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 

Abstract—Nocturnal hypoglycaemia in type 1 diabetic patients 
can be dangerous in which symptoms may not be apparent while 
blood glucose level decreases to very low level, and for this 
reason, an effective detection system for hypoglycaemia is 
crucial. This research work proposes a detection system for the 
hypoglycaemia based on the classification of 
electrocardiographic (ECG) parameters.  The classification uses 
a Fuzzy Support Vector Machine (FSVM) with inputs of heart 
rate, corrected QT (QTc) interval and corrected TpTe (TpTec) 
interval. Three types of kernel functions (radial basis function 
(RBF), exponential radial basis function (ERBF) and polynomial 
function) are investigated in the classification. Moreover, 
parameters of the kernel functions are tuned to find the 
optimum of the classification. The results show that the FSVM 
classification using RBF kernel function demonstrates better 
performance than using SVM. However, both classifiers result 
approximately same performance if ERBF and polynomial 
kernel functions are used.  

I. INTRODUCTION 

Hypoglycaemia, or abnormally low blood glucose, is a 
common complication of insulin-dependent diabetes mellitus 
(IDDM) and remains a central problem [1]. In a number of 
studies, hypoglycaemia is one of known causes of death in the 
diabetic patients [2, 3]. Symptomatic hypoglycaemia is 
categorized as mild to severe episodes. In another study, mild 
hypoglycaemia occurs in 58% and severe hypoglycaemia 
(defined as the reactions to hospitalization or need of 
assistance) happens in 26% of 172 insulin-treated diabetic 
patients [4].  

The Diabetes Control and Complications Trial (DCCT) 
estimated that around 55% of severe hypoglycaemia episodes 
occur during sleep [5]. Nocturnal hypoglycaemia can be 
dangerous in which symptoms may not be apparent while 
blood glucose level (BGL) decreases to very low level. It is 
reported that falling plasma glucose to 2.2 mmol/l very rarely 
provoke an awakening response in IDDM patients observed 
and it corresponds to an absence of clear-cut 
counterregulatory hormonal responses [6] and therefore a 
detection system for the onset of hypoglycaemia is crucial.  

Regarding correlation between hypoglycaemia and cardiac 
dysrithmia, a number of studies have demonstrated that 
hypoglycaemia results altered ventricular repolarization or 
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prolonged corrected QT (QTc) interval [7-9]. QT interval 
represents the duration of ventricular depolarization and 
subsequent repolarization to occur and, in the heart's electrical 
cycle, is the interval from the start of the Q wave to the end of 
the T wave. QTc prolongation in hypoglycaemia is predicted 
on account of sympathoadrenal stimulation [8]. Moreover, 
hypoglycaemia also induce to increase heart rate (heartbeats 
per unit of time) [10].  

Therefore, the electrocardiography (ECG) parameters are 
examined in experiments for hypoglycaemia detection and 
have demonstrated as essential inputs for system to determine 
hypoglycaemia episodes. The heart rate as an ECG feature has 
been applied as one of inputs for detection of the onset of 
hypoglycaemia using the fuzzy estimator [11] and the fuzzy 
neural network [12]. Furthermore, heart rate and QTc interval 
have been implemented for nocturnal hypoglycaemia 
detection using neural network algorithm [13]. Other ECG 
parameters: RR, RTc, T wave amplitude, T wave skewness 
and T wave kurtosis have also been applied to detect onset of 
hypoglycaemia using artificial neural network (ANN) and 
linear discriminant analysis (LDA)  [14]. RTc interval and T 
wave amplitude have also investigated as inputs for the Rule 
Base for the nocturnal hypoglycaemia detection [15]. Another 
ECG parameter is a corrected TpTe (TpTec) interval that is 
the interval from the peak to the end of T wave and is a 
descriptor of T wave morphology  [16-18]. 

In general, most of the aforementioned approaches for the 
hypoglycaemia detection employ methods to reach 
satisfactory level of reliability so as to act as hypoglycaemia 
detection system using ECG parameters. Up to now the 
methods still require extensive validation before they can be 
adopted for worldwide clinical practices. Thus, this research 
effort is to develop methods to achieve satisfactory of the 
hypoglycaemia detection. The construction methods in this 
research is based on classification techniques using fuzzy 
support vector machine (FSVM), that is not yet explored 
widely in the onset of hypoglycaemia detection system.  

FSVM is a further classification technique of support 
vector machine (SVM). SVM has proved mostly good 
performance for classification in various application [19] 
including in application to classify features of cardiac signals 
[20-25]. Choosing SVM as a classification tool consider to its 
good performance and SVM classification ability to 
generalize well even with small size sample [26]. In the 
FSVM method, a fuzzy membership is introduced to each 
training sample of SVM and therefore different training 
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points can make different contributions to the learning of 
decision surface. For that reason, FSVM technique can 
enhance traditional SVM in reducing effects of outliers and 
noises in data points [27, 28]. FSVM has showed better 
performances than SVM in applications such as classification 
of EEG signals using wavelet-based features [29], multi-class 
text categorization [30] and image classification [31].      

In this paper, the performances of FSVM and SVM 
classifiers are compared in the classification of three ECG 
parameters (heart rate, QTc and TpTec) to hypoglycaemia or 
normoglycaemia. Kernel functions, are implemented for 
mapping of the data sets to high dimensional space, are also 
compared to find the best performance of the classification. 
The kernel functions are radial basis function (RBF), 
exponential radial basis function (ERBF) and polynomial 
function. Therefore this work would contribute to 
demonstrate the FSVM and SVM classification for these ECG 
parameters in the detection of hypoglycaemia.  

The rest of this paper is organized as follows. Methods 
consisting of features extraction of the ECG signals and the 
FSVM and SVM classification are described in section II. 
Section III presents the experimental results and the 
conclusion for this research is drawn in Section IV. 

II. METHODS 

This work consists of two main stages, feature extraction 
and FSVM classification (Fig 1). The main task of the feature 
extraction is to obtain the heart rate, QTc and TpTec from the 
ECG signals. The FSVM classification is constructed to 
classify the ECG signal inputs into hypoglycaemic or 
normoglycaemic condition.      

 
Fig. 1. FSVM classification for the ECG signals to hypoglycaemic or 
normoglycaemic condition. 

A. Feature extraction 

 The three ECG parameters are estimated based on the 
ECG signals acquired from the diabetic patients ECG signals 
recorded by the Compumedics system. The estimation is 
created in Matlab® environment. Three interval values (RR 
interval, QT interval and TpTe interval) are illustrated in Fig. 
2. The three intervals are then calculated to find heart rate 
which equals to 60/RR, QTc which equals to QT/(RR)1/2 and 
TpTec which equals to TpTe/(RR)1/2.  The end of T wave 

(Tend) is defined using the Philips QT Interval Measurement 
Algorithms, that is by drawing a line segment from the top of 
the T wave forward in time to a point and the Tend is a point 
that has the maximum vertical distance between the point and 
the line segment [32]. The three ECG parameters are then 
used as inputs of the classification.  

The inputs are labeled with –1 for hypoglycaemia and are 
labeled with +1 for normoglycaemia. The threshold for 
hypoglycaemic level used in this system is 3.3 mmol/l. It 
means that the ECG conditions with BGL equal or lower than 
3.3 mmol/l are defined as hypoglycaemia and those of which 
are higher than 3.3 mmol/l are defined as normoglycaemia. 

RR interval

T

QT interval

T

TpTe interval

 
Fig. 2. RR, QT and TpTe intervals in a typical ECG signal 

B. Classification using FSVM 

Considering to the three parameters, the classifier is used to 
automatically recognize hypoglycaemia condition of the type 
1 diabetic patients. This section will briefly discuss SVM and 
FSVM. A more detailed discussion of SVM can be found in 
[33, 34]  and of FSVM in [28, 35].  

1) SVM classifier 
Fig. 3 shows the optimal hyperplane in the linearly 

separable binary classification problems. Suppose that there 
are k training data samples (xi,yi,) … (xk,yk) where xiRN is 
an-N dimensional space and the associated yi{+1,–1} is 
class label. It is assumed that the samples can be separated by 
the hyperplane satisfying 

 0 bxw  (1)                       

 
 Fig. 3. SVM classification for the linearly sparable case. The lines are the 
hyperplanes. Squares and circles denotes training data.     

where w is the hyperplane perpendicular vector, b/w2 is 
distance of the hyperplane to the origin (bis absolute value 
of b andwis module of w). For linearly separable case, 
SVM algorithm maximize margin between classes and thus 
all training data satisfy wxi+b1 for yi = +1 and wxi+b1 for 
yi = –1. These two constraints can be formulated in one 
expression,  



 
 

 

 01)(  byi xw . (2) 

The training data points that satisfy the equality in 
inequality (2) are called support vectors. The margin between 
two hyperplanes, wx + b = +1 and wx + b = 1, is 2/w. 
The optimum separating hyperplane can be found by 
maximizing the margin, minimizing w2, with respect to 
constraint (2). 

It is often that in many real world problems that a 
separating hyperplane does not exist. Hence it is introduced 
positive slack variable i and then 
 yi(wx + b)  1i. (3) 

The optimal separating hyperplane is determined by w that 
minimizes the functional 
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The C is a user defined constant that to control the tradeoff 
between complexity and proportion of nonseparable points. 

Searching the optimal hyperplane in (1) using Lagrange 
multiplier approach is to maximize  
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subject to  

 Ci  0 and   0iiy , (6)  

where i is the Lagrange multiplier.  

In a case of imbalanced distributions, it is needed to use 
different error weights and in order to penalize more heavily 
the undesired type of error, and/or the errors related to the 
class with the smallest population [36]. Then (4) is modified 
by minimizes the functional 
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Having determined the optimum Lagrange multiplier, the 

optimum solution for the vector w is given by 

  iii y xw   (8)  

Replacing the inner-product in (5) with a kernel function 
K(xi,xj) map input data to higher dimensional space so that 
nonlinearly separable data can be linearly classified. In this 
paper the classification apply three kernel functions: RBF, 
ERBF and polynomial functions. Parameters  in the 
RBF/ERBF and d in the polynomial are tuned to obtain a high 
classification performance. The kernel functions are:      
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Finally, for any test vector xRN, the output of the 
classification is then given by 

 )),(sgn( xx iii Kyy   . (9) 

2) FSVM classifier 
In order to enhance the training performances, fuzzy 

membership is introduced to each training sample. FSVM 
introduce a fuzzy membership 0< si<1 associated with each 
data point xi. The output of fuzzy membership si is regarded 
as attitude of the corresponding training points toward one 
class in the classification problem. The optimal hyperplane 
problem then can be regarded as the solution to [28] 
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 subject to (3). 
The problem (10) can be transformed into,  
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subject to  

 Csii  0 and   0iiy . (12) 

In this paper, the output value of the fuzzy membership si is 
designed as shown in the Fig 4. This membership is based on 
the associated blood glucose level (BGL) value β of the ECG 
signals. The peak of si is at β = 3.30 mmol/l that is the 
boundary between hypoglycaemia and normoglycaemia. The 
values of 2.2201 and 6.2201 are considered to the minimum 
and maximum of BGL data, respectively, in this work. The 
both values are determined considering to the minimum and 
maximum value of the BGL data. The output value si of the 
membership function is described below: 
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Fig. 4. The fuzzy membership of the FSVM 



 
 

 

III. EXPERIMENTAL RESULT 

The profile of the blood glucose level (BGL) of the type-1 
diabetic patients acquired using the Yellow Spring Analyzer 
is presented in Fig. 5. The glucose level profile is started with 
the normal level and then the hypoglycaemic periods occur 
until the glucose level is less than 3.3 mmol/l. The ECG data 
of the five type-1 diabetic patients, with age of 160.7 years, 
are investigated for the classification in this work. Each 
patient data is an overnight monitoring for the natural 
occurrence of nocturnal hypoglycaemia. In general, the BGL 
was estimated every 5 minutes and the ECG signals is 
recorded and stored in ProFusion software (Compumedics).  
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Fig. 5. Blood glucose level profile of the 5 patients 

The inputs for the classifications have been obtained from 
the feature extraction of the ECG signals of the five patients.  
The data points of the input set are 134 containing both 
hypoglycaemic and normoglycaemic conditions. The inputs 
have also been classified using SVM and FSVM classification 
considering to the hypoglycaemic conditions. 

A leave-one-out cross-validation scheme is used to evaluate 
the performance of the classification. In this scheme, the 
dataset is divided into 5 subsets with one used for testing and 
the remaining subsets used to train and construct the SVM 
decision surface. The performances   are measured in terms of 
sensitivity, specificity and accuracy: 
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where TP (true positive) is number of the inputs that 
correspond to hypoglycaemia classified as hypoglycaemia. 
FP (false positive) is number of the inputs that correspond to 
normoglycaemia classified as hypoglycaemia. TN (true 
negative) is number the inputs that correspond to 
normoglycaemia classified as normoglycaemia. FN (false 
negative) is the inputs that correspond to hypoglycaemia 
classified as normoglycaemia. Average of sensitivity, 
specificity, and accuracy of the cross-validation are used for 
comparison among the classification techniques,  

Each of the three kernel functions (RBF, ERBF and 
polynomial function) has been applied in both SVM and 

FSVM classification and the result of the cross-validation is 
described in Fig. 6 and Fig. 7. The classifiers apply the three 
kernels with variation of kernel parameters:  parameter 
(kernel width) is for RBF and ERBF kernel function and d 
parameter (degree of polynomial) is for polynomial kernel 
function. Parameter of   is varied from 1 to 141 with step of 
10 and parameter of d is varied from 1 to 10 with step of 1. 
Considering to the experiments, these steps are sufficient in 
which the performances of the classifiers with these steps can 
represent the performances along these kernel parameter 
ranges. 

The graphs show that the choosing kernel functions in the 
both SVM and FSVM classifiers is crucial to find a good 
performance in the classification, especially in term of 
sensitivity for this case. In this experiment, in general, the 
classifiers with RBF kernel function outperform than the 
others. Furthermore, tuning the kernel parameters is also 
significant in the both FSVM and SVM classification. In the 
classification with RBF kernel width from 1 to 141, the 
sensitivity increase but the specificity decrease. Meanwhile, 
the sensitivity and specificity remain constant during variation 
of the ERBF kernel width. Using RBF kernel function, the 
FSVM generally outperform the SVM. Although in the RBF 
kernel width    = 131 the sensitivity of both FSVM and 
SVM is nearly same, the specificity and accuracy of the 
FSVM is higher. However, both classifiers obtain almost 
same performance when they use ERBF kernel function. 
Therefore, choosing how to map the data sets to high 
dimensional space in SVM and FSVM is crucial.  

In the cross-validation, the comparison of the optimum 
values of the classifications is showed in Table 1. Considering 
to the classification results having the highest sensitivities, the 
FSVM classifier with RBF kernel function outperform the 
SVM classifier that it is indicated by the significantly higher 
specificity and accuracy that is 58.54% and 63.20% 
respectively. However, using ERBF and polynomial kernel 
functions, the optimum values of both classifiers are nearly 
same.  

The better performances of the classification using FSVM 
compared to SVM are in line with the fact that there are more 
choices for appropriate parameters in the FSVM training than 
in the SVM training [28, 35]. The additional parameter is the 
fuzzy membership that can control the trade-off of the 
respective training data point. The fuzzy membership is made 
in the range from close to zero to 1 that consider to the 
associated BGL values of the ECG parameters (Fig. 4). The 
lower membership values for the very low and very high BGL 
values are regarded to the fact that not the all patients have 
very low or very high BGL. On the other word, the very low 
or very high value can not represent well of a class in the 
training and hence it is given the lower membership. For the 
future, an optimization system could be applied to determine 
the best of these values to find the better performance of the 
classification                     
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(a)   The FSVM classification with RBF kernel function 
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(b) The FSVM classification with ERBF kernel function 
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 (c) The FSVM classification with polynomial kernel function 
 
 
Fig. 7. Cross-validation results of the classifications using the FSVM with 
different kernels and kernel parameters.  (Solid line: sensitivity, dotted 
line: specificity, dashed line: accuracy).   
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(a) The SVM classification with RBF kernel function 
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(b) The SVM classification with ERBF kernel function 
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(c) The SVM classification with polynomial kernel function  
 
 
Fig. 6. Cross-validation results of the classifications using the SVM 
with different kernels and kernel parameters. (Solid line: sensitivity, 
dotted line: specificity, dashed line: accuracy).   
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 TABLE 1 
OPTIMUM VALUE OF THE  LEAVE-ONE-OUT CLASSIFICATION PERFORMANCE OF  

THE SVM AND FSVM  

 
Classifier Kernel 

Function 
Sens 
(%) 

Spec 
(%) 

Acc 
(%) 

RBF 74.43 50.50 57.34 

ERBF 41.24 64.50 55.99 

SVM 

Polynomial 57.14 41.24 46.98 

RBF 74.19 58.54 63.20 

ERBF 42.19 62.54 5510 

FSVM 
 

Polynomial 63.05 39.60 48.25 

Sens: Sensitivity;  Spec: Specificity; Acc: Accuracy 

IV. CONCLUSION 

In this paper, the classifications for the ECG parameters 
using FSVM and SVM to obtain the hypoglycaemia episodes 
of the type 1 diabetic patients have been developed. The 
performances in the cross-validation of both classifiers have 
also been compared.  In this classification, using RBF kernel 
function and with kernel width of 131, the FSVM 
demonstrate higher performance of classification than SVM. 
However, both classifiers applying ERBF and polynomial 
kernel functions have nearly same performances. In short, the 
FSVM with RBF kernel function gives 74.14% sensitivity and 
58.54% specificity for type 1 diabetic problem. 
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