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Abstract— This paper presents an online nonparametric
methodology based on the Kernel Least Mean Square (KLMS)
algorithm and the surprise criterion, which is based on an in-
formation theoretic framework. Surprise quantifies the amount
of information a datum contains given a known system state,
and can be estimated online using Gaussian Process Theory.
Based on this concept, we use the KLMS algorithm together
with surprise criterion to detect regime change in nonstationary
time series. We test the methodology on a synthesized chaotic
time series to illustrate this criterion. The results show that
surprise criterion is better than the conventional segmentation
based on the error criterion.

I. INTRODUCTION

THERE has been a recent surge of interest in tests for

structure change problem in various areas, such as eco-

nomics, audio processing, process control and sensor moni-

toring. Nowadays, common estimators include least squares

(LS) [1], two stage least squares (2SLS) [2], maximum

likelihood (ML) [3], likelihood ratio [4] and M-estimators

[5]. All the estimators mentioned above use a linear or

nonlinear function of the prediction error as a criterion to

make the decision how to segment the time series.

In this paper, a new estimator of change detection is

proposed based on the concept of surprise. Surprise is a

concept that can be framed in statistical terms and is a

subjective measure to estimate how a new datum affects

an observer, in terms of differences between posterior and

prior knowledge of a given world [6]. The definition of

surprise was first proposed by Pfaffelhuber [7] as subjective

information and later formalized by Palm [8]. More recently,

Itti and Baldi [6] extended the concept to a Bayesian frame-

work as the Kullback-Leibler (KL) divergence between the

prior and posterior in a model class. Most recently, surprise

was simplified to the negative log likelihood (NLL) of an

observation given the learning machine’s hypothesis [9], with

the advantage that it can be estimated online using Gaussian

Process Theory.

Even though the definition of surprise has been estab-

lished, its application to time series segmentation and change

detection is quite novel. Inspired by [9], this paper utilizes

the NLL version of surprise in combination with the Kernel

Least Mean Square (KLMS) algorithm [10] as an estimator to

detect structure changes in data streams to search appropriate

breakpoints. The KLMS finds a nonlinear optimal solution

to the regression (filtering) problem by implementing a
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linear adaptive filter in a Reproducing Kernel Hilbert Space

(RKHS). Since the optimal solution is obtained incrementally

with a weighted combination of past values of the input using

gradient descent learning, it is model free [11]. Assuming the

time series {x, f(x)} is an observation of a Gaussian process,

surprise is defined by a combination of the prediction error

and the input variance, therefore, surprise contains more

statistic information than estimators just utilizing prediction

error and is consequently more informative.

In this paper, we assume that the time series is locally

stationary and that there are abrupt changes amongst the

locally stationary segments. We train KLMS algorithms inde-

pendently for each segment, and assume that there is enough

data for training. In a test set we compare the segmentation

decisions based on the prediction error of the KLMS and the

surprise using a likelihood ratio test [12]. This methodology

can be easily extended to online training in a mixture model

framework as done in [12].

The organization of this paper is as follows. In Section

II, after a brief introduction of KLMS algorithm and sur-

prise, a method to analysis data structure change based on

KLMS training method and surprise criterion is interpreted.

Afterwards, experiments for Lorenz chaotic time series are

studied in Section III to support our method. Finally, Section

IV summarizes the conclusions and future lines of work.

II. A NONPARAMETRIC INFORMATION THEORETIC

METHOD

Suppose the goal is to analyze structure change of a

scalar data {x1, x2, . . . , xi . . .} assumed locally stationary.

For modeling, we train a predictor using the KLMS approach

in one of the stationary segments. Once the filter is trained,

let us call τn the state of the KLMS filter at time sample n.

A. Kernel Least-Mean-Square Algorithm

KLMS is a sample-by-sample update method for an adap-

tive filter in a reproducing kernel Hilbert space (RKHS).

After mapping the input data un into RKHS as ϕ(un), KLMS

finds an appropriate weight Ω through stochastic gradient

descent method [10], i.e.

Ωn = η

n−1∑
i=1

eiϕ(ui) (1)

where η is the learning stepsize, ei is prediction error at time

sample i and ϕ is the mapping from input space to RKHS.

Then by the kernel trick, the filter output can be computed



efficiently,

yn = ΩT
nϕ(un) = η

n−1∑
i=1

eiκ(ui, un) (2)

where κ is a positive definite function also called kernel.

KLMS algorithm is an online model free method, because

the system output is just a linear combination of the past

inputs with weighings given by the prediction error.

Furthermore, KLMS algorithm is a self-regularization

method because a constraint on the solution norm ‖Ω‖2
ensures well-posedness of this adaptive filter. The Tikhonov

Regularization is a useful technique to prevent ill-posed

problem in kernel adaptive filters [13]. It has been proved that

utilizing the regularization term is equivalent to constraining

the norm of the solution in LS problems [11]. Therefore,

KLMS algorithm is well-posed in the sense of Hadamard,

and does not need explicit regularization.

In conclusion, KLMS algorithm has many adavantages:

simplicity, sequential learning approach, higher accuracy

than linear filters, model-free, self-regularization and so

on. This fact inspires us to utilize KLMS as the training

approach.

B. A Brief Introduction of Surprise

Surprise is an information measure, which quantifies how

much information a data contains given “a known model

state”. Defined as NLL of the conditional of the input data

given the system state, surprise of a new data {un, dn} can

be written as

Sτ (un, dn) = − ln p(un, dn|τ) (3)

where un is the input, dn is corresponding desire, τ is the

known model and p(un, dn|τ) is the posterior distribution of

un, dn given the known model state. If Sτ (un, dn) is large,

the new sample is “abnormal” for the current model. On

the other hand, if Sτ (un, dn) is small, this new data is well

expected by the current model. How to estimate p(un, dn|τ)
is the key point. As a posterior distribution, p(un, dn|τ) can

be written as

p(un, dn|τ) = p(dn|un, τ)p(un|τ) (4)

In general, we assume the distribution of un to be indepen-

dent of the current model and if no a prior knowledge is

available about the time series, we assign a uniform priori

to p(un). That is,

p(un, dn|τ) = p(dn|un, τ)p(un) ∝ p(dn|un, τ) (5)

Therefore, surprise defaults to p(dn|un, τ), i.e, the condi-

tional probability of the new sample given the input data

and the model state.

Gaussian Processes regression (GPR) is a good choice to

estimate p(dn|un, τ) online. Assume the known model τ is

learned by the data set D = {(ui, di)|i = 1, 2 . . . ,m}. As

mentioned in [14], the prior distribution of system outputs

follows a jointly Gaussian distribution,

[y(u1), ..., y(um)]T ∼ N(0, σ̃2I + Gm) (6)

where Gm is the covariance function.

Gm =

⎡
⎢⎣

κ(u1, u1) . . . κ(um, u1)
...

. . .
...

κ(u1, um) . . . κ(um, um)

⎤
⎥⎦ (7)

for all i and κ is kernel. σ̃2 is the variance of the noise which

is independent to system output. κ is the covariance function

of the Gaussian process. According to the jointly Gaussian

distribution property, for a new data {un, dn}, n �= 1, . . . ,m,

the posterior distribution of known model output given the

input data un and model is

p(yn|un, τ) ∼ N(dn, σ
2
n) (8)

where

dn = hT
n [σ̃

2I + Gm]−1dm (9)

σ2
n = σ̃2 + κ(un, un)− hT

n [σ̃
2I + Gm]−1hn (10)

where h = [κ(u, u1), . . . , κ(u, um)]T and d =
[d1, . . . , dm]T .

Notice hT
n [σ̃

2I + Gm]−1hn is the computational intensive

part, scaling with O(m3). Such complexity is unacceptable

in KLMS. In [9] it is shown that we can approximate σn by

σ2
n = σ̃2 + κ(un, un)− max

∀ui∈{u1,...,um}
κ2(un, ui)

κ2(ui, ui)
(11)

in which the computation complexity reduces to O(m). In

conclusion,

Sτ (un, dn) ≈ − ln p(dn|un, τ)

= lnσn +
(dn − d)2n

2σ2
n

= lnσn +
e2n
2σ2

n

(12)

Surprise is similar to conventional NLL, but applied to

the posterior of the data given the system state. Owning to

GPR, however, surprise can be estimated online tracking the

change in the system state during operation.

C. Online Change Detection Based on KLMS and Surprise

In order to find online a change in statistical structure of

a nonstationary time series, the prediction error is normally

utilized. An extensive method present in [12] assumes that

the prediction error of known system is Gaussian, estimates

its mean and variance after the system is trained in the sta-

tionary segment, and then applies the generalized likelihood

ratio (GLR) test to decide if the new error sample fits the

model with a certain confidence interval. If not, the new

sample is considered in the change region.

A similar procedure can be utilized using surprise instead

of the prediction error, with some advantages. According to

Eq.12, the predicted input variance and the prediction error

affect the surprise measure together. Predicted input variance

is important to judge how large the prediction error really is

because if it is small and the error is large, it means that the



new sample is different from the acquired model and it is

likely an outlier. On the other hand, if the predicted input

variance is large and the prediction error is also large, then

there is not enough evidence to call the sample an outlier.

For the error criterion, the second scenario generates false

alarms.
According to the analysis in part II.B, large surprise value

implies a change in statistical structure, so it is a compelling

evidence to declare a change in statistics. In conclusion, our

method can be expressed as follows: First, we choose a

segment data {x1, x2, . . . , xm} from one of the stationary

regimes of the time series. Then a paired train sequence

{{ui, di}, i = 1, 2, . . .} is established by assuming the

previous points [xi−(N−1)T , xi−(N−2)T , . . . , xi−T ]
T belongs

to the input ui at time i and xi is the corresponding desire di,
where N is predictor order and T is time delay. The KLMS

algorithm is applied to the training sequence to establish

the current model τ . Finally, the likelihood ratio test based

on surprise detects the point of structure change. In the

last procedure, we use a two-model GLR as the decision

function firstly, with a fixed length window of M samples.

The window is slided by R samples. This provides a coarse

definition of the break point due to the need to evaluate the

GLR test on a window of M samples. This coarse model

applies an online nonparametric methodology to detect the

breakpoint. If the GLR value is larger than threshold δdet,
a breakpoint detection occurs. Once a detection occurs, the

three-model GLR is utilized for a fine breakpoint search

near the detection point [12]. Even though the fine model

is offline, in practice where online applications are required,

we can approximate the time when the breakpoint is detected

as the time when structure change happens. By repeating in

this way, KLMS training procedure is actived to study the

new model as soon as the breakpoint is detected.
The threshold is an extremely important parameter. Too

high a threshold results in high miss probability PM (δ)
of breakpoints, while too small a threshold leads to high

false-alarm probability PF (δ). In this paper, statistics and

confidence intervals are utilized to determine appropriate

threshold. As soon as the training process is over, we could

estimate the distribution of GLR for the data which has

the same structure as the known system. Then, according

to this distribution and acceptable confidence interval, an

appropriate threshold is determined. In conclusion, details

are shown in Algorithm. 1.

III. SIMULATION

The system of three ordinary differential equations ab-

stracted by Lorenz is widely used as a benchmark data set

for nonlinear learning methods. The system is generated from

the following ordinary differential equations:

ẋ = σ(y − x)

ẏ = −xz + γx− y

ż = xy − bz

(13)

We generate two time systems, one with σ = 16, γ =
45.92, B = 4, another one with σ = 10, γ = 28, B = 8

3 , and

Algorithm 1
Estimate the current model τ using KLMS

Apply τ to the training sequence to obtain σ0 and a set of

σ′2
0 s based on a sliding window of length M to estimate

the distribution f of Mlog
σ′2
0

σ2
0

δdet is estimated from f with confidence level α
% now for the test sequence
while {un, dn} available do

Segment {{un−M+1, dn−M+1}, ..., {un, dn}} as a win-

dow

GLR = Mlog
σ2
1

σ2
0

if GLR > δdet then
% structure change happens, search breakpoint T
T = argmax[(T − n+M − 1)log

σ′2
1

σ2
0

+(n− T + 1)log
σ′′2
1

σ2
0
]

else
No structure change, slide window at rate R

end if
end while

(M is the window size; σ2
0 , σ

′2
0 , σ2

1 , σ
′2
1 , σ′′2

1 are the surprise
variances of: whole training sequence, an arbitrary training
sequence segment of length M, the current window time n
on the test sequence, the subwindow between n−M + 1 to
T and the complementary subwindow between T to n)

pick x dimension to build two time series with a sampling

period of 0.01s. Zero mean Gaussian noise with a standard

deviation of 0.02 is added to these two series to simulate

noise. We segment 1000 samples from the first sequence

as training data to estimate the known system. Then we

extract 250 samples from two sequence respectively and

concatenate them as an example test series. They are shown

in Fig.1. The statistical structure of the first 250 test sample

is the same as the training, while the last 250 sample has

a different structure. We utilize KLMS to train the non

linear model. According to [15], the problem setting for

short time prediction is as follows: the previous 4 points

u(i) = [x(i− 40), x(i− 30), x(i− 20), x(i− 10)]T are used

to predict the present sample x(i). The stepsize equals to

0.2 and a Gaussian kernel with kernel size of 1 is chosen.

Then the likelihood ratio test based on prediction error and

surprise are applied with a window length of 30 and sliding

rate of 5.

TABLE I

PERFORMANCE OF ERROR CRITERION AND SURPRISE CRITERION

false alarm probability average detection time
surprise 0.053% 265.4

error 1.2% 270

One hundred Monte Carlo simulations are run with dif-

ferent realizations of noise. Table-1 shows that the surprise

criterion obtains much smaller false alarm probability and

could detect the breakpoint earlier than the error criterion.

Fig.2 is a representative result. Fig.2(a) shows the decision
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Fig. 2. Performance of error criterion and surprise criterion

function value with the two model GLR for coarse segmenta-

tion (resolution is 5 samples) and Fig.2(b) the search for the

optimal breakpoint of the two criteria.The surprise criterion

detects a coarse change in statistics at n = 265, while the

prediction error detects at n = 270. Therefore the surprise

criterion detect regime change 5 samples earlier than the error

criterion. The fine grain analysis within the window where

the change is detected yields the most likely detection for

both criterion at sample n = 251. Therefore both methods

are able to provide the same segmentation in the fine mode,

however the fine mode is not online. In practice where

online application are required, the time when the breakpoint

is detected is approximated by the breakpoint. Therefore

we conclude that in applications where online applications

are required, the surprise criterion is advantageous when

compared with the prediction error criterion.

IV. CONCLUSIONS

This paper presents a nonparametric information theo-

retic approach using the KLMS algorithm and the surprise

criterion, for structure change detection in nonstationary

time series. As we show theoretically and experimentally,

the method successfully detects online structure change and

locates with high accuracy the change point when compared

with the commonly used prediction error criterion. Because

the fine scale analysis is noncausal, the best strategy to

decrease the delay in detecting the regime change is to

advance the data window one sample at a time instead of

5 as done in the paper. Moreover, the approximated surprise

metric is easy to evaluate with the KLMS.

Although the preliminary testing was done in a synthetic

scenario, we believe that the positive results grant further

testing of the methodology in realistic situations. Besides,

we applied the methodology in a very simple scenario (single

regime change with the model trained off line), but surprise

can be extended to the mixture of experts methodology that

is able to cope with the online detection of multiple regime

changes with a fixed number of models trained online. This

extension will be left to future work.
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