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Abstract— Hidden state estimation in linear systems is a pop-
ular and broad research topic which became a mainstream re-
search area after Rudolf Kalman’s seminal paper. The Kalman
Filter (KF) gives the optimal solution to the estimation problem
in a setting where all the processes are Gaussian random
processes. However because of the sub-optimal behavior of the
KF in non-Gaussian settings, there is a need for a new filter that
can extract higher order information from the signals. In this
paper we propose using an information theoretic cost function
utilizing the similarity measure Correntropy as a performance
index. We present the superior performance of the new filter
on both synthetic data and on adaptive background estimation
problem and discuss future research directions.

I. I NTRODUCTION AND BACKGROUND

Hidden state estimation in linear systems is a popular and
broad research topic which became a mainstream research
area after Rudolf Kalman’s seminal paper [1]. It is well
known that the KF is the optimal solution for hidden state
estimation when the system is driven by Gaussian processes.
The elegance of the approach lies in having an analytical
solution to the state estimation and therefore having the
optimal estimation at every iteration.

The problem setup is as follows. The system equation is
given as:

xk = Fk|k−1xk−1 + wk−1 (1)

and the measurement equation is:

yk = Hkxk + vk (2)

wherewk and vk are independent, zero mean, Gaussian
noise processes with covariance matricesQk andRk, respec-
tively.

It is very important to understand the fundamental idea
behind the formulation of Kalman Filter(KF). Among many
ways that Kalman Filter formulation can be derived such
as using orthogonality principle or the innovations approach,
there is a derivation that can be achieved by the optimization
of the cost function given in (3) [2].
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whereMk is the covariance matrix of(xk − x−
k ) and:
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x−
k = Fk|k−1xk−1 (4)

The valuex̂k = argminxk
J(xk) will be the best estimate.

In this paper the system parameters will be assumed fixed
for simplicity however all the formulation can be extended
easily to time-varying case. For this purpose from now on
F = Fk|k−1 and H = Hk will be used for system and
measurement matrices respectively.

The formulation of KF can be derived by analytically
solving (5).

∂J

∂xk

= 0 (5)

Beyond the formulation that is achieved through this
simple optimization process, there is an important message
embedded in this cost function. It states that the main goal
of the estimation process is to reduce the effect of the
two sources of uncertainties in the dynamical system. The
system noise (uncertainty)wk and the measurement noise
(uncertainty)vk. Basically the filter tries to account for these
uncertainties and as it propagates the covariance matrix ofthe
error through iterations, it only makes use of the second order
information in the measurements. Therefore it is optimal in
the case of Gaussian uncertainties, however it is sub-optimal
when the gaussianity condition is loosened.

However it is reasonable to say that there would be many
applications of the filter where the gaussianity condition
would not hold and we would be left with the sub-optimal
solution the filter produces. Therefore there is a need for
a method that would use the information available in the
higher-order statistics of the signals. One such measure is
Correntropy [3].

Consider two scalar random variablesX,Y ∈ ℜ. Cross-
Correntropy [3] is a generalized similarity measure between
two arbitrary scalar random variables X and Y defined by:

v(X,Y ) = EXY [κ(X,Y )]

=

∫ ∫
κ(x, y)pX,Y (x, y)dxdy (6)

where κ(·, ·) is any continuous positive definite kernel.
In our formulation the Gaussian kernelGσ(·, ·) will be
employed. Therefore (6) becomes:

v(X,Y ) = EXY [Gσ(X,Y )]

=

∫ ∫
Gσ(x, y)pX,Y (x, y)dxdy (7)



whereσ is the kernel size or bandwidth. As we have only
limited amount of data and the joint PDF is unknown, we
use the sample estimator instead of the expectation operator.

v̂σ,N (X,Y ) =
1

N

N∑
i=1

Gσ(xi − yi) (8)

One nice property of correntropy is that it is positive and
bounded and with Gaussian kernel it reaches its maximum
if and only if X = Y . Another important property is that
for Gaussian kernel, correntropy is a weighted sum of all
the even moments of the random variableY −X . The proof
follows from the Taylor series expansion of the Gaussian
function in (7):

vσ(X,Y ) =
1√
2πσ

∞∑
n=0

(−1)n

2nσ2nn!
E[(X − Y )2n] (9)

It is seen in (9) that correntropy is the sum of all even
moments when the Gaussian kernel is used. The kernel size
appears as a parameter weighting the second-order moment
and higher order moments. With very largeσ (compared
to the dynamic range of the data) this measure approaches
correlation.

Having the property of correntropy being the weighted
sum of all even order moments of the random variable, it
might be useful to employ it in our cost function. Therefore
the cost function to be optimized in the Correntropy Filter
is:

Jc = v(‖yk −Hxk‖) +
1

L
v(‖xk − Fxk−1‖) (10)
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The reason behind using the Euclidean norm is to enable
the usage of the definition of Correntropy (6) on a multiple-
state multiple-output system. We choose N=1 to use the
instantaneous gradient, which makes the formula equal to:

Jc = Gσ(‖yi −Hxi‖) +
1

L
Gσ(‖xi − Fxi−1‖) (12)

To make the derivation easily followed we are going to
split our cost into two parts where:

J1 = Gσ(‖yi −Hxi‖)
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II. RESULTS

The filter is tested on artificial data first. To create the data
we have used a two dimensional rotation matrix, the system
has no inputs and is driven by a Gaussian mixture noise.
The mixture consists of two Gaussian distributions centered
at 0 and 2 with variances 0.1 respectively. The observed
signal is the sum of the hidden states. We see the superior
performance of the Correntropy filter in Fig. 1. Also one can
observe the errorpdf’s of both correntropy filter and KF in
Fig. 2. The new filter places the error distributions at 0 which
is very desirable. It also results in smaller error variance
compared to KF. In the measurement estimation the new
filter fails to place the error distribution around 0 however
the mean is close to 0 and the variance is of the same order
as KF. However it should be noted that as we assume the
measurements are available to us, we actually care about the
state estimation.
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Fig. 1. The figure shows the state estimation of both filters and the true
states.

A practical use of this filter might be beneficial in the
following scenario. It is well known that in video surveillance
applications it is very important to estimate background
and separate foreground objects from the background. This
will give possibility to detect sudden changes in the scene,
or would enable the machine to track the moving ob-
jects/subjects. However most of the time this is achieved
through human supervision, and a human operator finds a
moment on the video track with smallest possible number
of foreground objects and assigns it as background. This
however is open to errors and will suffer from the changes
that can occur through natural causes such as illumination
changes and seasonal changes. Therefore it is desirable
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Fig. 2. The figure shows the error distributions of the estimations.

to have an adaptive background estimation. Usage of the
Kalman Filter without a regularizer is problematic in this
setting because of the well known properties of the MSE
cost. KF would try to adapt more with respect to the
sudden changes in the pixel values. On the other hand
Correntropy cost function will tend to neglect the outliers
and therefore neglecting the sudden changes in the pixel
values. To implement the idea the following setup is used.
We assume there is a filter for each pixel of the video
sequence. The three hidden states are the RGB values of
the pixels of background. We have an identity matrix for
both F and H. Having an identity matrix for the system
matrix means we are not expecting the states to change which
makes sense as we are trying to find the background. As
we have the measurement as the pixel values of the current
frame the states directly relate to the measurements. We
assume the noise term in the state equation refers to the
moving foreground objects and the noise in the measurement
equation refers to the noise introduced by the sensors, such
as salt and pepper noise. We initialize the background as
the first frame available to us and then let the filter work
with each incoming frame unsupervised. As a result the filter
manages to extract the background, eliminate the salt and
pepper noise and adapt to the changes in the background
scene; such as removing a vehicle that left the parking lot
from the background or phasing a newly parked vehicle from
foreground to background.

Figures 3,4 and 5 demonstrate the success of the proposed
method. Please notice that the filter gradually learns the static
background and therefore eliminates the salt and pepper
noise as well as the moving foreground objects. It also
manages to include new objects to the background and
exclude the ones that left. This is obtained through the
measurement error in the cost function and the adaptation
is done very quickly.

When the Kalman filter is applied on the same problem the
outcome is as expected. The estimated background is almost

Fig. 3. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
10th frame in the video sequence. Notice that the filter yet learning the
background.

Fig. 4. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
1003rd frame in the video sequence. Notice that the filter is phasing out the
car that is leaving the parking lot from the background.

exactly the current frame of the video stream. The KF can
only detect the edges as they consist the sudden changes in
the pixel values. When the salt and pepper noise added to the
video stream, KF manages to reduce the effect of the noise
but fails to eliminate it completely. This is because of the
over-reaction of mean-squared cost function to the outliers
(in this case foreground objects and salt and pepper noise).
The results are shown in figures 6 and 7.

The next example shows a football game and is more
challenging as there are many moving objects at the same
time. No measurement noise is added this time. Again the
initialization is done by setting the first frame as the initial
background. It takes about 8 seconds for the filter to gather
the background information and exclude the players from the
first scene. From that point on when the players are moving
the filter removes them from the background, however as the



Fig. 5. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
2808th frame in the video sequence. Notice that the filter adapted to the
new scene with new parked car and completely discarded the bicycle rider.

Fig. 6. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
1303rd frame in the video sequence. Notice that the Kalman filter fails to
extract the background as expected.

game stops and the players rest they start to appear faintly in
the background which demonstrates the adaptive force of the
method. Also if we pay attention to the difference of current
frame and background this faint reappearance does not effect
the quality and it would be very easy to track the players.
Results are shown in figures 8,9 and 10.

III. C ONCLUSION AND DISCUSSIONS

In this report we presented the performance of the new in-
formation theoretic filter,Correntropy Filter, for hidden state
estimation in linear systems with non-Gaussian uncertainties.
We motivated the new filter by the cost function of the well-
known Kalman Filter. As it is well-known the KF uses the
second order statistics of the observed signals and therefore
provides the optimal solution when the uncertainties in the
system are Gaussian. On the other hand this assumption and
second order cost function gives the possibility of coming

Fig. 7. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
1303rd frame in the video sequence. Notice that the Kalman filter reduces
the effect of the noise but fails to extract the background.

Fig. 8. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
50th frame in the video sequence. Notice that the filter yet learning the
background and there are artifacts left from the initial frame.

up with an analytical solution. Therefore the convergence of
the filter is very fast.

It is obvious that the filter has very nice properties when
the environment has Gaussian uncertainties; but what about
real life scenarios? It is astonishing that KF still performs
considerably well in non-Gaussian scenarios. However this
performance might not be considered enough and opens up
the need for a new filter that uses higher order statistics. This
is the reason we adapted the cost function to use the infor-
mation theoretic measureCorrentropy. When the properties
of correntropy are analyzed, it is seen that correntropy is
indeed a weighted sum of all even moments of its argument.
This right away gave us a hint that this filter would be
useful in non-zero mean and non-Gaussian environments;
which proved true. Even though we gained the power of the



Fig. 9. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
1283rd frame in the video sequence. Notice that the filter almost perfectly
separated the foreground.

Fig. 10. The figure shows the current frame on top left, extracted foreground
on top right, and the extracted background on bottom right. This is the
2363rd frame in the video sequence. Notice that as the game stopped for a
throw the player start to appear faintly in the background scene.

information hidden in the higher order statistics, we lost the
analytical solution which is an important feature of the KF
and its variants. As the correntropy measure is a weighted
sum of even moments, there might be a possibility to create
an RLS type of algorithm to speed up the convergence.

The new filter has the free parameter called the kernel
bandwidth, that controls the behavior of the filter. It is
observed that the C-filter is behaving very similarly to the
KF when it uses very large kernel bandwidth. When the
kernel size is close to the dynamic range of the inputs, it uses
higher order statistics and outperforms KF in non-Gaussian
environments. For adaptive background problem we used a
kernel bandwidth of 1.5 as the RGB values are between 0 and
1. The other free parameter is the step size and authors are
currently working on the possibilty of finding a fixed point

update rule. This would eliminate the step size parameter as
well as speeding up the convergence.

This paper should be considered as the presentation of a
tool that can be applied to a broad range of problems. One
such application is presented on the adaptive background
problem. We show that the immunity of the Correntropy
measure to outliers gives us the ability of extracting the
background from a video sequence and adaptively change it
with respect to the changes in the environment. It also copes
with salt and pepper noise which is clearly not Gaussian.
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