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Abstract—A neural behavior initiating agent (BIA) is pro-
posed to integrate relevant compressed image information
coming from others cooperating and specialized neural agents.
Using this arrangement the problem of tracking and recognizing
a moving icon has been solved by partitioning it into three
simpler and separated tasks. Neural modules associated to
those tasks proved to be easier to train and show a good
general performance. The obtained neural controller can handle
spurious images and solve an acute image related task in a
dynamical environment. Under prolonged dead-lock conditions
the controller shows traces of genuine spontaneity. The overall
performance has been tested using a pan and tilt camera
platform and real images taken from several objects, showing
the good tracking results discussed in the paper.
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I. INTRODUCTION

Nature invented an acute mobile eye and a big spark to-

ward intelligence flared in the evolutive night. Indeed experts

believe [1] [2] that the ability to carry out survival related

task in a dynamical environment, with the help of an acute

vision system, is a fundamental issue in the development

of true intelligence Sharp vision depends on complementary

image handling abilities such as efficient tracking and fast

recognition of predator/prey situations. In any case the as-

sociated controller has to respond with a quick, conflict free

behavior to images provided by the eye. In many situations

the objective moves so fast that the eye correlated muscles

are unable to mechanically compensate the displacement and

as a result the controlling vision system has to deal with an

image that travels through the associated retina. Biological

vision systems have evolved diverse mechanisms to handle

image movement and recognition. Modeling and application

of endocrine principles been reported in [3]. Special purpose

algorithms for fast pixel tracking have been studied in [4]. In

[5] competitive artificial neural networks (ANN) are devoted

to eye tracking in video sequences and in [6] a convolutional

neural network is trained for tracking purposes.

Biological neural controllers conceals a rich repertory of

behavior initiating agents which make real life neurons tick

with enthusiastic self determination. At the highest level

of brain development the existence of specific behavior

initiating mechanisms in monkeys have been studied and

modeled [7]. Recent experiments have found clear indication

of initiating mechanisms in the Drosophila brain [8]. Efforts
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to model and put to use these phenomena have been reported.

In [9] fuzzy rules are used to infer in the behavior of a naviga-

tion expert system. In [10] the behavior-release mechanism of

the basal ganglia was used in a robot controller. In [11] it was

experimentally demonstrate that behavior initiating agents

based upon ANN and working in collaboration with other

image processing agents, produce highly proactive vision

guided robots.

For this paper the quality of being and agent implies the

capacity to perform a useful job without external intervention

and satisfying the four weak conditions of [12]: Autonomy,

Social ability, Reactivity and Pro-activeness. In isolated

conditions some of our agents have zero reactivity or zero

proactiveness and can be described as neural modules.

II. BEHAVIOR INITIATING AGENTS

In the drosophila brain studies [8] researches found non

linearities and the possible competence of only a few neurons

in the final behavior initiating mechanism, deep buried in

the flys brain. Such mechanism or agent provide the fly with

genuine spontaneity -a distinctive label of living creatures-

enabling the insect to get bored about tedious situations

and deciding (self decision) to take radical (and possibly

life saving) changes in its current line of behavior. These

biological behavior initiators mechanisms also produce, in

the long run, a conflict-free time sequence of behaviors,

which preserves the insect from physical damage.

The first concern of this work is to define a behavior

initiation mechanism which , mimics the capacity of genuine

spontaneity found in flies, and use it to auto impulse robotic

eye activities. The presented solution is based upon an n-flop,

a robust neural network constructed with sigmoidal neurons

and sharing a common excitatory input K . Being robust,

it serves as foundation for other large scale optimization

structures such as the TSP neural solver. The n-flop is the

basic building block beyond the concept of programming

with neurons [13], the term is derived from flip-flop a

computer circuit that has only two stable states. n-flops have

n stable states and the capacity to solved high dimentional

problems [14].

In an n-flop, neurons are programmed by their inter-

connections to solve the constraint that only one of the

n will be active when the system is in equilibrium. To

this end, the output of each neuron is connected with an

inhibitory input weight (-1) to each of the other n- 1 neurons

inputs (lateral inhibition). In addition each neuron receives a

common excitatory input K which, on controlled situations,

tends to force all neuron outputs towards 1. A solution is978-1-4244-8126-2/10/$26.00 ©2010 IEEE



found by rising K and forcing all neurons to some near-

equilibrium but unstable ”high-energy” state. At this point K

is set to almost cero, releasing the network to seek a low-

energy stable or equilibrium state. The solution given by a

non biased n-flop is an unique but unpredictable winner. A

unique winner guarantees a conflict-free operation in terms

of robotic actuators. In our terminology an isolated n-flop

behaves as an independent agent with high proactiveness and

null reactiveness, capable of producing random sequences

of conflict-free states. Proper biasing can launch statistical

reactiveness in this primal behavior.

The n-flop accepts elaborate data structured modulation

which makes possible to solve resource allocation problems

such as the TSP [13]. When properly done modulation

changes the statistics of the n-flop behavior from pure

random to quasi optimal. In terms of agent operations this is

equivalent to go from pure proactive to reactive-proactive

behavior. We use the n-flop as an integrating, modulable

behavior initiating agent, modulated with compressed image

information coming from others agents. In previous experi-

ments this arrangement showed encouraging results [11].

A. Image Compressing Agents

For this paper an image compressing agent is a trained

neural network with the following characteristics:

• Uses a 100x 100 pixels input retina

• Has one hidden layer

• Has a small number of output neurons (less than twenty

for our current modeling)

This finite network has to be successfully trained with

backpropagation to execute a task which requires image

processing capabilities [15].

We will use the term image compression to denote that

the high dimensional set of all possible definable images

is mapped into the outputs of a classifier network with a

few output neurons. In practice all high dimensional image

activities are compressed into the conduct of a few individ-

uals. In this work the main role of an image compressing

agent is to be trained in object recognition or object tracking

duties, in order to produce compressed image information

used, thereafter, to modulate a behavior initiating agent.

III. METHOD

Our goal is to construct neural machinery capable of

controlling a robotic eye that executes basic image oriented

duties while maintaining genuine spontaneity. The system

works independently, with no intervention from higher level

layers, although due to the neural nature of the controller

such intervention is feasible. For now the controller should

actively search for a particular kind of moving object and do

tracking and visual servoing of it for as long as possible.

Is the object is lost the eyed should assume a proactive

search. The system has to be able to escape from unavoidable

mistakes and traps that occur in image recognition based

upon trained ANN. The control activities are partitioned into

three neural sub-agents:

• Behavior initiating agent

• Image centering agent

• Image recognition agent

The behavior initiating agent or BIA is based upon an

n-flop and acts as the main control administrator. In non

modulated conditions this agent produces a conflict-free,

random eye movements by its own.

The image centering agent or ICA is a trained ANN

specialized in processing the image information that conveys

the relative position of an arbitrary image in the retina. Its

job is to help the main controller to bring interesting images

to the center of the retina.

The image recognition agent or IRA is a trained ANN spe-

cialized in recognizing a particular kind of object (icon) and

discriminates it from other objects or from the background

noise. Its job is to help the main controller in the recognition

of proper icons.

Once all participant agents are debugged and tested struc-

tural modulation is activated so that the behavior initiating

agent is modulated with information coming from image

processing agents (figure 1).

Fig. 1. Schematic of the robotic eye controller composed by three coop-
erating agents and a 100x100 retina, which provides collective information

A. The Behavior Initiating Agent

The image capturing system is constructed with a camera,

mounted in a pan and tilt platform (figure 2). The servo

motors are connected through non intelligent buffers to the

output of two independent 5-flops fired in parallel. These

flops acts as a behavior initiators agent (BIA) and the output

(winner) of each 5-flop is used to move the camera in

the x,y axis (horizontal/vertical) according to the 5x5 grid

arrangement shown in figure 2. Here after a given firing the

neurons x1, y3 have become winners. Non intelligent buffers

realized plain calculations and move the servos in order to

bring this virtual point to the center of the retina. When flops

are fired again a new virtual point in the grid appears, buffers

make calculations and servos respond accordingly. When the

BIA is repeatedly fired the system respond with a random

eye movement that chases an virtual moving point. End-ofrun

information which come from the buffers is fed back toward



the n-flops so that in free running conditions the eye improves

its random search (figure 2). Considerations about this search

are given in [11].

Fig. 2. Behavior initiating Agent. The output of two isolated 5-flops is
used to activate two servomotors according to a pre established 5x5 grid
arrangement. When flops are repeatedly fired the servomotors begins to
chase and imaginary moving point.

B. The Image Centering Agent

It is well known the importance of image centering in

image recognition processes [16]. Based in our experimental

results ANN are much more difficult to train, by any method

when the processed images move too much in the retinal

area. So a training scheme were the image to be recognized

stays around the center of the retina is adopted. This raises

the recognition rate dramatically but also makes necessary to

pull any interesting image to the retina center before it can

be recognize.

Image centering is done by providing compressed image

information to the previously defined BIA, which remains

the main administrator of camera movement. Compressed

image information comes from an ANN trained with a copy

of the grid system used in by the behavior initiating agent.

A figure (circle) of variable size is randomly located in a

i,j grid position and the respective information is presented

as targets to a trainable neural net with 10 outputs, which

map the 5x5 grid positions. In the example of figure 3 a

circle has been located in the x1,y3 position. From this the

10 required targets are generated. This net has 19 hidden

and 10000 inputs neurons. Training is done with standard

backpropagation in bout 100.000 cycles. After training the

output neurons indicate the grid position of a received image.

The output becomes noisy and contradictory when complex

images circulate in the retina. Figure 3 shows schematics.

C. The Image Recognition Agent

The image recognition agent is defined by the 100x100

retina input, 19 hidden and two output neurons. Its duty is

to recognize a specific icon or object. For control applications

we choose this icon to be a fat arrow. When training, a figure

of variable size and randomly rotated, is randomly located

near the center of the retina. If the figure is a fat arrow the two

targets are fixed at 0.9–0.1. Otherwise targets are fixed at 0.1–

0.9. A total of 100 objects, including circles and rectangles

Fig. 3. The image Centering Agent ICA. An ANN is trained to indicate
image location in a 5x5 grid superimposed over the 100x100 retina. For
isolated, not too big images obtained information is reliable. For complex
imagery, however, information becomes very noisy and contradictory.

of different size, are presented as counterexample for arrows.

Training is done with standard backpropagation and it takes

about 100.000 cycles to get a properly qualified individual.

After training, the network successfully recognizes fat arrows

located near the center of the retina in any position. It also

clearly rejects other icons such as circles or rectangles of

any size. Although trained as a classifier the output become

noisy and falls in contradictions when complex images reach

the retina. Figure 3 shows the schematic of a qualified image

recognition agent.

Fig. 4. The image recognition agent IRA. An ANN is trained to recognize
a unique icon (arrow) against other 100 icons For isolated images near
the center of the retina the obtained information is reliable. For complex
imagery, information becomes very noisy and contradictory.



D. Agents Cooperation: The Modulation Process

In an isolated n-flop the probability of neuron i to become

a winner depends on its internal potential V(i), given by :

V (i) =
n∑

j=1

aj ∗ (−1) + K ∀ j �= i (1)

where:

• V(i) is the internal potential,

• aj the output from neuron j

• K common excitatory input

For modulation purposes to this internal potential a mod-

ulating scalar bk is added:

V (i) =
n∑

j=1

aj ∗ (−1) + K + bk (2)

The scalar bk is in turn the weighted summation of signals

coming from the image centering agent.

That is:

bk =
10∑

j=1

oj ∗ wj (3)

where

• bk modulating scalar

• oj jth output of the ICA

• wj inter agent connecting weight

Equation 3 allows that the compressed image information,

coming from the ICA, modifies the statistical behavior of the

BIA.

The selection of appropriate inter agents weights wj is

critical. They change the behavior of the BIA from being

pure proactive and random, to being reactive-proactive or

only reactive. In living creatures a good balance between

these two characteristics is carefully tuned by evolution [8].

In the previous work, the selection of the inter agent

weights was done with simulated evolution [11]. For this

paper reverse engineering is used and the robotics eye is

manually tuned until it reaches its top working capacity.

Further improvement using simulated evolution might be

considered.

In order to simplify the image centering modulation in

equation 3, just the weights bettwen conected alike neurons

in the ICA and the BIA, are set different from cero:

bi = oj ∗ wi only for i = j (4)

This leaves only ten weights which were experimentally

set to 0.1.

Image recognizing modulation:

To complete te modulation process each inter agent weight

wj is in turn modulated (switched on-off) by the average

value of the difference of the image recognizing agent in the

last ten BIA firing that is, let

g =
1
10

0∑

j=−10

o1j − o2j (5)

where

• g=average of error

• o1j=output 1 of IRA

• o2j=output 2 of IRA

this average is compared against an operative threshold

which indicates how likely the icon analyzed in the last ten

BIA firing a correct one, i.e.

if g > threshold then close switch (6)

else open

The appropiate setting of inter agent weights and operative

threshold causes that when the centralized icon is the correct

one the BIA accepts centering information and performs

real tracking. If observed icon is not correct, centering

information is disconnected and BIA initiates virtual eye

movements (improved random search). See figure 5.

Fig. 5. Modulated Robotic eye controller. BIA accepts compressed image
information from cooperating ICA. This information is enough to carry on
an effective image tracking. The image recognizing agent (IRA) controls
through average error is an found icon deserves to be tracked or not. When
not tracking BIA performs imaginary eye movement.

IV. RESULTS

The system behaves well with simulated and real images

and shows some promising capacities. For instance when the

eye explores a complex background formed by superimposed

icons, some spurious figures are mistaken as arrows, caus-

ing a potential deadlock. In this condition the controllers

mimics a living drosophila and from time to time changes

spontaneously its behavior trying to find a way out (or so it

seems to an external observer). Under complex imagery lost

and recuperation of icon frequently occur. In such cases the

controller keeps a hard working, proactive attitude and, in

our experiments, no continuous lost of the icon ever occurs.

In figure 6 a typical tracking sequence is shown. The image

recognition agent has been deactivated and the controller

has to track-servoing a moving circle which changes in size

and have some associate noise. During the tracking the BIA



Fig. 6. The robotic eye controller realizes a tracking-servoing exercise by
following a moving circle which changes in size and has some lateral noise.
The two servo positions are generated by the BIA with the help of centering
information coming from the ICA.

generates the x-y servos positions with the help of centering

information coming from the ICA.

Figure 7 shows the x-y servo activities with the three

participating agents fully activated. Icons move up to 10

cm/seg and rotate up to 60 rpm., images are processed

at about 20 frames/sec. When and arrow is spotted servo

behavior is modulated by centering information and tracking

begins. If the arrow is lost servos change their behavior to a

semi-random search which produces many spurious images.

Fig. 7. Typical search-track sequence completed by the proposed neural
machinery. When an arrow is spotted the BIA accomplish tracking. If the
arrow is lost the BIA adopts a semi-random search. Many spurious images
are found and processed during the sequence. Icons move up to 10 cm/seg
and rotate up to 60 rpm.

V. CONCLUSION

The problem of tracking and recognizing a moving target

has been solved by partitioning it in three simpler and

separated tasks that can be executed by three independent

neural agents. Neural agents associated to those simpler

tasks proved to be easier to train and show a good general

performance. The proposed behavior initiating agent (BIA)

provides and integrating low bandwidth channel where others

specialized agents can contribute with relevant compressed

information. As a result the obtained controller accomplishes

an acute image related task, in a dynamical environment

without requiring the intervention of higher control layers. As

a disadvantage each decision taken by the controlling neural

machinery remains stochastic variable so erroneous decisions

will always be present. This behavior is shared with living

organisms. On the other hand the BIA has the capacity to

successfully keep on moving the robotic eye under very noisy

conditions and for long periods. Under such circumstances

spurious images are usually deadly traps for image-driven

machinery. This enduring capacity appears because under

appropriate modulation conditions the BIA keeps a dash of

genuine spontaneity.
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