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Abstract—A biologically-inspired neural coding scheme for From an ecological perspective the sound onset is poten-
the early auditory system is outlined. The cochlea responsis  tially useful because its location at the start of a sound may
simulated with a passive gammatone filterbank. The output 4 in priming a response. The initial onset also tends to be
of each bandpass filter is spike-encoded using a zero-crosgi . . . . .
based method over a range of sensitivity levels. The schen® i relat_lvely untgmted. by reverberation, as it usually @siat
inspired by the highly parallellised nature of the auditory nerve  the listener via a direct path from the source. For most tasks
innervation within the cochlea. A key aspect of early auditoy  later reflections are ignored in favour of the initial on&é&f[
processing is simulated, namely that of onset detection, ing Every sound begins with an onset. However, the precise
leaky integrate-and-fire neuron models. Finally, a time-denain — yefinition of what constitutes the ‘sound onset’ is less
neural network (the echo state networkis used to tackle the . .
what task of auditory perception using the output of the onset clear[19]: It is possible to analys_e a sound pnset based on
detection neurons alone. the physics of the sound production mechanism. In the case

of a trumpet blowing a pitched note, for example, there is
|. INTRODUCTION a short period of time at the beginning of the note when

The mammalian auditory system performs a diverse randee vibrating lips of the player are not influenced by the
of signal processing tasks in near real time. Presentedawittcoustics of the instrument. At some later time a coupled
raw sound field, analysis is carried out to extract meaningfinteraction begins, which leads to the steady-state pitche
features, which may or may not be buried along witihote. It may be argued that the onset portion of the note
contributions from other sound sources. Such useful featuroccurs before full coupling between instrument and player,
include the direction from which a particular sound arrived@nd the steady-state portion follows coupling. Howevezhsu
(the where task)[1], [2], the nature of a individual sounda physical process is not necessarily perceived in the same
(thewhattask)[3], interpreting the meaning of the sound (a§lear order by the auditory system. A number of further
in speech perception)[4] and decomposing a many-sourt&ctors, such as reverberant reflections, may contributieeto
sound field into seperablaudio streami§], [6]. In many final waveform which reaches the ear.
cases several of these tasks must be performed at the saméhe precise meaning of ‘onset’ in the context of perception
time. can thus only be properly explored by studying the response

The processing of sound within the auditory system i8f the auditory system to real sounds. What is clear is
highly integrated, involving neural processes at all Isyel that the temporal fine-structure and frequency evolution of
from the cochlea to the cortex. The system is two-waygound onsets varies widely, both in terms of perception[13]
with information passed both upwards to the cortex[7jand from a generative standpoint. A drum hit, for example,
and back downwards towards the sensory units through tetgarly involves a different kind of physical onset than
efferent system[8], [9]. A key feature is that certain kind€t slowly bowed violin string, and would be expected to
of processing occur early on, even in advance of the brapfoduce a different sensation of ‘onset’ in a listener. We
stem[10]. henceforth refer to the perceptual onset simply asotteet

In this work a biologically-inspired scheme for sound onsednd, in seeking to explore it with an auditory model, define
representation within the auditory system is investigated as a sudden and rapid rise in signal energy as seen by the
There is strong evidence to suggest that mammalian auditgigund receptor (in this case the cochlea). This may be a rise
systems are particularly attuned to the detection of sourftPm a zero-level, or a pronounced increase from one level
onsets, even from the earliest stages of the auditory psecetd a higher level.
ing chain[11], [12]. The auditory nerve itself is known to In this work the perceptual onset is simulated using a spik-
respond more strongly to the start of a stimulus, and there dng time-domain auditory model, based on the gammatone
neurons within the cochlear nucleus which spike strongly ilterbank[20]. Section II provides an overview of the model
stimulus onset[4], [13], [14]. Sound onsets may be impdrtar@nd the coding scheme. In section Ill a method is outlined
for sound source location[1], sound identification[15]6]j1 Which uses the simulated spiking onset response as a descrip
and are thought to play a role in the segregation of auditot@r for a musical sound classification task. Musical samples
streams[5], [6], [17]. are sourced from the McGill dataset[21]. The classification

is performed using a time-domain reservoir neural network
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min} @cs.stir.ac.uk). section V. Section V provides an overview of some initial
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P"?Qr%gisks Generate AN- with the cochlea filte.r. All sound samples used were sampled
(Mehannets like spike trains | pepressing at 44.1kHz and 16bits.
chamels SRR D o
ikes
\ spi O . .
® e ® - B. AN-like spike encoding
: T e — . .
s \A- _| »@ UIFneurons The outputs from the filterbank channels were coded in a
g () manner inspired by the neural coding within the mammalian
= (LLLLLL) auditory nerve. The output from each channel was spike-
Increasing encoded ovem.,.;s = 16 sensitivity levels, leading to a
spike generation total of nepanners X Nevers = 1600 individual spike trains.
sensitivity Inputs from multiple The use of multiple sensitivity levels per channel provided
adjacent bands information about the dynamic level changes of the signal
A. Acoustic layer|B. AN-like layer | C. Onset neuron layer across frequency and time.

Fig. 1. A schematic diagram outlining the auditory model.téN¢hat Sp.|kes Wer_e produced at positive-going Zet’O-CI’(?_ssmgs of
AN spike generation is shown for only one channel, and onsat- n the filtered signals. For each detected zero-crossinge
rons/depressing synapses for a single sensitivity level dmee input mean signal amplitude during the previous quarter cygle
channels. was calculated and compared to the valfigs;.;s described
by the njeve1s = 16 sensitivity levels. IfE; > S; then a
spike was produced at th&" sensitivity level. The sensitivity
levels ran from small values gt= 1 (high sensitivity, low
signal level required to produce a spike) to large values at
There have been numerous attempts to design a sounek 16 (low sensitivity, large signal level required to produce
onset detector[23], [24], [25], [26]. The most commora spike), with a differencé;...;s of 3dB between levels. For
uses for such a detector have been in automatic musiay spike produced at levgl= k, a spike was necessarily
transcription[27], sound segmentation[28], [17], [10lp | produced at all levelg < k. This representation is similar
synchronisation[29], monaural sound-source separ&jpn[to that employed in [33], where Ghitza noted that it led to
[30] and sound direction finding[1]. In this work an attemptan improvement in automatic speech recognition in a noisy
was made to use a neural-like coding of the sound onset asvironment.
a descriptor in a musical sound classification problem.
. The onset detection techmqye was _based ona bl.ologlcallé-' Onset detection
inspired model of the mammalian auditory system, illusttat
schematically in Fig. 1. The cochlea response was modelledThe AN-like representation described above does not
with the ubiquitous passive gammatone filterbaMj{Z0]. emphasise onsets in the encoded sound signal, unlike the
The output from each gammatone filter was spike-encodedal mammalian auditory nerve[12]. However, its highly
(B) using a zero-crossing based technique[31], the design pérallelised design makes it suitable for use with a seagnda
which was inspired by the phase-locked spiking behaviownset detection system. This system was inspired by the
observed in neurons which innervate the cochlea’s innehset response behaviour exhibited by certain cells within
hair cells (IHC)[32]. This encoding thus provides a crudehe cochlea nucleus (octopus, and some bushy and stellate
simulation of the auditory nerve's (AN) early response teells)[14].
sound stimuli. The strong spiking onset response observedthe AN-like spike trains were passed through depressing
by certain neurons within the cochlear nucleus[14] was thegynapses to a leaky integrate-and-fire (LIF) neuron layer.
modelled using an array of leaky integrate-and-fire (LIFyhere was one LIF neuron per filterbank channel per sen-
neurons, innervated by the simulated AN sign@l),(as sitivity level (i.e. nchanners X Tievers = 1600 onset neurons),
implemented in [31]. Example outputs from these processinghd each neuron was innervated by AN spike-trains from
stages are shown in Fig. 2. naq; adjacent frequency bands (at the same sensitivity level)
on either side of its centre frequency.

The synapse model was based on the 3-reservoir model
The first processing step of the auditory model was tased in [34] in the context of IHC-to-AN fibre transduction.
filter the sounds using a gammatone filterbank[20]. Thi# similar model has also been used in [35] to model rat neo-
fiterbank was comprised Ofichannetis = 100 bandpass cortex synapses. The model employed three interconnected
filters, the (roughly logarithmic) spacing and bandwidtlis oreservoirs of neurotransmitter. Reservoir represented the
which are designed to mimic the first order response aivailable presynaptic neurotransmitter, reservoiwas the
the basilar membrane. The 6dB down point bandwidth iseurotransmitter currently in use, and resenicontained
approximately 20% of the centre frequency of the channateurotransmitter in the process of reuptake (i.e. usedhdiut
Using 100 channels between 0.1kHz and 10kHz ensurget available for reuse). The reservoir quantities werateel

considerable overlap between adjacent filters, as is the cdwy three first order differential equations as follows:

Il. BIOLOGICALLY-INSPIRED CODING OF THE EARLY
AUDITORY SIGNAL

A. Gammatone filtering



Raw sound signal TABLE |
1 SUMMARY OF PARAMETERS USED IN THE SPIKING AUDITORY MODEL

g

k2]

g 051 [ Parameter | Description | Value |

2 o Nadj Number of co-innervating AN channels 3

S on each onset neuron

£ 051 «a Rate constant, neurotransmitter reservir 100

g . ‘ . ‘ . ‘ ) B8 Rate constant, neurotransmitter reservgir 9

0.25 0.26 0.27 0.28 0.29 03 031 0.32 ¥ Value during an AN-spike 1100

w Synapse weight (all synapses) 1

_ AN layer output, sensitivity level 5 Nchannels | Number of filterbank channels 100

3 100 o m » Nievels Number of sensitivity levels 16

§ # { '” *’ = . Slevels Inter-sensitivity level difference 3dB

E . = - E; Mean signal level over quarter cycle N/A

3 sl before detected zero-crossing

T S; Value of sensitivity levelj N/A

3 b Filter channel index N/A

- 0 ; ; , ; ; ; ; T Time-series representation of the initial N/A

T 02 026 027 028 029 03 031 032 onset fingerprint signal N/A
Otstep Duration of time windows used for time-serigs 2ms

R Onset layer output, sensitivity level 5 Ot group Timing threshold for onset event groupings | 20ms

T 100 - a 0o o)

< -

g ¥

g

L osof was used, so that each onset neuron was innervated by 7 AN

= channels.

S o Assuming the signal in a given bandpass charnelas

2 05 0.26 027 0.28 0.29 03 031 032  Strong enough to produce AN spikes at sensitivity leyel

Time (s) the corresponding onset neuron for chanheht sensitiv-
ity level j, would receive at leasf) spikes per second
Fig. 2. Example plots showing the raw sound signal, AN-codpikes — (\here F}, is the centre frequency of the channel). In the
and onset spikes for a single tone produced by a brass insttur®nset f ltiol . ti di t ch | h
spikes are clustered at the start of the note. Onlystifesensitivity level is case ol muitiple co-innervating a J_acen_ channels _On eac
shown here. We call the overall pattern of onset spikes,sacall channels onset neuroni{,q; > 0), as used in this study, this rate
and sensitivity levels, thenset fingerprintof the sound. would normally be greater due to contributions from higher
frequency channels. However, depletion of the available
neurotransmitter reservoik/, in conjunction with a slow

reservoir recovery rate, meant that an evoked post-synapti

dM potential (EPSP) would only be produced for the first few
a AR —M 1) incoming AN spikes. The recovery rate was purposefully
ac set low to ensure that synapses did not continue to produce
o = M-aC () EPSPs much beyond the initial sound onset.

dR The synapse weights were further set to ensure that a
ar aC — SR ®) single EPSP was insufficient to cause the onset neuron to fire.

- This ensured that multiple ESPSs from adjacent synapses

where o and g are rate constants, angd was positive . .

during an AN-spike, and zero otherwise. The differenti jrere required for the neuron potential to be large enough
' ) &0 fire. The neurons employed were also leaky[36], [31],

equations were calculated for each time sample as the Ameaning that the ESPSs needed to be close to concurrent
spike train signals were fed to the onset layer through the d]eor an action potential, or ‘onset spike’, to be produced.

pressing synapses. The loss and manufacture of neurotrans-
mitter was not modelled, and the amount of post-synaptic I1l. ONSET EFINGERPRINTS AND TIMESERIES
depolarisation was assumed to be directly proportionéal.to REPRESENTATIONS OF THE ONSET
Innervation of each onset neuron in chanhe&nd sensi-
tivity level j from n,q; adjacent channels resulted in a totalS
input to the neuron of

The problem of musical sound classification has been the
ubject of extensive study. The most common approach to
the task has been to calculate a range of descriptors for a

h=btnay, sound based on its Fourier components[15], [16], [37],,[38]
_ 39]. Such descriptors may be based on analysis of the whole
I ;(t) = Ch;(t 4 |
() h:g% . wCh.; () @ sound, or upon just the steady state and/or the initial ieabs

portion of the sound. Cepstral coefficients are a partibular
wherew was the weight of each synapse (the same fgropular quantity, and have shown good performance with

all inputs here) and’;, ; was the neurotransmitter currently certain classification tasks[40]. A mixture of frequencylan

in use in the cleft between the AN input from chanhelat time-domain quantities has also been proposed and shown to

sensitivity levelj and the onset neuron. A, value of 3 be up to 90% successful in a 15 class task[41].



Brass Plucked string

100 5 a time-domain representation of the onset. In order to éxplo

100 g ; .
i such a temporal representation, a neural network which

90 90 operated in the time-domain was required. The echo state
network approach, though originally developed for time-
80 80 | ; - :
; series prediction[22], has also proven to be a popular ehoic
70 70 & for similar classification tasks[42], [43], and was empldye
3 i here. Its recurrent, temporal nature was also appropriate f
g 60 60 : the biologically-inspired framework of the present study.
i 50 50
Q m=cacmsasss
§ 40 40 It would be possible to use the raw onset fingerprint as
° 30 30 the time-domain onset descriptor. However, in the present
study a simplified form was used which reduced the large 3-
20 % 20 dimensional onset array (over multiple channels and sensit
10 10 ity levels) to a smaller 2-dimensional time-series matffixis
was done to reduce the number of input channels required
by the echo state classification network (see section IV). Fo
10 20 30 20 40 . i : )
Time ste. . each processed sound, the entire onset fingerprint was first
P Time step

grouped to identify the onset feature which corresponded to
Fig. 3. Example plots showinigitial onset fingerprint time-seriedOFTS)  the start of the musical note. This was important as certain
(T representﬁtions ?f a brass nf_ote (trquzcéne, at} I(fg)g andﬁfhstring sounds, such as a flute tone played with heavy vibrato,
guitar, at right). Each raw onset fingerprint (describedbget spikes across : :
channel, sensitivity level and time) has been reduced tor2kional time- can prOduce onsgt splkes_dgrmg ,the Steady state du,e to the
series. The number of time steps depends on the nature ohdiedual  rather large amplitude variations introduced by the vitrat
onset. Local ;igﬂalTiQ_ter_lS“{] is represented by CO:;)Ur KSWQ%apqd ef’clch Here the onset descriptor was limited exclusively to the
time step is 2ms. This is the representation used as a so or for .. : : :
the classification problem with the echo state network (setian 1V). Inltla! onset tran,SIent' The grouping _proce(_jur_e examined
the time separation between onset spikes within each onset

fingerprint. Groups of onset spikes separated by more than a

Most of the outlined approaches have used standard sigiéitical time perioddty...,, (here set to 20ms) were treated
processing techniques to calculate a large number of gescr®S Separate onset events. Only the first onset event grouping
tors (~ 30 — 50), which form a one-dimensional featureWas picked out as the descriptor, which we term itiigal
vector D. Many sounds can be quickly processed, and @nset fingerprin{IOF, see Fig. 2).
standard feed-forward learning framework may be employed
to classify the sounds based on théir vector[41], [40].

Although such techniques can be remarkably successful,The IOF was further processed to reduce the number of
their underpinnings are somewhat removed from the spikemporal sample points. This was achieved by time-slicing
ing, highly parallelised nature of the mammalian auditoryhe IOF into windows of duratiobit .., (2ms used here). The
perception and learning systems. The work presented heggiking onset behaviour (across all sensitivity levelsihimi

is an attempt to work within a more biologically realisticeach time window of each filter channglwas examined,
framework, both for the formation of sound descriptors, aneind only a single spike at the least sensitive sensitivitglle
for the task of sound learning and classification itself. (corresponding to the maximum signal level) retained. If no

The auditory model described in section Il takes raw sourspikes occurred, a zero was recorded. In this manner thé onse
as an input and provides a simplified representation of ttgata within each time window was reduced to a single vector,
onset response within the cochlea nucleus as an output. Téd®shown in Fig. 3. For an IOF lasting 24ms, this resulted in a
objective of this work was to use this onset response asl&-stepinitial onset fingerprint time-serielOFTS) T;—1.12
descriptor in a musical sound classification task similar tewhere: indexes time-step), with each step comprised of an
that presented in [41]. The key feature of this approach is.;..n15-Sized vector. Without this reduction to a 2D time-
that it operates purely in the time domain, and producestonseries, the same IOF, in its raw onset state, would require a
spikes which are also in the time domain. If the principle058 X ncpanners X Mievers 3-dimensional matrix (where 1058
advantage of the method was to be exploited, namely the the original number of time samples). More sophisticated
retention of precise timing and frequency information dgri methods for performing this step, such as PCA, are currently
the sound onset, then the standard feed-forward clasgificat under investigation. The key outcome was that the raw IOF,
procedures (such as back-propagating or radial basisifunct while coded in a reduced space to give the IOFTS, remained
neural networks) were unsuitable. as a time-domain representation of the sound onset. This was

It was thus proposed that the classification descriptor lbe signal used as input to the time-domain neural network
based entirely on the pattern of onset spikes, which we cdBee section IV-A) to solve the classification task outliired
theonset fingerprintand that the descriptor should remain asection IV-B.



- - - - TABLE 1l
Large 1500 unit dynamical reservoir layer SUMMARY OF INSTRUMENT TYPES USED IN THE CLASSIFICATION TASK

Only output

\(-ommmm trained Class | Description Examples Number | Mean onset
label in class | duration
Bs Brass Trumpet, cornet| 456 80ms
Rd Reed Clarinet, oboe | 469 110ms
SB Bowed string | Cello, violin 524 120ms
SP Plucked string| Cello, violin 438 45ms
. SS Struck string Piano 510 46ms

B. The classification task

The classification task used musical instrument samples
Tnput layer (Relasses n0des, 1 per drawn from the McGill Master Samples dataset[21]. This
(Rehannets hodes) instrument class) dataset is comprised of high quality recordings of orclaéstr
Echo state recurrent neural network musical instruments, generally playing isolated notesh&a
than trying to classify individual instruments, the presen
Fig. 4. A schematic diagram outlining the structure of theiestate work attempted to use the initial onset fingerprint timeeser
network[22]. A single input layer consisting @f.yqnne1s NOdes connects  gageriptor to differentiate between instruments basedhein t
directly into a large 1500 unit untrained reservoir layenlyOconnections N . . .. .
from the reservoir layer to the output layer are trained. green node in  €XCitation technique, as in [41]. This is an easier task asut
the output layer illustrates the manner in which the netwisrkrained to  outlined in section | it is both physically and taxonomigall
flag & certain class according to the current input time sexpie relevant, and so provides a useful test case for the method.
The instrument categories chosen each involve a different
excitation mechanism[47], and so may be expected to pro-
IV. RECURRENT NEURAL NETWORKS FOR TIMESERIES  (yce a different kind of perceptual onset. The five instrumen
CLASSIFICATION categories ff.iqsses) Used were brass, reed (both single and
double reed), plucked string, bowed string and struck gtrin
These classes are summarised in Table II, together with a
The echo state network (ESN) approach to recurrent neurabte of their mean onset durations. A total of 2397 individua
networks has grown in popularity over the past decade[22]. $ounds were used, with approximately 450 sounds per class.
represents an implementation of reservoir computing, @heirhe data was split into a 70%/30% training/testing ratighwi
a large, fixed and interconnected reservoir layer is peetlirb 10 different random permutations run through the echo state
by an input signal(s), as illustrated in Fig. 4. A trainecelin  network classifier and analysed separately.
combination of the nonlinear responses of the reservotsuni To assemble the dataset, the sounds were first processed
is used as the learning framework. This approach is relatéuividually to obtain a set of stand-aloni@itial onset
to the support vector machine techniques, which transforfingerprint time-series7;*, wheres indexes each sound, and
data from an input space into a (much) higher dimension#tius runs froml : 2397 in the present study. The temporal
feature space[44], within which the data is easier to seéparaduration of eachy;®, i.e. the number of time-stegs varied
Such networks have proved particularly effective at cartaibetween approximately 10 and 50 (20-100ms) depending on
kinds of time-series learning problems[44]. Time domaithe nature of the onset (see Fig. 3 for an illustration of the
classification problems have also been addressed using tR#TS). The training dataset was assembled by randomly
ESN approach, in particular for speech recognition[423][4 picking 70% of the individual time-series sequencgS.
[45]. These sequences were concatenated together one after the
In this work an ESN was used as a framework for classpther in a random order, separated by short periods of
fying the time-series’ (IOFTS, see section Ill) obtainednfr ‘silence’, to create a single overall input training secuen
the onset fingerprints of single musical instrument notes. R
Matlab implementation of the ESN method developed by A teaching sequenc€’” was created with the same
Jaegeret al was employed[46]. The input layer consisted ohumber of time-steps a®”", and consisting Oficiasses
100 nodes, one for each of the,...es filter channels (see parallel sequences (one for each instrument class). At each
Fig. 4), each fed by the corresponding channel of the IOFT#$me-stepi, the teacher signa§i!” was zero everywhere
illustrated in Fig. 3. The reservoir layer consisted of 150@xcept in the sequence index of the current IOFTS, which
randomly connected and weighted additive sigmoid neuronsad a value of unity.
the interconnections of which were untrained. The output Periods of ‘silence’, composed of 10 time-steps with zeros
layer consisted ofi..;.s5¢s NOAeS, one for each of the musicalacross all channels and outputs, were inserted between each
instrument classes (5 in this case). Only connections letwetime-series7® within the training/teachings sequenceg™
the reservoir layer and the output nodes were trained, usiagd G”". Inserting silence in this manner was found to aid
a Delta-rule method. the classification success, most likely because it allowed t

Output layer

A. The echo state network approach



network to revert back to a ‘rest state’ between being stim-
ulated by the successive time-serigs’. Further study into

the nature of this effect are ongoing. The testing sequences 0 3.3
composed of the input sign@’* and the target signal”®,
were similarly assembled from the remaining 30% of the
onset data. o 15
C. Analysis of the ESN classification task

0 0.7

The echo state network described in section IV-A was
trained/tested ten times with different 70%/30% splitstaf t
five-class musical instrument dataset outlined in sect6B |
and Table Il. During the training phase the network was
stimulated with the training sequen@’™. At each time-
step the difference between the measured signal in the butpu I
layer MT" and the target outpu’” was used to refine the s 9.8 8:5 Sy 19
weights between the reservoir layer and the output layer. Bs Rd SB s sS

During the testing phase the trained network was stimu- Predicted class
lated with the testing sequen®@’® and the observed output
layer signalM™* recorded. No training was performed. The
network’s classification at each time-stegvas deduced by Fig. 5. A mean confusion matrix calculated from testing dé@% of
dentifying the largest component of (" signal. ("% 18 dat) uag len rossaldaons of e & clssiel et

The comparison between target and measured output cl@gSecho state network, with time-series onset fingerpf@5TS) as sound
was performed separately for ea@it (IOFTS) within the descriptors. Values are expressed as percentages of #ientohber of
overall testing sequend@.Te. In order to allow the network examples in each class. Shading is scaled from white (0%dptk §100%).
time to compute the class of the curréht, this evaluation

1 1 0,
was performed only during the final 50% of each lOFTShftwork method under-performed, at least with instrument

0 .
The class computed by the network for each 50% portion g assification problems, relative to results reportedvetisze

) C
an IOFTS was taken as the most frequently occurring Cla%vshich use the entire audio signal[41]. However, the work
reported here represents an initial pilot study, the resoilt

in the output signaM ™ during this time period. This class
was then treated as the network’s prediction of the instrume, hich may improve with further refinement of both the onset
ingerprinting method and the implementation of the echo

class for the current IOFTS, and was directly compared with
state network.

the true class recorded in the teacher sig@af for the
testing data. It may also be the case that there are limits as to the feasi-
V. RESULTS OF THE CLASSIEICATION TASK bility of identifying musical instrument types based onsuc
a reduced representation of their initial transients. éufje
while there is much evidence in the literature which reports
Fig. 5 shows a mean confusion matrix, produced froron the significance of the onset for sound identification
a ten-fold cross-validation of the testing data, for the fivéasks[15], [16], this has always been in combination with
class problem described in section IV-B (and Table II). Ibther features of the sound. The fact that it can be difficult
is important to note that this classification result was Hasdo identify the musical instrument type in absence of the
exclusively on the initial onset fingerprint representatio original sound onset does not necessarily imply that the
produced by the auditory model outlined in section Il. Nsound onset alone may permit a successful identification.
information regarding the steady state timbre was used. However, the relative success of the technique with three of
The reed (Rd), bowed string (SB) and struck string (SSpe five instrument classes does suggest that the technique,
classes were all identified correctly more frequently than n with suitable refinement, may prove useful.
The bowed string, which produced the longest mean onset ) _
duration of all five classes (see Table I), was particularifp- Analysis of the network leaming strategy
well identified (more than three-quarters of the time). The It is interesting to note that the two instrument classes
reed, which also featured a relatively long mean onsetith the longest mean onset durations, the brass and the
duration, was also identified with reasonable success. reed groups (see table 1), were the most accurately idedtifi
However, the confusion matrix revealed an overall clasthere may be two factors at play here. Firstly, a longer onset
sification success of approximately 45%. This low valueneans more average training time spent by the network in
was clearly influenced in part by the poor performance déarning the onset fingerprints from these groups. Secondly
the network in identifying the brass (Bs), plucked stringhe way in which the network was configured to learn may
(SP) and struck string (SS) classes. Such a result suggdsése favoured longer onsets. During the training phase the
that in its present condition the onset fingerprint/echtestanetwork was set to learn continuously, including during the

True class

SPr 8.9 155 29.8 15.3 19.2 -

A. Classification success rates



‘silent’ periods between the successiVé sequences within nal.

The remarkable success of the ear with all auditorystask

the overallR”" signal. A key feature of the ESN lies in remains a high benchmark at which to aim.

its memory of previous states. By allowing the network
to continue to train during the silent periods, regardlefss o
the immediately previous target class, it is possible ttigt i
ability to accurately identify the most recent time steps of
the previous7* sequence was disrupted. This would be
proportionally less significant for onsets of longer dwati
This theory is further supported by the fact that progredgiv
reducing the testing classification period (see sectioC)V-
towards the end of the onset did not increase the succe&d
rate. This is in direct contrast to what would be expected
if the network was consistently and successfully classgyi
the current7*. The 50% quotient used here was found tol4!
be about as good as could be obtained within the current
framework. [5]
Work is currently under way to alter the network’s learning [6]
pattern during the training phase. In particular, the netwo
will stop learning during all silent portions of the traigin
signal R, It will also be prevented from learning during [
the first part of eachy* within R”", in a further attempt
to prevent echoed states from recéht sequences from
interfering with the current input signal.

(1]

(2]

(8]

[9]
VI. CONCLUSIONS AND FURTHER WORK

The technique of onset fingerprinting was used to forrii0]
sound descriptors for a five class musical instrument identi
fication task. The initial results presented here suggest thiy)
such a method may provide useful as an initial classifier
which, in combination with further parameterisation of th%lz]
auditory signal, could allow a robust biologically-insgr
classification framework to be developed.

On their own the results here appear relatively poor i3l
terms of the method's overall success rate. Further work
will be required to determine if such a representation of the
auditory signal, based on the onset fingerprint technicae, c14
prove to be robust in isolation from the steady-state period
of a sound. A more advanced implementation of a reservdits]
network, such as an echo state network with periodically
engaged learning, may prove to be more suited to highjyg)
variable onset fingerprint patterns than the continuoumenl
learning employed so far. Development of a more traditional
Fourier-based description of the sound onset is also onggy
ing. This will allow a more detailed comparative picture
to emerge of the true success of the present bioIogicaII%/l—g]
inspired technique. [19]

Alternative methods for reducing/encoding the full onset
fingerprint as a time-series are currently under invesbgat
In particular, principle component analysis (PCA) may grov,g
to be a more useful technique for capturing the detail of the
onset fingerprint than the simple time-windowing method
employed here. Sound descriptors which involve aspecs
of the steady state timbre, in combination with the onset
fingerprinting technique, are also under development. THé
objective throughout remains to develop descriptors which
are biologically-inspired representations of the augitsig-
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