
 
 

 

  

Abstract— Probabilistic record linkage has been used for 
many years in a variety of industries, including medical, 
government, private sector and research groups.  The formulas 
used for probabilistic record linkage have been recognized by 
some as being equivalent to the naïve Bayes classifier.  While 
this method can produce useful results, it is not difficult to 
improve accuracy by using one of a host of other machine 
learning or neural network algorithms.  Even a simple single-
layer perceptron tends to outperform the naïve Bayes 
classifier—and thus traditional probabilistic record linkage 
methods—by a substantial margin.  Furthermore, many record 
linkage system use simple field comparisons rather than more 
complex features, partially due to the limits of the probabilistic 
formulas they use.  This paper presents an overview of 
probabilistic record linkage, shows how to cast it in machine 
learning terms, and then shows that it is equivalent to a naïve 
Bayes classifier.  It then discusses how to use more complex 
features than simple field comparisons, and shows how 
probabilistic record linkage formulas can be modified to handle 
this.  Finally, it demonstrates a huge improvement in accuracy 
through the use of neural networks and higher-level matching 
features, compared to traditional probabilistic record linkage 
on a large (80,000 pair) set of labeled pairs of genealogical 
records used by FamilySearch.org. 

I. RECORD LINKAGE INTRODUCTION 
ECORD LINKAGE is a term first coined by H. L. Dunn 
[1] in the medical field.  Record linkage is the process 
of identifying pairs of records that refer to the same 

thing.  In most cases, each record refers to a person, and the 
challenge is to identify which records refer to the same real 
person.  This challenge arises in many different areas, 
including companies trying to avoid sending mail to the 
same person multiple times; hospitals trying to track data on 
the same patient across several visits; and many other 
situations. 
 FamilySearch uses record linkage for family history, 
also called genealogy, in which people attempt to discover 
who their ancestors and other relatives are.  It recently faced 
the task of having to find duplicate records in a billion-
person database, and continues to work hard to examine 
incoming and existing records in its system to identify 
multiple records that refer to the same real person. 
 In each record linkage situation, the available records 
have certain data fields that contain information about each 
individual.  In many applications, data fields may include 
such items as name, address, zip code, phone number, and so 
forth.  In genealogy, data fields include names; dates and 
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places for events such as birth, christening, marriage, death 
or burial; and names and events of relatives such as parents, 
spouses and children.  It can also make use of information 
about what type of record it is and where it came from (for 
example, two individuals listed as a child in different 
original birth certificates are not usually the same person, 
although the parents in those birth certificates could be the 
same). 
 Data values often have variation, even among records 
that refer to the same real person.  Names can have 
variations due to things like nicknames (“Bob” vs. 
“Robert”), married names vs. maiden names (“Elizabeth 
Turner” vs. “Elizabeth Smith”), spelling variations 
(“Elizabeth” vs. “Elisabeth”), initials (“John Henry” vs. 
“John H.”), typographical errors, illegible handwriting, and 
so on.  
 Dates can vary due to formatting differences (“12 Jun 
1850”, “6/12/1850”, “1850.12.6”), estimates (“1850”, “about 
1848”), typos (“1701” vs. “1710”), or even calendar changes 
(the beginning of the year moved from March to January in 
1752, for example, and not everyone made the change at the 
same time).  The same place is often spelled differently, 
abbreviated in various ways, or can be subject to boundary 
or name changes over time (after all, “Istanbul was 
Constantinople”). 
 Often normalization is done to convert fields to lower 
case, remove or standardize punctuation, put dates and 
places in a consistent format, etc.  It is even possible to use 
name and place catalogs to get standard values or ids that 
can be used for record comparison.  For example, “Berkeley, 
CA” and “Berkeley, Alameda, Calif.” could be looked up in 
a catalog to determine that both refer to “Berkeley, Alameda, 
California, United States.”  Such normalization (or 
standardization) helps avoid false disagreements in the data. 
 On the other hand, many different people can have the 
same name, and many different real people are born in the 
same place, or can have other fields that agree.  So although 
fields tend to agree for matching pairs of records (i.e., 
records that refer to the same real person), it is also possible 
for them to disagree on matching pairs and it is certainly 
possible for some fields to agree on differing pairs of records 
(i.e., on records that do not refer to the same real person). 
 In order to separate the matching record pairs from the 
differing ones, it is important to make the best use of as 
much information as is reasonably possible. 
 Most record linkage systems have traditionally used 
simple field comparisons as the basis for classification.  
However, record linkage algorithms can take advantage of 
higher-level features that take into account not just whether 
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two values in a field agree, but how well they agree, or any 
other higher-level logic, such as “did one person die before 
the other one was born,” or “do the two people have children 
born too close together or too far apart to be reasonable.” 
 One challenge of record linkage, then, is to find a list of 
features (including simple normalized field comparisons) 
that can be useful in determining whether two records refer 
to the same person.  Once the features have been found, the 
next step is to find the best way to use these features to give 
a score to a pair of records that reflects how likely it is that 
the two records represent the same person. 
 This paper reviews probabilistic record linkage, which 
is commonly used in the industry.  It then shows that this 
method is equivalent to the naïve Bayes classifier in machine 
learning.  The paper then discusses the use of more powerful 
features than simple field comparisons, and concludes with 
empirical results showing a dramatic reduction in error rates 
by using complex features coupled with neural network 
training, when compared with traditional probabilistic record 
linkage. 

I. PROBABILISTIC RECORD LINKAGE 
 The most common algorithm for record linkage has 
traditionally been the statistical probabilistic record linkage 
formulas, as set forth by Howard Newcombe et al. [2, 3], 
and formalized by Fillegi and Sunter [4]. 
 Let M be a set of matched record pairs (that both 
represent the same real person), and U be a set of differing 
(also called unmatched) record pairs (that represent two 
different people).  If there are n data fields, then two field 
agreement probabilities, called the m-probability and the 
u-probability, can be defined for each data field i, with 
i = 1..n, as follows. 
 
 m i = P(field i agrees on a matched pair) = am,i / cm,i  
 ui = P(field i agrees on a differing pair) = au,i  / cu,i 
 
 Similarly, the field disagreement probabilities can be 
defined as 
 
 m'i = P(field i disagrees on a matched pair) = dm,i / cm,i 
 u'i = P(field i disagrees on a differing pair) = du,i / cu,i 
 
where in both cases, 
 
 am,i = number of matched pairs that agree on field i 
 dm,i = number of matched pairs that disagree on field i 
 cm,i = am,i + dm,i 
 a u,i = number of differing pairs that agree on field i 
 du,i = number of differing pairs that disagree on field i 
 cu,i = au,i + du,i 
 
 In much of the record linkage literature, it is assumed 
that m'i = (1 - mi) and u'i = (1 - ui).  However, note that cm,i 
and cu,i could be less than |M| or |U|, respectively, because 
often records are missing data for a given field, in which 
case the field neither agrees nor disagrees.  In practice, 
therefore, we leave pairs of records out of the probability 

calculations for a field when either or both of the records are 
missing data for that field. 
 To compute a score for a given pair of records, a weight 
is added for each field.  If the two records agree on the field, 
an agreement weight is added.  If they disagree, a 
disagreement weight is added.  If one or both records have 
no data for the field, then neither weight is added. 
 These weights can be computed as follows.  The weight 
for agreement on field i is 
 
 wa,i = ln(mi / ui) = ln(mi) - ln(ui) 
 
and the weight for disagreement on field i is 
 
 wd,i = ln(m'i / u'i) = ln(m'i) - ln(u'i) 
 
 Finally, a decision is made by comparing the “score” 
(i.e., the summed weights) to a decision threshold, θ. 

 

II. MEASURING ACCURACY 
 The decision threshold θ is chosen to give the least 
objectionable trade-off between recall and precision on 
some labeled test data.  Recall is the percent of known 
matched pairs that get a score above θ.  Precision is the 
percent of pairs with a score above θ that are matched pairs.  
Put another way, the classifier is calling pairs a match if they 
get a score above θ.  So recall is the percent of real matches 
that the classifier calls a match, and precision tells what 
percent of pairs that the classifier calls a match really are a 
match.  Thus, the false negative (or “missed match”) rate is 
100% - recall, and the false positive (or “bad match”) rate is 
100% - precision. 
 It is important to understand this well, so Table 1 
illustrates an example.  Given 1000 labeled pairs of records, 
let us assume 400 are matching pairs and 600 are differing 
pairs.  Assume also that 300 of the 400 matching pairs get a 
score above some θ.  This means that the recall is 300 / 400 
or 75%.  Assume also that 50 of the differing pairs also get a 
score above θ.  Then there are 300 matching and 50 differing 
records with a score above θ, meaning that the precision is 
300 / (50 + 300) = 300 / 350 = 85.7%. 
 

 TABLE I 
EXAMPLE OF PRECISION AND RECALL 

 Matching 
Pairs 

Differing 
Pairs 

Total with 
score > θ 

Score > θ 300 50 350 
Score < θ 100 550 650 
Total 400 600 1000 

Recall = 300/(300+100) = 300/400 = 75%. 
Precision = 300/(300+50) = 300/350 = 85.7%. 

 
 By choosing different values of θ, it is possible to 
increase the recall at the expense of precision, or vice-versa.  
The only way to increase both, however, is to improve the 
classifier.  Some ways this can be done include (a) better 
normalization of data; (b) using different or more complex 
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features; or (c) generating the weights and/or scores using a 
more powerful algorithm. 

III. EQUIVALENCE OF PROBABILISTIC RECORD LINKAGE 
AND THE NAÏVE BAYES CLASSIFIER 

 One of the often-admitted weaknesses of probabilistic 
record linkage is that it depends upon the assumption that 
each of its fields is independent of the others.  This is clearly 
not the case, but results have been reasonable enough that 
the formulas have still been useful in practice. 
 It has been noted by some (e.g., [5]) that the 
probabilistic record linkage formulas are equivalent to the 
naïve Bayes classifier [6, 7], which depends upon the same 
independence assumptions.  To see that this is so, first 
consider the formulas used by a naïve Bayes classifier.  This 
classifier attempts to calculate the probability of each class 
C—which, in our case, include the two classes match (M) 
and differ (D)—given the feature values x1,…,xn, such as 
field agreement for each of the n fields.  Using Bayes’ 
theorem, this can be written as: 
 
 P(C | x1,…,xn) = P(C)P(x1,…,xn|C)/P(x1,…,xn) 
 
Using the independence assumption, this results in 
 
 P(C | x1,…,xn) = P(C)P(x1|C)…P(xn|C)/P(x1,…,xn) 
 
 To decide whether a pair is a match or not, the classifier 
determines which probability is greater, i.e., it assumes the 
pair is a match (M) rather than a differ (D) if 
 

 

 
where θ0 = ln(P(D)) - ln(P(M)), and is the constant, “default” 
decision threshold.  In practice, any value of θ could be 
chosen that gives the best trade-off of recall and precision.  
Note that the final formula is the same decision rule and set 
of weights used by probabilistic record linkage. 

IV. USING FEATURES INSTEAD OF FIELDS 
 Probabilistic record linkage traditionally uses simple 
field agreement or disagreement for its calculations.  
However, it is possible to use more complicated features to 
improve accuracy.  To see how this can be done, we first 
recast probabilistic record linkage into machine learning 
terms by having two mutually exclusive binary features, f2i-1 
and f2i, for each original field, i.  For example, assume we 
have two fields with weights as follows. 
 
 Field 1: given name 
    agreement weight = wa,1; disagreement weight = wd,1 
 Field 2: surname 
    agreement weight = wa,2; disagreement weight = wd,2 
 
 We can map these two fields to four features with the 
weights that apply when the feature “fires”: 
 
 Feature f1: given name agrees; weight = wa,1 
 Feature f2: given name disagrees; weight = wd,1 
 Feature f3: surname agrees; weight = wa,2 
 Feature f4: surname agrees; weight = wd,2 
 
 Since a particular field cannot both agree and disagree, 
only one or the other feature can fire for each field.  If either 
record in a pair is missing data for that field, then neither 
will fire. 
 Moving one step further, it is possible now to introduce 
more complex features than simple field comparisons.  For 
example, in comparing birth dates, we have analyzed dates 
among matching pairs of records and among differing pairs 
of records, and have found several levels of agreement.  An 
exact day, month and year agreement is best.  But matching 
records often have a complete (day/month/year) dates that 
differ by up to a couple of weeks in genealogical data (due 
to calendar changes, the lag between birth and recording, 
etc.).  Many genealogical dates are year-only dates, and 
these can be off by several years on matching records, as 
they often represent rough estimates by genealogists or 
automated systems.  On the other hand, complete dates that 
are off by more than a couple of weeks are rarely found 
among matching records, so these are rated as a complete 
disagreement. 
 Similarly, name comparisons can benefit from having 
several levels of agreement ranging from multiple identical 
name pieces (e.g., “John Henry” for both), to similar but not 
identical names (“John Henry” / “Jonathan H.”) to outright 
conflicts (“John Henry” / “John William” or “David H.” / 
“Jason Evan”). 
 By having several levels of matching for names, dates, 
places and other fields, it is possible to have different 
weights for those cases, which allows the classifier to 
discriminate more accurately. 
 Once we are free from the restriction of using simple 
field comparisons, it also becomes possible to use more 
complex features that can help distinguish between matching 
and differing pairs of records.  For example, although we 
may originally use the birth date and the death date as two 
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fields for comparison, we can also create another feature that 
looks to see if one of the people died before the other was 
born.  This is especially helpful when one record does not 
have a birth date and the other one does not have a death 
date. 
 By taking combinations of values and other higher-level 
features into account, we can provide the classifier with 
more domain knowledge so that it has more powerful pieces 
of information to use in scoring pairs of records. 
 Complex features might look something like this 

 Feature f1: given name agrees very well 
 Feature f2: given name agrees well 
 Feature f3: given name partially agrees 
 Feature f4: given name conflicts,  

and so on. 
 Each of these features either fires or does not for each 
pair, and certain features can be clustered into groups that 
are known to be mutually exclusive such as the four features 
above.  Genealogical matching features are described in 
detail in [8]. 

V. MULTI-VALUED PROBABILISTIC RECORD LINKAGE 
 With a slight modification, the probabilistic record 
linkage formulas can be altered to support arbitrary features 
instead of just field agreement and disagreement. 
 Instead of using an “agreement weight” and a 
“disagreement weight” for each “field”, each feature gets a 
single weight that is added when that feature fires.  
Equivalently, each feature can be viewed as having a weight 
that is always multiplied by the input, which will be either 1 
or 0. 
 The formula for each feature weight is computed as 
 
 wi = ln(mi / ui) = ln(mi) - ln(ui) 
 
and mi and ui are altered just slightly to be defined as 
 
 m i = P(feature i fires on a matched pair) = nm,i / |M|  
 ui = P(feature i fires on a differing pair) = nu,i  / |U| 
 
where nm,i and nu,i are the number of times that the feature i 
fires on matched and differing (“unmatched”) records, 
respectively. 
 When there are groups of features that are mutually 
exclusive and missing values are common, then mi and ui can 
use the number of matched pairs (and differing pairs, 
respectively) for which any feature in the group fired, 
instead of using |M| (or |U|, respectively). 

VI. NEURAL NETWORKS FOR MORE ACCURACY 
 Using a naïve Bayes classifier can produce useful 
results, but there are many other neural network and 
machine learning algorithms available, including a single-
layer perceptron [9], multilayer backpropagation network 
[10], support vector machines [11], rule-based systems [12], 
instance-based systems [13, 14], radial basis functions [15], 
and so on.  Often other algorithms can achieve significantly 

higher accuracy than the naïve Bayes classifier, and thus, 
higher accuracy than standard probabilistic record linkage. 
 Unfortunately, there has not be as much overlap 
between the record linkage and machine learning 
communities as there perhaps should have been, so often 
probabilistic record linkage is used by default even when 
more accurate alternatives are available.  One purpose of this 
paper is to help rectify this disconnect. 
 A single-layer perceptron has a simple learning rule, 
which is given in the pseudo-code below. 
 
Single Layer Perceptron(Training set T) { 
 initialize w[1..n+1] to random values between -0.01 and +0.01 
 let lr = 0.01     // small, constant learning rate 
 for each iteration (up to 1000) { 
  shuffle instances 
  tss = 0     // total sum-squared error 
  for each instance I in T (with inputs x[1..n+1] and target y) { 
   x[n+1] = 1     // set bias input to 1 always 
   sum = 0 
   for i=1..n+1 
    sum += x[i] * w[i] 
   activation = 1/(1 + exp(-sum))     // sigmoid function 
   error = y – activation    // = target - output 
   for i = 1..n+1 
    w[i] = w[i] + lr * error * x[i] 
   tss += error * error 
  } 
  stop if tss has not changed by more than 0.0001 
 } 
} 
 
 The algorithm iterates through a training set, T, 
consisting of instances, each of which has an input vector, x, 
and a binary target value, y.  One weight is trained for each 
input, plus one more weight for a bias (which can be trained 
by having an extra input whose value is always 1), and these 
weights are initialized with small random values.  One 
iteration (or epoch) consists of running through all of the 
training instances in random order.  Usually several (e.g., a 
few hundred) iterations are run, or training is stopped when 
the error rate on the training set (or, ideally, on a hold-out set 
of additional data) stops improving.  For each instance, the 
activation is calculated by multiplying the inputs by the 
current weights and running the sum through a nonlinear 
activation function such as a sigmoid.  Then the error is 
computed and weights are updated as shown. 
 In our application, the input vector x consists of binary 
attributes, one per feature value.  At most one feature value 
will be a “1” for each high-level feature, since each feature’s 
set of values (or “levels of agreement”) are mutually 
exclusive, as explained in earlier sections.  The output value 
y is also a binary value, where 0 means “not a match” and 1 
means a “match”.  
 One advantage that both probabilistic record linkage 
and single-layer perceptrons have over some other 
algorithms is that they derive a single weight for each 
feature, which makes it possible to have some understanding 
of the “meaning” of the weights.  For example, if there is a 
large negative weight on the “given name conflicts” feature, 
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and a small positive weight on the “given name weakly 
agrees” feature, those weights can be examined by hand to 
see if they make sense.  Furthermore, when the classifier 
makes a mistake, the features and weights can be examined 
to gain insight into the best place to do further feature 
engineering in order to improve accuracy. 
 There are limits to how far one can trust their 
interpretation of these weights, however.  In one case, for 
example, we found a negative weight associated with 
agreement on the father’s name.  This was counterintuitive, 
but seemed to be explained by the nature of our data, i.e., the 
records that had agreement in the father’s given name tended 
to also have quite a bit of other data about the persons that 
could be used; and yet it was quite common to have siblings 
being compared, who of course have the same father 
information, and a lot of other similar information.  So the 
neural network apparently found that penalizing for father 
name agreement allowed better accuracy on the common 
sibling case without hurting accuracy on real matches much. 
 Having one weight per feature value does mean that 
they are both constrained by having a linear decision 
surface, unlike many other algorithms, but although we have 
found a perceptron to yield much better results than 
probabilistic record linkage formulas, we have not found 
multilayer perceptrons or most other algorithms to improve 
accuracy much beyond that, if any, in our genealogical data.  
This may be due in part to the complex features that already 
take advantage of domain knowledge and “flatten” the 
decision space somewhat. 
 Perhaps the largest advantage that even a single-layer 
perceptron has over probabilistic record linkage (and, 
equivalently, the naïve Bayes classifier) is that it does not 
rely upon the independence assumption.  If some of the 
inputs are correlated, the training algorithm will tend to 
adjust weights to account for this.  By observing the effect of 
weights on accuracy and adjusting weights accordingly, 
neural networks can avoid assigning too much weight to 
features that have correlation with other features.  This 
happens naturally as part of the training process. 
 Neural networks typically initialize their training with 
small, random weights.  It would be possible to use 
probabilistic record linkage formulas to calculate weights, 
and use those as the initial weights for a single-layer neural 
network.  What would happen at that point is that the 
algorithm would take those weighs as a starting point, and 
then begin adjusting them based on the errors that are seen in 
the training data.  In other words, the probabilistic formulas 
can produce weights that are perhaps a nice start, but they 
fail to adjust the weights to overcome errors caused by the 
independence assumption, whereas the neural network 
training algorithm continues to adjust until the error rate 
stabilizes. 

VII. EMPIRICAL RESULTS 
 Experiments were run using a set of 80,000 pairs of 
genealogical records that were hand-labeled by genealogical 
experts as a “matching” pair (i.e., both person records appear 
to represent the same real person) or a “differing” pair 

(where the two person records appear to represent two 
different real persons).  48,000 of the records were used for 
training and 32,000 were used for testing. 
 Two versions of the data were generated.  The first was 
an original feature set with 159 binary features (in 32 
“feature groups”).  A simplified feature set was also 
generated, in which features were limited to just 16 fields, 
each of which was found to “agree” or “disagree”, as is done 
in traditional probabilistic record linkage.  (A field was said 
to “agree” if it exactly or closely agreed, and to “disagree” 
only if it conflicted.  Very weak agreement was treated the 
same as a missing value in the simplified feature set). 
 The probabilistic record linkage formulas were 
implemented as outlined in this paper, i.e., the original 
formulas from Section I were used for the simplified feature 
set to calculate agreement and disagreement weights, and the 
multi-value formulas from Section V were used on the full 
feature set to support the more complicated features.  
(Incidentally, the multi-value formulas produced identical 
results to those produced by the original formulas on the 
simplified feature set, as expected.) 
 A single-layer perceptron with initial weights in the 
range of –0.01 to +0.01 and a learning rate of 0.01 was used 
to train on both versions of the data as well.  1000 iterations 
were run, though it appeared to be well trained after about 
250 iterations.  Training time was less than a second for PRL 
and a few seconds for the neural network. 
 Both algorithms resulted in one weight per feature, and 
these weights were summed for all features that fired in 
order to classify pairs in the test set as match or differ using 
various thresholds.  (In other words, although training is 
done differently, execution is done identically for both 
methods once the weights have been generated). 
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Fig. 1.  Precision and recall of a single-layer perceptron 
neural network (NN) and a probabilistic record linkage 
(PRL) algorithm on genealogical records, using “simple” 
field agreement features or a full set of complex features.    

 
 Figure 1 shows the precision/recall results for the 
single-layer perceptron neural network (NN) and the 
probabilistic record linkage formulas (PRL), on both the 
simplified field-level comparisons (“Simple Fields”) and on 
the full feature set (“Full Features”).  The precision/recall 
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curves were generated by varying the threshold for each of 
the four runs.   
 As can be seen in Figure 1, the original PRL formulas 
on simple fields did have some success.  However, using a 
single-layer perceptron on the exact same data produces 
better results.  Switching from simple fields to the full 
features produces an even more dramatic improvement for 
PRL, but using a neural network on the full features 
improves accuracy even more. 
 

 TABLE II 
RECALL AT LEVELS OF PRECISION ABOVE 90% 

 Simple Fields Full Features 
Precision PRL NN PRL NN 

90 77.3 85.5 93.9 98.6 
91 76.4 84.1 93.5 98.5 
92 75.4 82.6 93.2 98.2 
93 74.5 81.2 92.8 98.0 
94 73.5 79.7 92.5 97.7 
95 72.5 77.3 91.0 97.2 
96 71.6 74.9 89.8 96.7 
97 60.7 64.2 86.8 95.5 
98 49.8 55.7 83.6 92.9 
99 40.6 45.1 68.9 90.7 

100 5.9 34.7 32.6 81.6 
 
 Table 2 shows the recall level at each precision level 
from 90 to 100.  As can be seen from the numbers, using the 
full features was consistently better than using the simple 
ones, and using a neural network was consistently better 
than using the probabilistic record linkage weights.  Note the 
dramatic jumps in accuracy by using both improvements: 
77.3 to 98.6; 40.6 to 90.7; 5.9 to 81.6. 

VIII. CONCLUSIONS 
 Early on in our work on genealogical record linkage, we 
compared PRL with various neural network and machine 
learning algorithms and found a great improvement by using 
even a single-layer neural network.  As we repeated these 
experiments with more data (as presented in this paper), the 
results have continued to hold.  Even a single-layer neural 
network has the huge advantage that it can adjust the 
weights to minimize error instead of just setting them once 
based on independent attribute statistics without any regard 
to whether they really produce good results. 
 In the machine learning and neural network literature, 
new algorithms often yield very small improvements over 
earlier ones.  To see improvements this consistent and this 
dramatic indicates that those still using traditional record 
linkage need to take notice and use more powerful features 
and better classifiers to improve accuracy.  For those already 
using neural networks, these results underscore the power of 
taking advantage of domain knowledge to improve features. 
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