 64.07% 52.11% 66.75%
TEXT 94.34% 67.17% 76.91%

IV. CONCLUDING REMARKS

In this paper, we have proposed a new graph-based method
for semi-supervised learning. In contrast to previous graph-
based models, which rely on a common regularizer frame-
work, our model is based on the fast synchronization of
neurons. Here, the labels from pre-labeled data samples are
propagated through the graph by means of the emerging
synchronization dynamics of the network.

In addition, our model has only one ad hoc parameter that
needs to be set up (σ). This parameter defines the connection
threshold of the graph and can be chosen in order to generate
a graph with a certain 〈k〉. From our studies, we found that
our model can achieve good results when 〈k〉 = 25±10 and
we also provide some insights of how to set σ efficiently.

Owning to neural dynamical nature, our model is an inter-
esting approach to deal with dynamical data. For example,
if more samples are added or removed from the data set,
we do not need to re-execute the entire algorithm. This data
change can be observed as a perturbation to the dynamical
system which will reach a new equilibrium after a couple of
iterations. Thus, we believe that our model can be extended
as an inductive classification method. However, how to add
new data points into the already generated graph is now under
investigation and further research is still needed. This study
is interesting to deal with real situations where new data
points or even new labels are aggregated to the existing data
dynamically.

As a future work, we seek to address the following open
issues. First, the stopping criteria are still not completely
defined. In all experiments, we adopted two criteria: max-
imum iteration cycles or complete classification (when all
unlabeled samples are associated to a label). Although these
criteria were sufficient to reach good classification results, we
believe that this point deserves further analysis. Second, how
to generate a proper graph to represent a given data set is
not a well developed area and also needs to be investigated.
Third, mislabeled samples were still not taken into account
and also should be considered in order to allow the model to
learn from imperfect data. Connections between pre-labeled
samples could have distinct weights in order to facilitate the
synchrony between different clusters representing the same
class. Finally, as we have already mentioned, how to extend
our model as an inductive classification method should also
be investigated.

In summary, we believe that using dynamical models as
a base to develop new machine learning methods is a quite



promising research field and this work has provided some
efforts towards this direction.
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