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Abstract—A proper way of choosing the tuning parameters
in a kernel model has a fundamental importance in determining
the success of the model for a particular task. This paper
is related to model selection in the framework of community
detection on weighted and unweighted networks by means of
a kernel spectral clustering model. Here we propose a new
method based on Modularity (a popular measure of community
structure in a network) which can deal with quite general
situations (i.e. overlapping communities with different sizes).
Thus we use Modularity criterion for model selection and not
at the training level, which is the case of all the clustering
algorithms proposed so far in the literature.

I. INTRODUCTION

I
N recent years, the study of networks has become a

major issue in the scientific community. Many complex

systems can be depicted as networks, where the nodes

(or vertices) represent some entities between which some

relationships exist. Examples include social networks, web

graphs, telecommunication networks, biological networks,

trade networks. An analysis very useful in starting to shed

light on such network data sets is the community detection

problem or clustering, that is identifying groups of nodes

within which the connections (or edges) are numerous and

between which they are scarce. Spectral clustering methods

are a standard technique used for clustering, based on the

eigendecomposition of a Laplacian matrix derived from the

data. Recently a spectral clustering formulation as a weighted

kernel PCA problem with primal and dual representations has

been proposed in [1].

The main advantage of this interpretation is the extension

of the clustering model to out-of-sample points. The cluster-

ing model can be trained on a subset of the whole graph (by

solving an affordable eigenvalue problem) and then applied to

the rest of the network in a learning framework. This issue

is particularly important when we have to deal with huge

complex networks. In this picture, it becomes crucial to have

a good criterion to properly select the parameters to feed

into the model (like the kernel parameters and the number

of clusters). In fact this allows to obtain a relevant grouping

among the data.

In the past a method to achieve this goal was proposed

by some of the authors and is called Balanced line fit (BLF,

see [1]). The main drawback of this method is that it gives

optimal results when the clusters to find are well separated.

Moreover it is characterized by a free parameter accounting

of the balance of the clusters which has to be selected. On the

other hand, in the real cases typically the communities are

of unequal size and/or density and they can shares a little

or a big amount of nodes (i.e. they overlap). Therefore in

this paper we propose a new criterion, that can be used in
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a complementary or alternative way to the BLF method, in

order to deal with more general cases. This criterion is based

on Modularity, a quality function introduced in [2] and well

known among the experts. The Modularity statistic has been

proved to be a meaningful quality function accounting for the

presence of a significant community structure in networks. It

quantifies the quality of a division of a network into modules.

Good divisions, which have high values of the Modularity, are

those in which there are dense internal connections between

the nodes within modules but only few connections between

different modules. Due to its versatility, it gave rise to many

applications. In particular in this paper we use it to extend

our previous work, in order to find a model selection criterion

more suitable than the previous (the BLF), in relation to

the analysis of network data. The most common use of

the Modularity is as a basis for optimization methods for

detecting community structure in networks, but only at the

training level (like in [3]). In our case, however, we use it as

a cluster validity criterion for our model selection purposes.

In particular, we consider Modularity to judge the partitions

found by the kernel spectral clustering algorithm, which is

based on its own optimization problem (briefly described

later). Comparison of the kernel spectral clustering model

with other algorithms, in terms of its ability in discovering

interesting communities in graphs, is beyond the scope of

this paper.

The rest of this paper is organized as follows: Section II

summarizes the kernel spectral clustering model. Section III

describes the Modularity-based criterion for model selection.

In Section IV we describe how we select the training and

validation set to use in the learning process. Some simulation

results are presented in Section V: weighted and unweighted

networks are taken into account, considering both real and

artificial datasets. Finally, Section VI concludes the paper and

suggests some future works.

II. KERNEL SPECTRAL CLUSTERING MODEL

A. General picture

A graph (or network) is a mathematical structure used

to model pairwise relations between objects from a certain

collection. It refers to a set of vertices or nodes and a

collection of edges that connect pairs of vertices. A way to

represent a graph is the use of a similarity matrix, which is

an N ×N matrix with N equal to the number of vertices in

the network. If the graph is unweighted S is called adjacency

matrix (in general indicated with the symbol A) and Sij = 1
if there is an edge connecting the vertices i and j, otherwise

Sij = 0. In the case of a weighted graph, S is called affinity

matrix and Sij indicates the strength of the link between the

vertices i and j. Associated to the similarity matrix there is

the degree matrix D, a diagonal matrix with diagonal entries

di =
∑

j Sij indicating the sum of all the edges (or weights)

connecting node i with the other vertices.



Given a graph (weighted or unweighted), several proper-

ties of it can be explained through spectral graph theory,

which is the study of the eigenspectrum of graph Laplacian

matrices ([4], [5]). Typical graph Laplacians are: the unnor-

malized Laplacian defined as L = D − S, the symmetric

normalized Laplacian LSYM = D−1/2LD−1/2 = IN −
D−1/2SD−1/2 and the non-symmetric normalized Laplacian

LRW = D−1L = IN − D−1S denoted LRW because it

is related to a random walk on the graph. In the latter

case, the clustering problem can be interpreted as finding a

partition of the graph in such a way that the random walker

remains most of the time in the same cluster with few jumps

to other clusters, minimizing the probability of transitions

between clusters. The stochastic transition matrix P of a

random walker on a graph can be obtained by normalizing

the similarity matrix S associated to the graph such that its

rows sum to 1. The ij-th entry of P represents the probability

of moving from node i to node j in one step of the process.

This transition matrix can be defined as P = D−1S. The

corresponding eigenvalue problem becomes Pr = ξr, and as

we show afterward it can be viewed as the dual problem of

a constrained optimization problem typical of least squares

support vector machines (LS-SVM)[6].

B. Primal-dual formulation

Given training data D = {xi}N
i=1, xi ∈ R

d and the number

of clusters k, the primal problem of spectral clustering via

weighted kernel PCA is formulated as follows [1]:

min
w(l),e(l),bl

1

2

k−1∑

l=1

w(l)T

w(l) −
1

2N

k−1∑

l=1

γle
(l)T

D−1e(l) (1)

such that e(l) = Φw(l) + bl1N (2)

where e(l) = [e
(l)
1 , . . . , e

(l)
N ]T are the projections, l =

1, . . . , k−1 indicates the score variables needed to encode the

k clusters to find, D−1 ∈ R
N×N is the inverse of the degree

matrix D introduced in the previous section, Φ is the N ×dh

feature matrix Φ = [ϕ(x1)
T ; . . . ; ϕ(xN )T ] and γl ∈ R

+ are

regularization constants. The clustering model is expressed

by:

e
(l)
i = w(l)T

ϕ(xi) + bl, i = 1, . . . , N (3)

where ϕ : R
d → R

dh is the mapping to a high-dimensional

feature space, bl are bias terms, l = 1, . . . , k − 1. The

projections e
(l)
i represent the latent variables of a set of k−1

binary clustering indicators given by sign(e
(l)
i ) which can be

combined to form the final groups in an encoding/decoding

scheme. The dual problem related to this primal formulation

is:

D−1MDΩα(l) = λlα
(l) (4)

where Ω is the kernel matrix with ij-th entry Ωij =
K(xi, xj), MD is a centering matrix defined as MD = IN −

1
1T

N
D−11N

1N1T
ND−1, the α(l) are dual variables. The kernel

function K : R
d × R

d → R plays the role of the similarity

function of the graph. Now, the dual problem is equivalent to

the random walk model and represents the weighted kernel

PCA formulation of it used in our simulations (for a complete

derivation see [1]).

C. Encoding/decoding scheme

In the ideal case of k well separated clusters and properly

chosen kernel parameters, the matrix D−1MDΩ has k − 1
piecewise constant eigenvectors with eigenvalue 1 (see for

example [7]). In the eigenvector space every cluster Ap,

p = 1, . . . , k is a point and is represented with a unique

codeword cp ∈ {−1, 1}k−1. The codebook CB = {cp}k
p=1

can then be obtained in the training process from the rows of

the binarized eigenvector matrix [sign(α(1)), . . . , sign(α(k))].
An effect of the centering matrix MD defined in the last

section is the fact that the eigenvectors have zero mean.

This is important for encoding since the optimal threshold

for binarizing the eigenvectors is automatically determined.

Taking into account that the first eigenvector α(1) already

provides a binary clustering then number of score variables

needed to encode k clusters is k − 1. The decoding scheme

consists of comparing the cluster indicators obtained in

the validation/test stage with the codebook and selecting

the nearest codeword in terms of Hamming distance. This

scheme corresponds to the ECOC decoding procedure and

it is used for out-of-sample extension. In particular, the

proposed extension is based on the score variables which

correspond to the projections of the mapped out-of-sample

points onto the eigenvectors found in the training stage. The

cluster indicators can be obtained by binarizing the score

variables for out-of-sample points as follows:

sign(e
(l)
test) = sign(Ωtestα

(l) + bl1Ntest) (5)

with l = 1, . . . , k−1. Ωtest is the Ntest×N kernel matrix eval-

uated using the test points with entries Ωtest,ri = K(xtest
r , xi),

r = 1, . . . , Ntest, i = 1, . . . , N . This natural extension to

out-of-sample points corresponds to the main advantage of

the kernel spectral clustering framework. In this way, the

clustering model can be trained, validated and tested in an

unsupervised learning scheme.

D. BLF model selection criterion

The BLF criterion exploits the shape of the points in the

projections space: it reaches its maximum value 1 when the

clusters do not overlap, and in this ideal situation the com-

munities are represented as lines in this space. In particular

the BLF is defined in the following way[1]:

BLF(DV , k) = ηlinefit(DV , k)+(1−η)balance(DV , k) (6)

where DV represents the validation set and k as usual

indicates the number of clusters. The linefit index equals 0
when the score variables are distributed spherically (i.e. the

eigenvalues are identical) and equals 1 when the score vari-

ables are collinear (representing points in the same cluster).

The balance index equals 1 when the clusters have the same

number of elements and tends to 0 in extremely unbalanced

cases. The parameter η controls the importance given to the

linefit with respect to the balance index and takes values in

the range [0, 1]. Then (6) can be used to select the number

of clusters and the kernel tuning parameters.



III. MODEL SELECTION CRITERION BY MEANS OF

MODULARITY EVALUATION

A. Introduction

Often people use heuristics to select the tuning parameters

present in their models. Since model selection is a crucial

point, here we propose a systematic way to do it properly.

Our method is based on a validation procedure1. We train

the kernel spectral clustering model described in the previous

section with different number of clusters and (where needed)

several values of the kernel parameters. In the validation step

the obtained groupings are judged depending on Modularity:

the one (or more) partition with the highest value of Modu-

larity is selected.

Modularity is a quality function of a graph introduced in

[2]. It is based on the idea that a random graph is not expected

to have a cluster structure, so the possible existence of

clusters can be revealed by the comparison between the actual

density of edges and the density one would expect to have in

the graph if the vertices were attached randomly, regardless

of community structure (this characterizes a particular null2

model). Modularity can be either positive or negative, with

positive high values indicating the possible presence of a

strong community structure. It can be written as follows:

Q =
1

2m

∑

ij

(Sij − Fij)δij (7)

with i, j ∈ Ap. The sum runs over all pairs of vertices, S as

before is the similarity3 matrix, m indicates the sum of all

the weights, and Fij represent the expected number of edges

between vertices i and j in the null model. The δij function

yields 1 if vertices i and j are in the same community and

0 otherwise. Since the standard null model of Modularity

imposes that the expected degree sequence matches the actual

degree sequence of the graph, the Modularity can be written

as: Q = 1
2m

∑
ij(Sij−

didj

2m )δij , where we indicate with di =∑
j Sij the degree of the vertex i. Then, after some linear

algebra calculations [9], it can be shown that the problem

of maximizing the Q-measure in order to find the optimal

partition is given by:

max
X

[tr(XT MX)] such that XT X = DM (8)

Here M = S − 1
2mddT is the Modularity matrix or Q-

Laplacian, d = [d1, . . . , dN ] indicates the vector of the

degrees of each node, DM ∈ R
k×k is a diagonal matrix

with diagonal entry DM
ii = |Ci| where |Ci| is the number of

nodes in cluster Ci, and X represents the cluster indicator

matrix.

1In principle cross-validation can be used as well.
2A null model of a graph, called also random graph, is defined as a graph

with the same properties of the original network like the degree sequence,
degree distribution etc., but with the edges placed at random.

3The first version of the Modularity is given for unweighted networks
where the similarity matrix is called adjacency and m represent the total
number of edges in the graph. However the generalization of Q-measure to
weighted graphs also exists [8].

B. Proposed algorithm

Our model selection algorithm can briefly be expressed in

the following way:

————————————————————————-

Algorithm MS Modularity-based model selection algorithm

————————————————————————-

Input: training set, validation set stage I, validation set stage

II, positive (semi-) definite kernel function K(xi, xj)
Output: selected number of clusters k and (if any) kernel

parameters

1) compute cluster indicator matrix X from the cluster

results of the different models, obtained using the

training set and the validation set I stage in the learning

process,

2) compute the Modularity matrix B = S − ddT

2m , where

S refer to the validation set used in the II stage of the

validation process

3) compute the Modularity M = 1
2m tr(XT BX),

4) select the model (i.e. k and the kernel parameters) cor-

responding to the partition(s) which gives the highest

Modularity value.

————————————————————————-

The training set, validation set and the two stages of the

validation process have the following meaning. The training

set is the matrix given as input to the kernel spectral

clustering model during the training phase and it is different

depending on the kind of network or the model selection

criterion considered (see for example Figures 1 and 2). The

validation process can be divided in two stages:

1) stage I: the cluster memberships for the validation set

(data not belonging to the training set) are predicted

by the model based on eq. (5)
2) stage II: the quality of the predicted memberships are

judged by means of a criterion (BLF or Modularity).

For BLF we do not change representation. On the other hand

for the Modularity criterion, in these two stages the validation

sets involve the same data (the nodes of the graphs under

study) but represented in different ways. See the next section,

Table I and Figures 1 and 2 for further clarification.

It is worthwhile to notice that the definition of the Mod-

ularity function is general4 because it does not make any

assumption on the kind of the community structure of the

network to detect. This feature is one of the main differences

with the BLF criterion, which is optimized to detect clusters

that are well separated.

IV. DATA HANDLING

Here the way of choosing the training and validation set

for the BLF and Modularity criterion is discussed, both for

weighted and unweighted graphs.

4Some modifications of the Q-measure to better detect overlapping
communities or to fit in the fuzzy logic framework have also been proposed
(see [10]).



A. Weighted graphs

In the analysis of the weighted networks the well known

RBF kernel, characterized by the bandwidth parameter σ, is

used to capture the similarity within the nodes. This point is

very important and it is worthwhile to discuss, mostly for its

implication in treating large graphs. For the BLF, we do not

consider the affinity matrix S ∈ R
N×N of the whole network

as a data matrix over which to apply the RBF kernel. In fact,

if N is very large, like for huge networks, the points of this

data matrix would have a very high dimension leading to

prohibitive computational burden for the calculation of the

kernel matrix). So we take the following steps:

• we select a square submatrix from the affinity matrix of

the whole network, S ∈ R
C×C , with C < N , which

represents a subgraph of the whole network,

• changing our perspective, we consider now this matrix

not as the affinity matrix of the subgraph, but as a data

matrix of points in Euclidean space representing the

training set, over which an RBF kernel is build,

• the validation set is also a data matrix with the same

dimensionality of the training set.

For the Modularity, we follow the same steps as before but

after having obtained the cluster results we change again our

perspective. In the second stage of the validation process we

jump back from the Euclidean representation to the graph

representation. So now the training set is considered again

as an adjacency matrix related to the training subgraph, and

we take as validation set the adjacency matrix representing

the remaining subgraph. This is done because the Modularity

matrix B includes in its definition an affinity (square) matrix.

Figure 1 summarizes this discussion.

B. Unweighted graphs

In dealing with unweighted networks a recently pro-

posed kernel function particularly suited for the study of

unweighted networks, the community kernel [11] is used to

build up the similarity matrix of the graph. This kernel func-

tion does not have any parameter to tune and the similarity

Kij between two nodes i and j is defined as the number of

edges connecting the common neighbors of these two nodes:

Kij =
∑

k,l∈Nij
Akl. Here Nij is the set of the common

neighbors of nodes i and j, A indicates the adjacency matrix

of the graph, K is the kernel function. As a consequence,

even if two nodes are not directly connected to each other, if

they share many common neighbors their similarity kij will

be set to a large value.

For the BLF, if we consider, in order to obtain the cluster

results during the learning process, the same training and

validation sets used for weighted graphs, we obtain very poor

results. So now for the learning process we consider another

representation for the initial graph. We think of the graph

as an adjacency list regarding each row of the adjacency

matrix as a source node (see section V-B). In this case the

computational burden due to constructing the (training and

validation) kernel matrices depends on the sparsity of the

initial graph. For the Modularity, we consider in the second

stage of the validation process the same validation set used

for the weighted networks, representing now the nodes of the

training set used in the first stage not as an adjacency list but

in terms of a square adjacency matrix. Figure 2 clarifies this

point.

Stage I Stage II

Fig. 1. Example showing the way the datasets are built up for the weighted
networks: in this specific case the first 25% of the total nodes form the
training set and the remaining 75% the validation set. The first row refers
to BLF, the second to Modularity. The first column represents the first stage
of the validation process (prediction of memberships), the second column
depicts the second stage. For Modularity, in the second stage of the validation
process we change again representation.

Stage I Stage II

Fig. 2. Example of training and validation set used for unweighted graphs.
Also in this case the first 25% of the total nodes form the training set and the
remaining 75% the validation set. Like for weighted graphs, in the second
stage of the validation process consisting of evaluating the quality of the
predicted partitions by means of Modularity criterion, there is a change in
the representation of the initial training and validation sets.

Validation set WN Validation set UNWN

Stage I Points in an Euclidean space Adjacency list

Stage II Square adjacency matrix Square adjacency matrix

TABLE I
REPRESENTATION OF THE VALIDATION SET FOR WEIGHTED (WN) AND

UNWEIGHTED (UNWN) GRAPHS IN THE TWO STAGES OF THE

VALIDATION PROCESS CONCERNING THE MODULARITY CRITERION.



V. SIMULATION RESULTS

In this section we discuss the results of the model selection

task achieved by using the method described in the last

section and we also compare it with respect to the BLF

criterion. Since an intrinsic characteristic of the BLF is that

the values it takes for 2 clusters are often very high, we do

not consider it as an useful information to take into account

in order to tune the number of clusters. In all the experiments

we use the 25% of the whole network as training set and the

remaining 75% as validation set. Real and artificial5 datasets

are investigated. Moreover, random subsampling is used

considering 10 randomization of the training (and validation)

set. Thus in all the following figures the variability due to the

randomization process is represented by means of boxplots,

while the average values are connected by a continuous

line. Finally, the significance of the detected clusters is

expressed by satisfactory values of the ARI6 index between

the true memberships and the predicted memberships for

two benchmark networks taken as examples (the unweighted

network formed by 9 communities indicated with Net_unw9

and the weighted graph characterized by the presence of 6
clusters referred as Net_w6 in Table II).

A. Weighted networks

A weighted network is a network where the edges among

nodes have weights assigned to them. In a number of real-

world networks, not all ties in a network have the same

capacity. In fact, ties are often associated with weights that

differentiate them in terms of their strength, intensity or

capacity. For example the strength of social relationships in

social networks can be a function of their duration, emotional

intensity, intimacy, and exchange of services. For non-social

networks, weights often refer to the function performed by

ties, e.g. the carbon flow between species in food webs, the

number of synapses and gap junctions in neural networks or

the amount of traffic flowing along connections in transporta-

tion networks.

Here two networks are analyzed:

• a benchmark network with 3 000 nodes and 148 928
edges formed by 6 communities without overlapping

nodes

• an artificial graph formed by 3 000 nodes and 149 033
edges with 4 overlapping communities.

B. Unweighted networks

In an unweighted network there is no strength associated

to the edges linking the nodes. Several representations can

be used:

• adjacency list: it is implemented as an array of lists,

with one list of destination nodes for each source node,

5The software provided by Fortunato related to the paper [12] is used.
6ARI stands for Adjusted Rand Index and it is a measure of agreement

between clustering results of a model and a known grouping which acts like
a ground-truth. The ARI ranges between −1 and 1 (perfect fit). For more
information see [13].
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Fig. 3. Artificial network with 6 not overlapping communities
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Fig. 4. Artificial network with 4 overlapping communities: both criteria
seem not able to detect the 4 overlapping clusters. This is likely due to the
not strong community structure testified by quite low values of Modularity
corresponding to the various partitions. So, in the future it could be fruitfull
to try out to use in cases like this the definition of Modularity suited for
graphs with overlapping communities.



• incidence list: a variant of the adjacency list that allows

for the description of the edges at the cost of additional

edges,

• adjacency matrix: a two-dimensional Boolean matrix,

in which the rows and columns represent source and

destination vertices and entries in the matrix indicate

whether an edge exists between the vertices associated

with that row and column,

• incidence matrix: a two-dimensional Boolean matrix,

in which the rows represent the vertices and columns

represent the edges. The array entries indicate if both

are related, i.e. incident.

In this section three networks are analyzed:

• the network of Western USA power grid [14] formed

by 4 941 nodes and 6 594 edges,

• a benchmark network with 3 000 nodes and 22 904 edges

formed by 9 communities without overlapping nodes

• an artificial graph formed by 3 000 nodes and 149 535
edges with 1 000 overlapping nodes.

In order to judge the results obtained on the real dataset, they

are compared with those obtained by applying the Louvain

method [3], considered as one of the fastest and accurate

algorithms for community detection.
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Fig. 5. Western USA power grid network: the number of communities
detected by the Louvain method at the finest resolution is 41. The BLF
criterion seems not able to recognize any community structure in the
network, since it takes quite low values.

C. General Discussion

Our technique is tested on 2 weighted and 3 unweighted

networks (real and artificial) and it is compared to another
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Fig. 6. Artificial network with 9 non-overlapping communities.
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Fig. 7. Artificial network with 3 overlapping communities. It is interesting
to notice that in this case BLF also suggest to select 4 clusters. On the
other hand Modularity criterion correctly identify the possible presence of
3 clusters without falling in this confusion.
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Fig. 8. Artificial network with 3 overlapping communities. Nodes repre-
sented in the space of the latent variables for 3 and 4 clusters. We can notice
that in the case of 3 communities there are not 3 clear lines, while in the
case of 4 communities the line structure is more evident. Probably the BLF
criterion is considering the overlapping nodes as belonging to a separate
community.

Network ARI_BLF ARI_mod

Net_w6 0.4384 ± 0.0715 0.5674 ± 0.1247

Net_unw9 0.8288 ± 0.1164 0.8285 ± 0.1166

TABLE II
ARI INDEX BETWEEN TRUE AND PREDICTED MEMBERSHIPS FOR TWO

ARTIFICIAL NETWORKS: THE UNWEIGHTED NETWORK FORMED BY 9

COMMUNITIES (NET_UNW9) AND THE WEIGHTED GRAPH

CHARACTERIZED BY THE PRESENCE OF 6 CLUSTERS (INDICATED WITH

NET_W6). THE SUBSCRIPTS BLF AND MOD INDICATE THAT THE

PARAMETERS k AND σ GIVEN AS INPUT TO THE KERNEL SPECTRAL

CLUSTERING MODEL ARE ESTIMATED RESPECTIVELY BY BLF AND

MODULARITY CRITERION. THE VALUES ARE AVERAGED ON 10

RANDOMIZATION OF THE TRAINING SET AND THE VARIABILITY IS

REPRESENTED BY THE STANDARD DEVIATION.

methodology previously developed by some of the authors,

that is the BLF criterion. It achieves comparable or better

performances than BLF criterion on the computer generated

graphs, even when the BLF criterion seems to fails, i.e. in

the analysis of the synthetic network with 3 overlapping

communities. Indeed in this case (see Fig. 7) from the boxplot

it could seem that the BLF is slightly more likely to detect

3 communities rather than 4 (less variability), but viewing

the results from another perspective (in the projections space,

namely the space of the score variables e(1), e(2), . . . , e(k−1)),

we can be convinced that this is not true. In fact in the space

of the latent variables, as we already mentioned in subsection

II-D, in the ideal case of perfectly separated clusters every

line represents a different community (refer to [1] for more

details). In Fig. 8 we compare the line structure in this space

for 3 and 4 clusters (related to the average value of the

BLF on the 10 runs we considered in Fig. 7), showing as

in the latter case the line structure is more clear. This is

an indication that the BLF criterion is probably detecting 4
clusters rather than 3. In the real network represented by the

topology of the Western US Power grid, the results given

by the method here proposed have a good agreement with

respect to the Louvain method, taken for comparison issues.

On the other hand the BLF criterion seems not able to carry

out any useful information about the presence of well formed

communities.

VI. CONCLUSIONS

A model selection method based on Modularity evaluation

is presented. In particular, this quality function is used to

judge the partitions obtained by means of out-of-sample

extension on a validation set by a kernel-based spectral

clustering model previously trained. In this way it is possible

to find the tuning parameters (like the number of clusters in

which to divide the graph under investigation and the kernel

parameters) to feed into the model, namely those related to

the partition(s) giving the highest value of Modularity.

The obtained results suggest that the Modularity-based

criterion can be a very useful tool for tuning the parameters to

feed into the kernel machines for the clustering of networks

(like the number of communities to look for and, when it

is the case, the kernel parameters), basically because of its

general definition. Moreover, it is important to notice that

the kernel spectral clustering model developed by some of

the authors, conveniently filled with optimal parameters, can

be used in principle to cluster very huge complex networks

in a reasonable time (thanks to the out-of-sample extension),

working with sparse representations. Finally, in future work

instead of using random subsampling, an active subsampling

technique like the Renyi Entropy criterion (see [6]) could

be considered in order to select a unique small representa-

tive subgraph to use as training set, which is essential for

analyzing large graphs with a low computational burden.
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