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Abstract— The aim of our project is to develop a mobile real-
time reader device for blind people. It uses Artificial Neural
Networks (ANNs) for the core character recognition engine.
The hardware constraints led us to develop a cross-platform
framework to design and evaluate such subsystem in order
to find a good trade off between run-time performances and
accuracy of results.

The goal of this work is to provide a tool for prototyping
and evaluating ANNs without requiring any insight knowledge
of the top-level design tool. At the same time this relies on the
same code base that will be part of the target application, thus
shortening and making easier the overall development process.

In this paper we will present both the proposed software
solution and its usefulness in our research project; it enabled
us to reduce the needed run-time resources while improving
the performance results of the ANN subsystem.

I. INTRODUCTION

The current trend in technology evolution is to design
and develop mobile aids, able to assist the user in everyday
life in a smart way. This may mean to prevent his needs
or to suggest actions to take, rather than to simply expect
commands to be executed. They are progressively shifting
from a passive role to an active one in interacting with
the user. Think about the increasing popularity gained in
last years by devices like smartphones and GPS navigation
systems. As the offered services grow, the system complexity
increases, mainly due to the additional amount of information
to be processed. This in turn can be managed either locally
by the same device interacting with the user, or by a remote
infrastructure, e.g., using the well established client-server
architecture or perhaps the emerging cloud computing model.
Both solutions have their pros and cons, mainly related to
connectivity and/or computational power issues. The goal is
to implement applications with a human-like behavior with-
out compromising run-time performances, e.g., the device
responsiveness or the capability of delivering information in
a useful time. To achieve such results we can still rely on
well-known approaches to information processing, but it is
clear that they need to be modified to meet the new resource
constraints.

The outlined scenario is exactly the background of our
research project, whose aim is to develop a mobile reader
device for blind people. It is part of the STIPER2 project,
funded by INFN (Istituto Nazionale Fisica Nucleare) and
developed in Italy by Dipartimento di Elettronica of Po-
litecnico di Torino and by Istituto Superiore di Sanita of
Roma. The idea is to design and develop a portable and
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autonomous device able to guide the user to read printed
text in a interactive way, which means that the acquired
images are processed locally in real-time. This follows the
same modus operandi of the Optacon device developed at
Stanford University by Linvill and Bliss about four decades
ago [1], [2]. At the time the main limitation was the lack of
an embedded platform with enough computational power to
develop a full-fledged reading device.

As briefly pointed out before, the technology has been
evolving since then, and nowadays there are commonly
available software and hardware platforms that should guar-
antee the requirements for achieving such ambitious goal.
This motivated us to carry on the same proposal of Linvill
and Bliss and to switch from a direct graphical translation
to a recognition approach. Moreover we are now able to
integrate a speech synthesis engine, practically replacing the
Braille transducer (thus broadening the expected user base).
A similar solution, even if with a different approach, has
been recently announced and marketed by Kurzweil with its
kReader Mobile (see [3]): with such aid the user has first to
take a snapshot of the desired information to be read, then the
software processes the image and communicate the results to
the user (by means of speech synthesis), eventually requiring
a new snapshot. The system has not a fully human-friendly
interface, since it is based on a trial-and-error interaction.

Our approach to the issue of reading printed text allows
the user to actively explore the underlying text by means
of a custom camera which acquires a continuous stream
of images. These are processed by the CPU, which also
extract textual information, both the characters and their
arrangement inside the text flow. This task is carried out
by an Artificial Neural Network (ANN) subsystem, with the
same approach that has already been successfully used in a
previous feasibility study [4]. Anyway, a key difference is
that now we face with the practical constraints of the run-
time platform, different from the development one, while
still trying to maintain (and eventually to improve) the
performances. It is clear that the character recognition engine
is the most time-consuming part of the whole system, and
so we will focus our attention on it. This implies to study
the new hardware architecture, to setup a cross-development
environment and to adopt a set of development policies in
order to guarantee the same results on the involved platforms.
All these issues are addressed in Sec. II, while in Sec. III
we will describe the proposed solution, and in Sec. IV we
will use such software to develop a new set of ANNs with
improved performances, thus showing the usefulness of the
developed software. In the end (Sec. V) we will talk about
the future perspectives, since this work is meant to be only



the first step toward the design of a full-fledged artificial
neural network tool.

II. METHOD AND DEVELOPMENT SETUP
A. Target platform discussion

The target platform for the reader device is based on
the Marvell PXA270 SoC (System-on-a-Chip), equipped
with the MS Windows CE OS (Operating System). This
hardware solution has been chosen because it is based on
ARM technology, the most used in mobile devices. Such
CPU has been widely adopted in PDAs (Personal Device
Assistants) and smartphones, but also in SBC (Single Board
Computer) to be integrated in embedded systems. As a
reference we used the Fujitsu-Siemens PocketLook N560
(PDA) and the Toradex Colibri PXA270 (SBC). All the run-
time performances reported here have been measured on the
Colibri module, whose CPU clock frequency is 520 MHz.
The PXA270 is based on the 32bit XScale architecture
(derived from the ARM one, see [5], [6] for further details),
with an in-order superscalar pipeline able to complete up
to four instructions per cycle. This, together with the Intel
Wireless MMX coprocessor [7], leads to obtain performances
of about 800 MIPS (according to Intel').

Even if the claimed performances are a considerable
amount of computational power for a mobile device, it could
be required to optimize anyway the application. It is well
known that the first optimizations to look for reside in
the algorithm design process rather than in the low-level
details. It is also clear that ANNs are not the most resource-
friendly solution, nevertheless their effectiveness justifies
their use. A possible technique to mitigate their weight in the
overall data-processing time is not to use a fully-connected
layout. We can roughly estimate their cost as the amount of
connections involved, since the multiplication is usually the
most time-consuming operation (the activation function can
be approximated by a piecewise linear one). So, reducing
the connections has a twofold purpose: first, to lower the
resources needed and, second, to counteract the overfitting
issue (as outlined in [4], where partial connected layers have
been already used).

The second useful optimization is the switch from the
floating-point arithmetic to the fixed-point one. It is direct
consequence of the lack of an FPU inside the PXA270,
thus requiring to emulate floating-point operations in soft-
ware. Although it seems a low-level issue, it has a strong
relationship with the model chosen to develop the character
recognition engine. Changing the operating mode of such
core part means also to ensure the same performances it
was originally designed for. In this case, such internal detail
could have a performance degradation as a consequence,
making necessary to modify the model to overcome it.
The relationship between ANNs and fixed-point arithmetic
has been widely investigated, both in empirical studies (see
for example [8], where the minimum required precision is

Intel sold almost all the XScale division to Marvell in 2005, but the
PXA270 was originally developed by Intel.

determined for different problems) and in theoretical work
(e.g. see [9], where an analytical solution for the mini-
mal weight representation is formulated given the problem
domain). The fixed point issue is not only a matter of
defining the requirements for a proper execution of ANNS,
but also the more critical issue of how to train the networks.
Although there has been a lot of research in this field, many
proposed solution are either modifications of already well-
known algorithms or novel techniques specifically designed
to target low resolution system.

Considering the constraints of our hardware platform,
equipped with a 32bit CPU, from the run-time standpoint,
it suffices to adapt all the numeric algorithms (including the
ANN5) to a fixed-point arithmetic whose operands are equal
to the fundamental CPU data type. Further squeezing the
numerical data could be even counter-effective, since it is
well known that this kind of CPUs show their best perfor-
mances when managing data that exactly fits the internal
registers length, think about the implemented memory access
techniques when fetching/storing data. In this regard, 32 bit
are well above the limits found, for example, in [8], but we
will still check the behavior to be the same for both the
floating-point arithmetic and the fixed-point one.

Given the above discussion, we preferred to use common
training algorithms (such as the one proposed in [10]),
relying on the floating-point arithmetic, and then to convert
the resulting networks to the fixed point one, thanks to an
algorithm that inspects the trained weights. We will show
that this straightforward solution is sufficient to achieve
our goal. Moreover, this choice still leaves the developer
free to reconsider the decision about the arithmetic. It is
true that, actually, in the mobile word, there is almost no
support in hardware for floating-point numbers, but their
desktop counterpart, and even emerging technologies such
as general purpose GPU computing, are better optimized
to execute such kind of computations. In this way we are
able to maintain at the same time a double solution, able to
take advantage of peculiarities of both type of platforms: the
mobile one when executing the system, and the “standard”
one for the training (which often takes a long time and should
not be underevaluated).

B. Development environment discussion

Beside the study of the underlying hardware, we also need
to establish a common software ground upon which to build
our framework, in order to end with the double solution
pointed out just above. The choice of MS Windows CE
(WinCE) for the mobile part and standard MS Windows
(Win32) for the desktop one is just a first step, since
from the developer standpoint they are similar in the API
(Application Program Interface) philosophy, even if with
their own peculiarities (see [11] for further details). For
this reason we need to design something like a software
abstraction layer, which provides advanced functionalities
in a independent way from the underlying platform. This
includes of course the integration, (or porting whenever the
original implementation does not support WinCE OS, of



third-party libraries as well as the development of custom
specific objects, e.g. those representing neural networks. In
both cases we have to ensure the same behavior on all the
involved platforms, especially when the code encapsulates
low-level details, such as a new fixed-point numeric data
type.

In order to achieve the cross-platform feature of the
proposed framework is thus needed to adopt the proper devel-
opment practices: in this regard the Test Driven Development
(TDD, see [12], [13]) has been useful. The main idea behind
this model is first to write tests and then the code that passes
them. First we define the behavior, then we implement such
components. This is particularly useful whenever we build
a complex system (such as a character recognition engine)
using a lot of small components. If we are sure that those
basic building blocks work in the right way, then we can
concentrate our efforts on designing the higher-level system.
We would like to use the framework with enough confidence
without bothering with ill-defined behaviors.

The TDD development model also enforces some key con-
cepts as modularity, flexibility, extensibility and simplicity. It
is important to point out that the proposed framework is by
no means intended to be an “all inclusive” solution. It is only
a starting point, where the ANN designer can simply use such
framework by describing (as we will see later) the desired
solution or it can extend its usefulness by integrating new
functionalities, e.g., new routines to manipulate the training
set or a new training algorithm, in a easy way.

III. PROPOSED SOLUTION

Following the above discussions, we first investigated
the solutions to adopt in order to properly implement the
framework for developing ANNs based mobile applications.
First of all we had to look for a library able to manage the
neural networks in our context. We identified in FANN (Fast
Artificial Neural Network [14]) the right product, provided
with a open-source license and hence with the opportunity to
modify it both to run on the mobile platform and to add some
facilities. It is entirely written in C, so we developed a set of
C++ classes to encapsulate both the involved data structures
and the routines, in order to have an effective object-oriented
model serving as a collection of basic building blocks for our
classifier. The choice of such programming language is also
due to the high run-time performances of the generated code;
the same code will be used in the target application of the
reader device. The identical choice has been made about the
image processing functions, which extract the feature vector
from the character images (see [4]): all the performance-
related routines have been carefully designed and tested using
such programming model.

One interesting feature of the FANN library is that it has
an algorithm that, given a network, chooses automatically the
best format to represent the weights. It considers the greatest
number that could be computed, deduced from the weight
values, avoiding also to incur into an overflow. Therefore
the place of the decimal point depends upon each ANN,
and it is (in general) not the same for all the networks

belonging to the same configuration. A higher value for the
decimal point of course means a greater precision, since it
represents the numbers of bits used for the fractional part.
In practice, a value greater than 6 should be sufficient to
achieve good results (as reported in the documentation [14]
provided with the ANN library), but we have to check it
anyway. In order to better understand the differences about
the execution of the ANNs with the two approaches, it is
useful to highlight the average and minimal decimal point
used for each configuration, along with the MSE and the
BitFail (defined later) obtained from the comparison of the
outputs in the two ways. To further exploit whether switching
away from the floating-point arithmetic could lead to worse
or better results, the ratio between the global MSE in fixed-
point mode and the one in floating-point will be reported,
and the same for the BitFail performance value.

The C/C++ environment is perfectly suited for self-
contained applications, but if we need to modify or improve
a part, we need to re-build the overall system from the
scratch, even if only one parameter is changed. This could
lead to a longer development cycle; it would be better to
use something like a scripting language as a glue between
the components. This should be an interpreted dynamic
language, with good data description facilities, minimal run-
time and easy to embed/interface with C++. There are plenty
of alternatives, but in the end we preferred the LUA lan-
guage [15], which is entirely written in C (the run-time code
fits in about 150kB), with a Pascal-like syntax and a lean
and mean stack-based APIL. All the C++ objects have been
exported to this environment, thus completing the foundation
upon which to build the proposed framework.
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Fig. 1. Overall architecture of the proposed framework for train-
ing/evaluating the ANNs.

The architecture of the overall system is depicted in
Fig. 1: the core part is a set of LUA scripts that takes



as input the image repository, subdivides in subdirectories
(according to the classes of objects to be recognized), reads
the configuration files and then processes the data generating
the desired output. This is the set of networks both in
fixed-point and floating-point format, plus a PDF report and
the numerical results arranged in CSV (Comma Separated
Values) files. This last feature is accomplished by a set of
AWK (a powerful text processing tool [16]) scripts and ISTEX
(the well-known text composition system) template files,
and its purpose is to enable the ANN designer to compare
the performances of different solutions as well as to make
available such set of data to further elaborate with external
tools, e.g., spreadsheet or statistical applications.

The configuration files are themselves LUA scripts, simple
enough to be edited even without knowing the full language:
they just contain a list, each item describing either a config-
uration of ANNSs or the feature extraction vector to be used
by networks (for practical reasons we have made distinction
between these two parts, for further details on the feature
vector, see [4]). We talk about “configurations” of ANNs
rather than layouts of networks, since a configuration is
composed by a network layout, the training parameters, a
specification of how the training set is handled, and in the
end a set of parameters stating how the single networks are
combined together to form the classifier (according to the
winner-takes-all model described in our previous work).

It is very difficult to predict a priori which parameter could
lead, taken alone, to better performances without any doubt,
because it interacts with all the others. The idea is to further
analyze the results and to find some hints on how to train
different ANNS, in order to have a set of configurations from
which to choose the best one. As already pointed out in [17],
there is no scientific algorithm that gives as result the optimal
ANN. It is more an iterative process based on a trial and
error approach, but we can identify some guidelines on how
to design new configurations. All these opportunities are then
exposed to the framework user, which is thus able to exploit
their pros and cons. The parameters can be divided into three
categories:

o Network layout
« Evaluation parameters
o Training parameters

The network layout can be either simply expressed as the
number of desired layers and the amount of neurons for each
of them, resulting in fully-connected networks, or defined
through custom parametrizable functions. These, actually,
generate both the not-fully-connected topology presented
in [4] or an analogous bidimensional three-layers one (always
partially connected). This last opportunity has been designed
since in the end we are trying to recognize images, which
have an intrinsic 2D structure.

Regarding the evaluation parameters, the MSE (Mean
Squared Error) is the most used one, even if it is more
suited to regression problems rather than classification ones.
MSE can be better interpreted as an estimate of the distance
of the proposed model to the desired target; when dealing

with pattern recognition systems, it would be better to know
how many samples in the validation set make the model fail,
i.e., to have an answer to how many errors we had. The
BitFail parameter serves exactly at this purpose: it is a simple
true/false property of the ANN that, given an input, states
whether the error of the output is above a certain threshold,
called BitFail limit or BitFaily;,; it corresponds to the
0/1 loss function. Hence it is possible to obtain a number
representing the percentage of wrong outputs, by running
the network over a set of samples and counting when such
condition is verified. This should give a clearer idea about
the classification performances of the tested configuration,
although it does not take into consideration how the ANN
results are combined together in the final decision algorithm
(this is true also for the MSE). Anyway, it can be used as
the training goal, in order to create ANNs good enough
to classify the desired data, rather than to output accurate
values.

Always talking about evaluation parameters, it was ob-
served, using the main application in preliminary session
tests, that almost all the fails of the character recognition
subsystem were due to the low output of the corresponding
network. Considering only the results about the MSE and
BitFail, it could be quite surprising. Trying to exploit this
phenomenon, two types of measure have been defined: the
intra-class MSE/BitFail (M S E;c/BitFail;¢) and the extra-
class MSE/BitFail (M SEgc/BitFailgc)?. The former is
the MSE/BitFail reported by a network over the validation
samples that it should recognize, i.e., the positive set; the
latter is the error in all the other cases (the ones that it
should reject), i.e., the negative set. As we will see in the next
section, as the number of classes grows, the ratio between
positive samples and the negatives diminishes (since one
class is trained against all the others), and so, being the error
measure averaged on the whole training set, the resulting
networks will be more biased to reject true positive samples.
This consideration led to give to the user the opportunity to
counterbalance such issue. The most simple solution is to
allow to replicate the positive training set to “equalize” such
phenomenon. It can be done either by specifying manually
how many times it is duplicated, or to allow the software
to automatically determine such parameter, with the goal to
ensure an equally divided data set (although this requirement
could be obtained also manually, not always the class sizes
are equal, so it has to be determined on a from time to time).
Of course there are solutions that better address these issues
(a good starting point is [18]). Nevertheless the simplicity of
our solution allowed us to quickly develop the whole frame-
work, and, as we will see later, it is effective in improving
the performances. Moreover, the proposed solution is meant
to be extensible, so such more advanced techniques can be
later integrated.

The last issue to address is how to select the best classifier

2We will refer to the global MSE/BitFail as the MSE/BitFail mentioned
until now, i.e., the ones on the entire validation set, in order to distinguish
them from these new definitions.



among the set of the described configurations. This means to
estimate the generalization ability of the trained systems, and
the most simple way is using the holdout method [19], with
the results on the validation set as an estimate of the real
classification performances. It is well known that, with this
technique, the main issue is how to properly split the whole
data set, establishing the right proportions. In this respect
there is no best choice, thus we have to make some trades-
off: with a division of 90% for the training and 10% for
the validation we privilege the learning process, in order to
be sure to have well trained ANNs. On the other hand, the
need for an accurate estimate of the generalization properties
would suggest to reverse the proportions. Repeating the
trainings and evaluations according to such scenario, we
would expect a consistent performance drop. This could
be due to a low generalization capability, but if verified
across all the solutions, we could also hypothesize that
the cause is the small training set. As already pointed out
in [17], the training set should be made larger as long as
the ANNs get more complex, and, in our case, having only
the 10% could be insufficient. In conclusion, the problem
is the holdout method itself, which is inadequate for our
purposes; the alternatives [20] are the k-cross-validation [21]
and the bootstrap method. In [22] those two techniques have
been compared: the first one has in general a slightly higher
variance, especially when £ is small, while the second one
has a low variance but an extremely large bias in some cases.
It is also reported that stratification helps to obtain even better
results in cross-validation, and the suggested method is thus
the stratification ten-fold cross-validation.

The proposed framework is able to handle both the hold-
out method, specifying the proportion between the training
set and the validation one, and stratified cross-validation;
the original image repository is automatically divided and
converted to an intermediate representation, better suited to
be processed in the training/evaluation steps. Even if cross-
validation is more accurate, the holdout takes less time
to train and evaluate ANNSs: for this reason it has been
extensively used during the initial development phase of the
overall framework and to design new network configuration.
In the end all tests have been repeated by means of the cross-
validation process.

In the next section we will present how this proposed
solution has been effectively used in our research project,
where the ANN subsystem has to recognize character images,
acquired by the input peripheral of our mobile reader device
for blind people.

IV. RESULTS

As already pointed out in Sec. I, the primary motivation to
develop this framework has been the design and development
of a mobile reader device for blind people. First of all we
collected a set of more than 10000 images, with the same
target application we were developing. Some images used
for validation are shown in Fig. 2. These were subdivided in
85 classes, including the uppercase and lowercase characters
of the entire Latin alphabet, numbers and other punctuations

and symbols. This means that each ANN configuration will
be made of 85 networks, each of which will be trained with
about 10000 samples and evaluated on the same amount of
data (according to the cross-validation method).
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Fig. 2. Example images used for the ANNs validation process. They have
been already binarized, segmented and rotated by the previous computation
steps. All the images are real-world samples obtained with the same
application we were developing.

During the setup and fine tune stage of the classifier
system, we defined a first set of configurations (these are
derived from [4]%), trained and evaluated them, analyzed
their results and then defined new, and possibly improved,
solutions. We ended to have 36 different configurations. For
practical reasons not all the possibility have been explored,
and we stopped as soon we reached good performances,
following the Occam’s razor principle. In this paper not all
the results will be reported, only the most meaningful. Notice
that all the performance measures have been collected for
all the configurations. Moreover, the same tests have been
repeated with the holdout method (both 90%-training/10%-
validation and 10%-training/90%-validation) and with the
stratified cross-validation.

TABLE I
RUN-TIME PERFORMANCE COMPARISON OF DIFFERENT ANN
SOLUTION. ALL TIMING ARE IN MS.

Name Arithmetic Time Speedup
beta-full fp 1268.5 —
beta-h64 fp 342.14 | +270%
beta-h64 fxp 78.05 +338%

First of all we measured the run-time performances (shown
in Table I) of the designed classifiers. It is important to
remark that they have been obtained on the target platform,
described previously, with the final application (the complete
real-time reader engine) taking as input a set of test video
files (representing real use cases of the whole appliance).
Thus they reflect the average behavior of the overall character

3For practical reasons, the configurations discussed in the previous cited
work have been renamed, so the 16x16 prefix has become beta and 8x8
has turned into alpha.



recognition subsystem, not only its core neural network part
(although it is of course the primary contributor to such
timings). It is easy to see that reducing the connections
from a fully-connected ANNs (beta-full) to a partially-
connected one (beta-h64) leads to a system about three
times faster, and that switching from floating-point arithmetic
(marked as “fp” in the table) to the fixed-point one (“fxp”)
the recognition engine gained a further more than three times
speedup. In the end, the resulting system is more than sixteen
time faster. As a matter of facts, beta—-h64 is not (as
we will see) the configuration with the highest accuracy,
nevertheless the run-time performances depend only upon
the network topology, and the final chosen solution has the
same layout as this one.

TABLE 11
COMPARISON OF THE BITFAIL (ALONG WITH THE MSE) PARAMETER
FOR THE BASIC ANN CONFIGURATIONS

Input Total

Name BitFail MSE
type neurons
beta 16x16-n 291 0.004973 | 0.000599
beta-h64 | 16x16-n 323 0.005595 | 0.000493
2Dn 16x16-n 388 0.007413 | 0.000687
2Dp 16x16-p 388 0.007425 | 0.001209

The next step has been to design two new basic configu-
rations, named 2Dn and 2Dp (different only in the feature
vector used as input), which should theoretically yield better
performances. Along with the MSE we now measure also the
BitFail, as described earlier. The results are shown in Table II.
Even if the new solutions do not show any improvement, they
have been used as the base for testing the modified training
strategies and relationship between the fixed-point mode and
the floating-point one.

Starting from such basic configurations, we implemented
the possibility of replicating the positive training set either
automatically or by a user-defined parameter. The expected
result was the consistent reduction of the error ratio (both
MSE and BitFail) between the intra- and extra-class one. In
Table III the results are reported. The technique is effec-
tive, since the gap between the two errors is large for the
starting configurations (2Dn, beta and beta-h64), but,
as long we increase the Positive Set Multiplier (PSM), the
ratio decreases, even if this works only to some reasonably
extent (see 2Dn-x85-10k vs 2Dn-x100-10k). It is also
noteworthy that this approach leads to a worse global BitFail.
Mainly focusing on the positive outputs, the learning process
will take “less care” of the results on the other input data.
Despite this, looking for example at the two best configu-
rations (2Dn-xa-10k and 2Dn-x85-10k) respect to the
“original” one (2Dn), we can see that we have obtained an
improvement of one order of magnitude on the intra/extra
class BitFail ratio, compared with a worsening of the global
BitFail by a factor of 2.4-3.3. We have verified that MSE
exhibits the same behavior.

The main task of this framework is the management of
the arithmetic used by ANNSs, for the run-time performance

TABLE III
RESULTS OBTAINED WITH THE REPLICATION OF THE POSITIVE SET
DURING THE TRAINING

Sto i i .

Name PSM ori teripon 752:553 ; g BitFail
2Dn-xa-10k auto Err 4.25 0.019132
2Dn-x85-10k 85 Err 4.26 0.020421
2Dn-x100-10k 100 Err 4.79 0.023967
2Dn-xa-bf1-10k auto BitFail 4.99 0.016461
2Dn-x50-10k 50 Err 6.01 0.018326
2Dn-x10-10k 10 Err 12.30 0.018280
2Dn — Err 40.47 0.007413
beta — Err 42.92 0.004973
2Dp — Err 50.32 0.007425
beta-h64 — Err 69.31 0.005595

reason seen before. Thus we have to be sure that even if
the training is performed with the floating-point mode, the
behavior in the fixed-point one is the same. The first thing we
did was to repeat the same tests already shown with the new
arithmetic. We have seen (the results are omitted for brevity
reason) that the same used technique of replicating part of
the data set is still effective, even if not always as much as in
the previous case. So we further investigated the relationship
between the two modes by directly comparing the outputs,
for every network and every validation sample. We measured
the difference, both in terms of MSE and BitFail (i.e., the
amount of difference between the corresponding outputs
above a certain threshold). Results are shown in Table IV;
notice that the ratio between the two BitFail (fixed- and
floating-point) is near to 1.0, leading to conclude that the
classification properties should be almost the same.

TABLE IV
RESULTS OF THE COMPARISON OF THE FLOATING-POINT MODE AND THE
FIXED-POINT ONE

. Average BitFail ¢,

Name MSE Bitkail | % Ogim e Fm.lff:
beta-h64 0.000036 | 0.000819 10.0 .03
2Dp 0.000542 | 0.023552 77 ri2
2Dnxa-10k | 0.001666 | 0.055117 9.6 0.92
2Dn 0.003125 | 0.026016 81 152
2Dn-x50-10k | 0.005290 | 0.108415 94 Il
2Dn-x100-10k | 0.005376 | 0.108611 94 0.67
2Dn-x85-10k | 0.006873 | 0.104777 94 .19
2Dn-x10-10k | 0.007990 | 0.105905 89 1.31
2Dn-xa-bfl-10k | 0.012345 | 0.064338 93 .02

Until now, all the tests have been uniquely setup for the
newly designed layout, but, since the implemented proce-
dures have shown to be useful, it would be interesting to
apply them also to the networks designed in the previous
work. The results (see Table V) are again encouraging and
more promising than the previous ones.

Despite all the tests done, the real goal we are interested to
achieve is to have an accurate measure of the generalization
ability of the proposed configurations of classifiers. As
already pointed out, the stratified cross-validation is one of
the most reliable method, and in Table VI the performances



TABLE V
RESULTS IMPROVEMENT OBTAINED FROM THE BETA-H64 BASE
CONFIGURATION (FIXED-POINT MODE)

Sto itFai S

Name PSM | 0P | predic | BitFail
beta-h64x100-10k | 100 | Enr 7.65 0.020421
beta-h64-x85-10k | 85 Err 8.13 0.019558
beta-h64-xabI-10k | auto | BitFail 9.81 0.011891
2Dn-x85-10k 85 Err 9.83 0.024289
beta-h64x50-10k | 30 Err 11.92 | 0.016864
beta-h64x85-b2-10k | 85 | Bitkail 13.60 | 0.005618
beta-h64x10-10k | 10 Eir 2380 | 0.014861
beta-h64-10k — Err 5419 | 0.014033
beta-h64 — Err 11044 | 0.005756

are reported (clearly with the fixed-point arithmetic that
will be used in the target application) along with their
confidence interval. According to the winner-takes-all ap-
proach we make distinction between wrong classifications
and no classification at all. In our system, a successive
stage will recover this last ones by means of an integrated
spell-checker. It is noteworthy that the best configuration
(beta-h64-x85-bf2-10k) is a consistent improvement
of the basic one (beta-h64), and setting the BitFail as the
training target along with the replication of the positive set
have served to obtain such results.

TABLE VI
FINAL CLASSIFICATION RESULTS (%) OF THE BEST CONFIGURATIONS
(RUNNING IN FIXED-POINT MODE) WITH THE STRATIFIED
CROSS-VALIDATION (THE CONFIDENCE LEVEL IS 99%)

Name Correct anﬁdence Wrong No results
results interval results

beta-h64-x85-bf2-10k 94.72 94.12-95.26 0.99 4.29
beta-h64-x50-10k 92.71 92.01-93.34 1.47 5.82
beta-h64-x85-10k 92.59 91.89-93.23 1.48 5.93
beta-h64-x100-10k 92.52 91.82-93.16 1.54 5.94
beta-h64-xa-bf1-10k 92.50 91.80-93.15 1.30 6.20
beta-h64-x10-10k 92.08 91.36-92.74 1.30 6.63
beta-h64-x85-bf2-1k 91.37 90.62-92.06 1.64 6.99
beta-h64 90.15 89.36-90.89 0.76 9.09

V. CONCLUSION AND FUTURE PERSPECTIVES

In this paper we presented the design and the development
of a framework for designing and evaluating artificial neural
network targeting the mobile world. It is a vertical solution,
since it is able to cope with all the issues involved in such
kind of projects: taking as input both the description of the
desired solutions and data set, it divides and manipulates the
training set, generates the networks, evaluates them before
and after the conversion from the floating-point mode to
the fixed-point one. The obtained results are encouraging,
we have been able to improve the recognition rate from
about 90% to about 95%. This value should be comparable
with those of commercial available products. The developed
artificial neural networks have been successfully integrated in
mobile real-time reader device for visually impaired people,

currently under test in collaboration with local associations
for the blind.

Being based on open-source technologies, it has been
possible to make it a cross-platform tool, easy to extend and
to improve through a scripting language, while ensuring the
same results and behavior on all the involved platforms. In
this way the user can both design ANN systems to be later
integrated in real-word applications (since they will be able to
re-use and integrate the same code base), and to experiment
new functionalities, by developing new ANN algorithms. In
fact the proposed framework is only the starting point for a
more complete system. There are several possibilities for im-
proving the system, ranging from adding more powerful data
processing routines for class-imbalanced problems (see [18])
to completely moving the ANNs training to new high-
performance computing platforms (e.g. the new generation of
GPUs, see [23]), or to add new classifier evaluation routines
(such as the methods based on the ROC curve, see [24]).
Currently we are working on these aspects, nevertheless the
implementation of the optional replication of part of the data
set constitutes the base for such improvements, and managing
the same ANNs with two different arithmetics makes easier
to interface with new computing models.

In the end, the usefulness of the proposed solution has
been shown by developing the core part of a mobile real-
time reader device for blind people. The resulting ANNs are
at the base of the character recognition engine, which exhibits
a high recognition rate while keeping low the resource need.
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