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Abstract—This paper presents a novel methodology for the 
classification of suspicious areas in digital mammograms. The 
methodology is based on the fusion of clustered sub classes with 
various intelligent classifiers. A number of classifiers have been 
incorporated into the proposed methodology and evaluated on 
the well known benchmark digital database of screening 
mammography (DDSM). The results in the form of overall 
classification accuracies, TP, TN, FP and FN have been 
analyzed, compared and presented. The results of all four 
tested classifiers with clustered sub classes on the DDSM 
benchmark database show that the proposed methodology can 
significantly improve the accuracy and reduce the false positive 
rate.  

I. INTRODUCTION 
REAST cancer affects 10-12% of the world’s females 
accounting for around 500,000 deaths per year  

worldwide [1].  In the European Union this represents 25% 
of all cancer cases and 19% of all cancer deaths [2]. 
Unfortunately the aetiology of breast cancer is not known 
which means that early detection is currently the most 
effective mechanism for reducing the mortality rate from 
breast cancer [1].  If detected early the survival rate is 98%; 
however if metastasis have spread to distant organs survival 
drops to 23% [3].  This means that early detection is 
essential for survival and the Gold standard for detection has 
been Screening Mammography which can reduce mortality 
by up to 41% [4].  Screening Mammography has however 
been shown to have several problems in that accuracy can 
vary with the skill of the radiologist and that fatigue has 
been shown to have an effect on the radiologists capacity to 
identify malignancies. CAD has been proposed as an adjunct 
to facilitate training and to provide a second opinion on the 
malignancy of an abnormality [2].  

Various researchers have concluded that Computer 
Assisted Diagnosis (CAD) can increase the detection rate of 
early stage malignancies [5-10] which are more easily 
missed due to their small size; and in the case of masses low 
radiographic contrast. Other studies have concluded that 
CAD does not lead to an improvement in the detection and 
classification of breast abnormalities [11].  This has lead to 
many radiologists being skeptical about the efficacy of CAD 
systems, and that we can conclude that the main drawback to 
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the adoption of CAD in clinical practice is the number of 
false positive classifications that can be obtained [12]. The 
reduction in the false positive rate must be achieved within 
the constraints of system resources (CPU cycles, memory, 
processing time) while maintaining a non invasive process. 
The research presented in this paper addresses this issue by 
incorporating clustered sub-classes into the classification 
process in order to improve classification accuracy and 
reduce the false positive rate.     

The rest of this paper is organized as follows.  Section two 
provides background information with a review of existing 
methods. Section three provides an overview of the proposed 
technique while section four details the experimental results 
obtained.  Section five provides a discussion and analysis of 
these results while section six details the conclusions and 
future research. 

 

II. BACKGROUND 
Various methodologies have been proposed to address the 

issue of variable classification accuracy for the classification 
of suspicious areas in digital mammograms. The myriad 
number of solutions that have been examined reflect the 
complexity involved in optimizing this problem. 
Complicating factors include [13]: 

• Mammograms are a two dimensional 
representation of a three dimensional structure. 

• Mass type anomalies are often difficult to detect 
as they have a similar spatial density to 
surrounding breast tissue (Figure 1). 

• Breast tissue is a complex structure which has 
features that can be easily mistaken for 
anomalies (Figure 1). 

• Malignant anomalies are not easy to determine as 
they are not consistent in their morphological 
characteristics; making it almost impossible to 
elicit a set of rules that facilitate classification. 

• Anomalies may be occluded. 
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The techniques that have been employed to perform 

classification include artificial neural networks [14], support 
vector machines [15], statistical classifiers, rule based 
approaches, radial basis hybrid networks [16], genetic 
algorithms [16] and hybrid style networks.    

Varela [17] utilized the gray level and morphological 
features to train a neural network to achieve an Area under 
the Receiver Operating Curve (Az or AUC) of 0.90 ± 0.02.  
While Sahiner [14] utilized a genetic algorithm to determine 
the most discriminating textual and morphological features 
which were fed into a neural network and linear classifier 
(LDA).  Chang [19] however used a likelihood function to 
compare the gray level and shape characteristics of a 
Regions of Interest (ROI) against a database of classified 
masses.  This was then used to compute a likelihood 
measure.  Tourassi [19] undertook a similar mechanism to 
classify ROI which measured the difference between the 
ROI being classified and all the ROIs in the database.  The 
ROI being classified is then labeled as belonging to the class 
with the closest similarity measurement. A problem 
associated with the approach of Tourassi however is that it 
needs to be recalculated for each new element that is added.  
Meanwhile Georgiou et al. [15] utilized shape features 
together with the C-Support Vector Machine (C-SVM) to 
obtain 91.54% classification accuracy on masses.  A custom 
dataset was utilized for their research where they were 
determining the shape features that resulted in the highest 
classification accuracies. Verma [20] however added an 
additional neuron for benign and malignant classes to the 
hidden layer of a Multi Layer Perceptron (MLP) style neural 
network to achieve 100% training accuracy and 94% 
classification accuracy on masses from the DDSM. Verma 
also replaced the traditional gradient descent mechanism of 
the network with the incorporation of least squares to avoid 
network paralysis.  Mazurowski et al. [21] achieved an Az of 
0.907 ± 0.024 with the use of a genetic algorithm to produce 

an optimization framework for determining the importance 
of each image as it relates to the diagnostic process in a case 
based system.  Meanwhile Padayachee [22] compared one 
mammographic view to another (cranio-caudal and 
mediolateral oblique) in order to confirm the presence of a 
suspicious feature.  This was achieved by a method which 
evaluated the similarity of the views. The measures took into 
account AUC and the contrast between the area of the 
matched region and the background of the similarity map.  
The results of this process were quite successful in that an 
accuracy of AUC of 0.96 ± 0.05 was achieved.  However 
only 68 mammograms were utilized in this study and the 
algorithms are very time consuming to come to a 
classification. 

 

III. PROPOSED TECHNIQUE 
Medical image classification has typically been a binary 

classification dilemma.  In Digital Mammography an 
anomaly is determined to be either benign or malignant.   

However such a black and white classification scheme is a 
model that has been utilized to simplify the problem domain 

and is one that may explain why the rate of incorrect 
classifications can occur with a classifier.  The similarities 
that exist between benign and malignant anomalies is a 

 
 

Fig. 1.  Left craniocaudal view of a mammogram with a tumor 
bounded by a rectangle.  This tumor is readily identifiable however 
others are not so easily seen.  The similar contrast to surrounding 
tissue should be noted.  Image sourced from Varela et al. 2007 [16]. 

 

Fig. 2.  Proposed research methodology, where the clustering step and 
target class assignment (shaded areas), i.e. assigning output sub-
classes as the output of the classifier are additional steps to the 
traditional methodology. 



 
 

 

consequence of too large a grouping as the physiological / 
textual features between the two groups can be very similar.  
An expansion of the classification scheme to recognize that 
sub-populations exist for these two groups in theory can lead 
to improved classification accuracy.  The logic is that by 
expanding our groupings we are minimizing the variance 
within each group and maximizing the differences between 
others, thus facilitating successful classification. In this 
research the determination of these sub classes is undertaken 
through clustering.  Figure 2 provides a general format that 
is utilized in mammographic research.  The shaded boxes in 
Figure 2 show the proposed steps that modify this general 
methodology.  Details about the processes involved in the 
research methodology are detailed below. 
 

A. Mammograms 
The mammographic images that have been utilized for 

this research comprise a dataset of 200 ROI made up of mass 
type anomalies with equal numbers of benign and malignant 
samples that have been obtained from the Digital Database 
of Screening Mammography [23].  Being a publicly 
available database 
(http://marathon.csee.usf.edu/Mammography/Database.html) 
that contains a large number (2600 plus) of high quality 
images together with pertinent case information it is a 
premier resource for those researchers who wish to utilize a 
dataset that can facilitate comparison in their research.  For 
this research 10 fold cross validation was utilized. 

 

B. Image Segmentation 
The processing of large high quality images is a 

computationally expensive process which could lead to 
inaccurate results as interference from surrounding regions 
could occur.  By isolating the anomalous tissues we can 
process only those regions which are relevant.  The process 
of extracting only the relevant region is known as image 
segmentation or Area extraction.  Images from the DDSM 
[23] come with an “.overlay” file that provides a chain code 
which delineates the boundary of the anomaly together with 
a surrounding area that facilitates anomaly extraction. 

 

C. Feature Extraction 
Traditionally morphological (e.g. Shape) and gray level 

spatial features have been utilized by radiologists in order to 
classify anomalies as either malignant or benign [24].  It has 
also been demonstrated that these types of features are  
better discriminates for CAD systems [25-27].  These 
findings are utilized in choosing six features with four 
descriptor features from the BI-RADS reporting lexicon [28] 
together with patient age and a subtlety value [23] for 
performing the classification function.  The four BI-RADS 
features are: 

• Mass Density 
• Mass Shape 

• Mass Margin 
• Abnormality Assessment Rank 

 

D. Clustering 
Clustering partitions a set of data by grouping data in d-

dimension feature space with a view to maximizing the 
similarity within a cluster compared to the dissimilar data 
that forms other clusters.  This means that each cluster 
should be relatively homogenous.  By assuming that only 
benign and malignant classes exist in medical image 
processing an abstraction (model) has been assumed which 
leads to only two classes which are more than likely not 
homogenous which produces sub-optimal training of a 
classifier.  This can be seen in Figure 3 where grouping one 
represents unclassified anomalies.  Such a grouping is 
unsatisfactory for diagnostic and treatment purposes.  
Grouping two represents the normal level of abstraction 
where two classes are represented.  The split between 
Benign and Malignant facilitates classification and 
subsequent treatment.  The establishment of only two classes 
however does help to facilitate a conceptual understanding 
of the problem domain.  Establishing a more representative 
model which encapsulates the richness of the images 
acknowledges the existence of more than two classes.  
Taking the level of abstraction further we can recognize sub-
classes within our benigna and malignant major classes.  
This process is already undertaken by Doctors and 
Radiologists in their classification process (i.e. Ductal 
Cancer in Situ, Lobular Carcinoma in Situ, Metaplastic 
Carcinoma etc) however this process has not been extended 
widely to intelligent classifiers.  By clustering the benign 
classes separately we arrive at a number of target sub-classes 
(e.g. B1, B2,… Bn).  The process is repeated for our 
malignant class (e.g. M1, M2,…Mn) which are our target sub-
classes for our training and classification processes.  The 
same major classes exist for the purposes of our 
classification goal but we recognize the existence of sub-
classes in our abstraction for the purpose of training the 
classifier.  The recognition of subclasses is shown in 
grouping three in Figure 3. 

The nature of a benign or malignant class to fall into 
subclasses when the benign and malignant classes are 
clustered separately substantiates the existence of these 
subclasses.  These subclasses represent the target output 
class for our classifier during the training and testing 
processes.  For the purpose of this research the k-means 
clustering algorithm has been utilized due to its simplicity as 
well as the fact that it has been widely used in this field.  
However other clustering algorithms such as self organising 
map can be substituted. 

 
 
 
 
 
 



 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

E. Classifier 

The proposed methodology has been designed to work 
with intelligent classifiers that can support multiple output 
classes.  This is necessary since the number of output target 
classes has increased due to the introduction of target sub-
classes.  However this should provide the advantage that the 
input feature set should map more appropriately to the 
output class as either a malignant or benign sub class.  In 
theory this should provide improved training to the classifier 
resulting in improved classification accuracy (compared to a 
binary only classification mechanism). This mechanism for 
improving classification accuracy has been chosen as it is a 
mechanism that provides the following advantages: 

• Classifier independent and transferrable to other 
classifiers. 

• Can be transferred to other problem domains and 
datasets. 

• Is conceptually easy to understand and model. 
• Generally does not add greatly to the 

computational, memory requirements or 
complexity of the classifier. 

Thus such a mechanism can potentially have a profound 
effect on the classification accuracy and is a potentially 
transferrable mechanism for classifier optimization. 

Since historically the classification results in CAD 
systems have been binary outputs (benign or malignant) our 
output test results have been expressed likewise.  Although it 
is possible to express classification accuracy for each sub-
class, this has not been done as the number of sub-classes 
varies according to the number of clusters.  Potentially this 

would also impact on the comparability of results without 
adding any benefit as the composition of each cluster is 
different depending on the dataset and number of clusters 
involved in creating the sub-classes. 

In this research a Radial Basis Function Network, Support 
Vector Machine, Multi Layer Perceptron and a Simple 
Logistics classifiers have been utilized. 

 

IV. RESULTS 
Different rounds of experiments were conducted in order 

to evaluate the efficacy of the proposed technique.  All 
experiments were performed on a dataset consisting of 200 
ROIs from the DDSM [23] with an equal number of benign 
and malignant abnormalities.  Experiments were performed 
using ten fold cross validation.  For the Radial Basis 
Function Network, Support Vector Machine, Multi Layer 
Perceptron experiments and the Simple Logistics classifiers 
we used the Weka Software (version 3.7) [29].   

The results of the experiments for the Radial Basis 
Network are tabulated in Table I.  Table II provides details 
on the Multi Layer Perceptron and Table III provides details 
on Support Vector Machine performance.  Table IV provides 
details on the performance of the Simple Logistics classifier. 
 

 
 
Fig. 3.  Breast Masses at different abstraction levels.  Grouping one 
shows a collection of both benign and malignant masses without being 
categorized.  Moving to grouping two we see the normal level of 
abstraction that is applied by differentiating between benign and 
malignant classes.  Grouping three represents a higher level of abstraction 
that encompasses the richness of the condition and facilitates a cleaner 
mapping between features and classification. 

TABLE I 
PERFORMANCE OF RADIAL BASIS FUNCTION NETWORK 

Clustersa Accuracy Sensitivity Specificity 

1 86.0% 87.5% 84.6% 
2 85.0% 85.7% 84.3% 

3 89.0% 88.2% 89.8% 
4 86.5% 87.6% 85.4% 
5 84.0% 84.0% 84.0% 
6 83.0% 83.0% 83.0% 

10 83.5% 83.8% 83.2% 
20 83.5% 83.8% 83.2% 

    
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per class.  

TABLE II 
PERFORMANCE OF MULTI LAYER PERCEPTRON CLASSIFIER 

Clustersa Accuracy Sensitivity Specificity 

1 85.0% 83.7% 86.5% 
2 83.5% 80.7% 86.8% 

3 87.0% 83.6% 91.1% 
5 87.0% 84.9% 89.4% 
6 85.5% 85.1% 85.9% 

10 85.0% 83.7% 86.5% 
20 88.5% 88.1% 88.9% 

    
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per 
class.  



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Details of the True Positive (TP). True Negative (TN), 

False Positive (FP) and False Negative (FN) used to 
calculate the sensitivity and specificity values are tabulated 
in tables V to VIII. 

 
 
 
 
 
 
 
 
 
 
 

 TABLE VII 
TRUE POSITIVE, NEGATIVE AND FALSE POSITIVE, NEGATIVE VALUES OF 

SUPPORT VECTOR MACHINE CLASSIFIER 

Clustersa Filter TP TN FN FP 

RBF Kernel 
1 normalize 83 84 16 17 
1 standardize 87 87 13 13 
2 normalize 81 87 13 19 
2 standardize 84 87 13 16 
3 normalize 82 86 14 18 
3 standardize 85 90 10 15 
5 normalize 85 86 14 15 
5 standardize 87 88 12 13 

PolyKernel 
1 normalize 82 89 11 18 
1 standardize 85 88 12 15 
2 normalize 82 87 13 18 
2 standardize 80 84 16 20 
3 normalize 82 89 11 18 
3 standardize 89 90 10 11 
5 normalize 86 88 12 14 
5 standardize 89 88 12 11 

      
aClusters refer to the number of clusters per class (benign) or malignant).  

Thus a standard binary classification is 1 cluster per class.  

TABLE VIII 
TRUE POSITIVE, NEGATIVE AND FALSE POSITIVE, NEGATIVE 

VALUES OF SIMPLE LOGISTICS NETWORK 

Clustersa TP TN FN FP 
 

1 83 86 14 17  
2 83 85 15 17  
3 88 87 13 12  
4 84 90 10 16  
5 81 91 9 19  
6 86 84 16 14  

10 86 87 13 14  
20 86 86 14 14  

      
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per 
class.  

TABLE V 
TRUE POSITIVE, NEGATIVE AND FALSE POSITIVE, NEGATIVE 

VALUES OF RADIAL BASIS FUNCTION NETWORK 

Clustersa TP TN FN FP 
 

1 84 88 12 16  
2 84 86 14 16  
3 90 88 12 10  
4 85 88 12 15  
5 84 84 16 16  
6 83 83 17 17  

10 83 84 16 17  
20 83 84 16 17  

      
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per 
class.  

TABLE III 
PERFORMANCE OF SVM CLASSIFIER 

Clustersa filter Accuracy Sensitivity Specificity 

RBF Kernel 
1 normalize 83.5% 83.8% 83.2% 
1 standardize 87.0% 87.0% 87.0% 
2 normalize 84.0% 86.2% 82.1% 
2 standardize 85.5% 86.6% 84.5% 
3 normalize 84.0% 85.4% 82.7% 
3 standardize 87.5% 89.5% 85.7% 
5 normalize 85.5% 85.9% 85.1% 
5 standardize 87.5% 87.9% 87.1% 

PolyKernel 
1 normalize 85.5% 85.9% 85.1% 
1 standardize 86.5% 87.6% 85.4% 
2 normalize 84.5% 86.3% 82.9% 
2 standardize 82.0% 83.3% 80.8% 
3 normalize 85.5% 88.2% 83.2% 
3 standardize 89.5% 89.9% 89.1% 
5 normalize 87.0% 87.8% 86.3% 
5 standardize 88.5% 88.1% 88.9% 

     
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per class.  

TABLE IV 
PERFORMANCE OF SIMPLE LOGISTICS NETWORK 

Clustersa Accuracy Sensitivity Specificity 

1 84.5% 85.6% 83.5% 
2 84.0% 84.7% 83.3% 

3 87.5% 87.1% 87.9% 
4 87.0% 89.4% 84.9% 
5 86.0% 90.0% 82.7% 
6 85.0% 84.3% 85.7% 

10 86.5% 86.9% 86.1% 
20 86.0% 86.0% 86.0% 

    
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per 
class.  

TABLE VI 
TRUE POSITIVE, NEGATIVE AND FALSE POSITIVE, NEGATIVE VALUES OF 

MULTI LAYER PERCEPTRON NETWORK 

Clustersa TP TN FN FP 
 

1 87 83 17 13  
2 88 79 21 12  
3 92 82 18 8  
5 90 84 16 10  
6 86 85 15 14  

10 87 83 17 13  
20 89 88 12 11  

      
aClusters refer to the number of clusters per class (benign) or 

malignant).  Thus a standard binary classification is 1 cluster per class.  



 
 

 

In addition to the results in tables V to VIII a graph of 
Sensitivity versus the False Positive Rate (ROC) was 
generated for each classifier.  The ROC curves are presented 
below in figures IV to VIII below. 

 

V. DISCUSSION 
The experimental results contrast the performance of the 

proposed research technique against a base line binary 
classification.  As discussed in the background various 
researchers have obtained high areas under the ROC curve 
(Az), or high sensitivity values.  However comparing the 
performance of one CAD system to another where different 
databases and or different test cases are used is not an 
effective measure of algorithmic performance [30].  
Unfortunately this means that a full quantitative comparison 
with other researchers is not possible due to differences 
between one dataset and another.  In this research however 
the aim is to provide a mechanism for improving the 
classification accuracy of an existing classifier.  Accordingly 
a more appropriate measure of performance is the degree to 
which the base line classification performance compares 
with the performance of the classifier where sub-classes 
through clustering have been introduced.   

Due to the differences in making an incorrect diagnosis 

 
Fig. 4.  ROC Curve for Radial Basis Function Network (RBF). 

 
Fig. 5.  ROC Curve Multi Layer Perceptron Network (MLP). 

 
Fig. 6.  ROC Curve for Support Vector Machine (RBFKernel). 

 
Fig. 7.  ROC Curve for Support Vector Machine (PolyKernel). 

 
Fig. 8.  ROC Curve for Simple Logistics Classifier. 



 
 

 

(diagnosing a malignant tumor as benign can be fatal 
whereas diagnosing a benign as malignant may result in 
patient stress and an unnecessary operation) several ratios 
are calculated.  Sensitivity is the True Positives / (True 
Positives + False Negatives) and represents the probability 
of correctly detecting cancer.  Specificity is the True 
Negatives / (True Negatives + False Positives) and 
represents the likelihood of correctly not being diagnosed as 
having cancer.  Accordingly we have reported the sensitivity 
and specificity results in tables one to four.  In this case the 
performance of the clustered classifier for all classifiers has 
increased in comparison to the base line (binary) classifier.  
The improvement for each classifier is listed below in table 
IX.   

 
 
The ability of the sub class targets generated through 

clustering to improve the accuracy of all the classifiers 
demonstrates the effectiveness of this technique as a 
boosting mechanism for improving the performance of a 
multi-class capable classifier.  The improvement in 
performance of the classifier substantiates the existence of 
sub-classes for the benign and malignant classes.  Although 
this technique has not been (to our knowledge) tried in other 
problem domains the technique should be effective in other 
problem areas.  This technique however does rely on the 
determination of an optimal number of sub-classes to 
provide optimal performance.  Since the optimal number of 
clusters can vary between classifiers this needs to be 
determined through experimentation.  

Accordingly the incorporation of sub-classes provides a 
mechanism for improving the operation of an intelligent 
classifier. 

 

VI. CONCLUSIONS 
The research presented in this paper has put forward an 

approach for improving the classification of suspicious areas 
in digital mammograms by recognizing that the standard 
binary classification solution is a potential abstraction that 
hinders the efficacy of classifiers resulting in sub-optimal 
training and classification. The approach was evaluated on a 
benchmark database by incorporating a number of classifiers 
with clustered sub classes. In our experiments, the 
incorporation of sub-class targets as outputs for the 
classifiers resulted in a performance improvement for all 
tested classifiers. The overall classification accuracy has 
significantly improved and the false positive rate has 
dropped when compared to the base line approach. In our 
future research we would like to conduct more experimental 
analysis to find an optimal number of sub-classes and 
evaluate the impact of clustering and learning techniques 
used in the proposed approach.  
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