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Computational Intelligence Methods for Helicopter Loads

Estimation

Julio J. Valdés Senior Member IEEE, Catherine Cheung and Weichao Wang

Abstract— Accurately determining component loads on a
helicopter is an important goal in the helicopter structural
integrity field. While measuring dynamic component loads
directly is possible, these measurement methods are not reliable
and are difficult to maintain. This paper explores the poten-
tial of using computational intelligence methods to estimate
some of these helicopter dynamic loads. Thirty standard time-
dependent flight state and control system parameters were
used to construct a set of 180 input variables to estimate the
main rotor blade normal bending during forward level flight
at full speed. Unsupervised nonlinear mapping was used to
study the structure of the multidimensional time series from the
predictor and target variables. Based on these criteria, black
and white box modeling techniques (including ensemble models)
for main rotor blade normal bending prediction were applied.
They include neural networks, local linear regression and model
trees, in combination with genetic algorithms based on residual
variance (gamma test) for predictor variables selection. The
results from this initial work demonstrate that accurate models
for predicting component loads can be obtained using the entire
set of predictor variables, as well as with smaller subsets found
by computational intelligence based approaches.

I. INTRODUCTION

THE operational loads experienced by rotary-wing air-

craft are complex due to the dynamic rotating compo-

nents operating at high frequencies. As a result of the large

number of load cycles produced by the rotating components

and the wide load spectrum experienced from a rotary-wing

aircraft’s broad range of manoeuvres, the fatigue lives of

many components can be affected by even small changes in

loads. While measuring dynamic component loads directly

is possible, these measurement methods are not reliable and

are difficult to maintain. Therefore, an accurate and robust

process to estimate these loads indirectly would be more

practical and efficient.

Much research has been carried out using machine learning

methods to model operational loads experienced by fixed-

wing aircraft structure [19], [6]. In the case of rotary-wing
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aircraft, the loading spectrum experienced by the airframe

structure is significantly more complex since the dynamic

rotating components operate at frequencies several orders of

magnitude higher than for fixed-wing aircraft. There have

been a number of attempts at estimating these loads on

the helicopter indirectly with varying degrees of success

[14]. While the use of artificial neural networks for this

problem is not uncommon [7], [12], an in-depth study of the

applicability of neural networks or other machine learning

methods for helicopter loads estimation is lacking.

This paper describes the preliminary study exploring the

potential of using computational intelligence methods for

helicopter loads estimation. The specific problem was to

estimate one of the loads in the main rotor system of the

Australian Army Black Hawk helicopter (shown in Fig. 1)

using only flight state and control system (FSCS) parameters

as input variables. The objectives of this work were as

follows: 1) to determine if the problem could be solved by

computational intelligence techniques and generate accurate

models for the target parameter; 2) to extract information

from the data that could enable a better understanding of

the physical process of the input/output relationship; and 3)

to identify and eliminate irrelevant and/or noisy information

from the input variables and create much simpler but well-

behaved models to use as input.

Fig. 1. Australian Army Black Hawk helicopter.

II. THE HELICOPTER LOADS ESTIMATION PROBLEM

Operational requirements are significantly expanding the

role of military helicopter fleets in many countries. This

expansion has resulted in helicopters flying missions that

are beyond the design usage spectrum, which was originally

used to life fatigue critical components. Due to this change



in usage, there is a need to monitor individual aircraft

usage to compare with the original design usage spectrum

in order to more accurately determine the life of critical

components. One of the key elements to tracking individual

aircraft usage and calculating component retirement times is

accurate determination of the component loads.

The rotor system components and attachments are some

of the most fatigue-critical structural components on a he-

licopter. Direct measurement of the dynamic loads in these

areas has traditionally been accomplished through slip rings

or telemetry systems, however, these techniques are difficult

to implement and are often unreliable. While advances in

sensor technologies in the past decade have produced com-

pact, lightweight, and economical devices, high equipment

costs and large data storage requirements still make direct

load monitoring impractical.

A. Flight conditions and parameters of interest

One of the main goals of this research was to determine

if the dynamic loads on the helicopter could be predicted

solely from the FSCS parameters, as these parameters are

already recorded by the flight data recorder found on most

helicopters. Thirty FSCS parameters that were used as input

variables are listed in Table I.

While many of the helicopter dynamic loads are of interest,

this study selected only one of these loads as the target

parameter: the main rotor blade normal bending (MRNBX).

Similarly while there were over 50 flight conditions per-

formed during the flight loads survey, the results from only

one manoeuvre are presented: forward level flight at full

speed (VH ). Even though this flight condition is a simple

steady state manoeuvre, the purpose of this preliminary study

was to explore the applicability of computational intelligence

methods for this problem and so this flight condition was

deemed an appropriate starting point.

TABLE I

FLIGHT STATE AND CONTROL SYSTEM PARAMETERS.

Parameter Parameter

Air speed (boom) Directional pedal position

Vertical acceleration,
load factor at CG Collective stick position

Angle of attack (boom) Stabilator position

Sideslip angle (boom) % of max main rotor speed

Pitch altitude Retreating tip speed

Pitch rate Main rotor speed

Pitch acceleration Tail rotor speed

Roll attitude No.1 Engine torque

Roll rate No.2 Engine torque

Roll acceleration No.1 Eng power lever (temp)

Heading No.2 Eng power lever (temp)

Yaw rate Barometric altitude (boom)

Yaw acceleration Temperature (Kelvin)

Longitudinal stick/cyclic position Altitude (height density)

Lateral stick/cyclic position Barometric rate of climb (boom)

B. The Data

The data used for this work were obtained from a S-

70A-9 Australian Army Black Hawk (UH-60/HH-60 variant)

flight loads survey conducted in 2000 in a joint flight loads

measurement program between the United States Air Force

and the Australian Defence Force [9]. During these flight

trials, 65 hours of useable flight test data were collected

for a number of different steady state and transient flight

conditions at several different altitudes and aircraft config-

urations. The strain data from the Black Hawk flight load

survey were captured by 321 strain gauges, with 249 gauges

on the airframe and 72 gauges on dynamic components. The

airframe gauges were mounted on areas prone to cracking

and structural distress, primarily in the upper cabin, tail

cone, tail pylon, horizontal stabilator, external stores support

system, and main rotor pylon. Accelerometers were installed

to measure accelerations at several locations on the aircraft

and other sensors captured flight state and control system

parameters. The parameters were recorded at one of three

sampling frequencies: 52 Hz, 416 Hz, and 832 Hz. Full

details of the instrumentation and flight loads survey are

provided in [9].

III. COMPUTATIONAL INTELLIGENCE METHODS

A. Time Series Analysis in High Dimensional Spaces

In time series analysis coming from dynamic systems,

phase space methods play an important role. However, when

the embedding dimension of the series is large and/or the

number of significant time lags exceeds 3 standard graphical

representations become unfeasible. The same situation arises

when the number of series that describe the state of a

system is large, as in the present case. However, nonlinear

transformation of these spaces into lower dimensional ones

becomes an alternative, especially if it is possible to assess

the accuracy with which the transformed space preserves the

internal structure of the information contained in the original

space.

The construction of a smaller feature space can be per-

formed via a nonlinear transformation that maps the original

set of N -dimensional objects under study O into another

space Ô of smaller dimension d̂ < N . This approach has

been used for data representation and Visual Data Mining

(knowledge and data exploration) [22]. There are essentially

three kinds of spaces generally sought [23]: i) spaces pre-

serving the structure of the objects as determined by the

original set of attributes or other properties (unsupervised

approach), ii) spaces preserving the distribution of an existing

class or partition defined over the set of objects (supervised

approach), and iii) hybrid spaces. Data structure is one of the

most important elements to consider and it can be approached

by looking at similarity relationships [2], [1] between the

objects, as given by the set of original attributes [22]. From

this point of view, transformations φ can be constructed that

minimize error measures of information loss [20], based on

similarities or distances.

If δ(x⃗, y⃗) is a dissimilarity measure between any two

objects x⃗y⃗ ∈ O , and ζ(ˆ⃗x, ˆ⃗y) is another dissimilarity measure

defined on objects ˆ⃗x, ˆ⃗y ∈ Ô (ˆ⃗x = φ(x⃗), ˆ⃗y = φ(y⃗)), a



frequently used error measure associated to the mapping φ
is the Sammon error [20]:

Se =
1

∑

x⃗ ̸=y⃗

δ(x⃗, y⃗)

∑

x⃗ ̸=y⃗

(

δ(x⃗, y⃗)− ζ(ˆ⃗x, ˆ⃗y)
)2

δ(x⃗, y⃗)
(1)

It is possible to minimize Eq. 1 with a wide variety

of methods, ranging from classical optimization to com-

putational intelligence-based techniques. Here the Fletcher-

Reeves algorithm (FR) is used, which is a well known tech-

nique used in deterministic optimization [15]. It assumes that

the function to optimize can be approximated as a quadratic

form in the neighborhood of a N dimensional point P and

exploits the information contained in the partial derivatives

of the objective function. This kind of optimization is prone

to local extrema entrapment, therefore it is recommended to

try different random initial parameter vectors.

The accuracy of the mapping depends on the final error

obtained in the optimization process. Explicit mappings

can however be obtained from these solutions using neural

networks, genetic programming, and other techniques. In

general φ is a nonlinear function and in order to compare

results from transformations obtained with different algo-

rithms or different initializations, a canonical representation

is preferred. It can be obtained by performing a principal

component transformation P after φ, so that the overall

transformation is given by the composition

φ̂ = (φ � P) (2)

referred to as the canonical mapping. Since P does not

change the dimension of the new space, an advantage of

the canonical mapping is that it simplifies the comparison of

different solutions. It also contributes to the interpretability

of the new variables, as they have a monotonic distribution

of the variance. The images of the mapped objects can be

used for the construction of a 3D model using virtual reality

for visual data mining and data exploration, as it is done in

this paper.

B. Gamma Test (Residual Variance) Analysis

The Gamma test is an algorithm developed by [10], [21],

[4] as a tool to aid in the construction of data-driven models

of smooth systems. It is a technique aimed at estimating the

level of noise (its variance) present in a dataset. Noise is

understood as any source of variation in the output (target)

variable that cannot be explained by a smooth transformation

(model) relating the output (predicted or dependent variable)

with the input (predictor) variables.

The fundamental information provided by this estimate

is whether it is hopeful or hopeless to find (fit) a smooth

model to the data. Here a ‘smooth’ model is understood

as one in which the first and second partial derivatives are

bounded by finite constants for every point of observation.

The gamma estimate indicates whether it is possible to ex-

plain the dependent variable by a smooth deterministic model

involving the observed input and output variables. Model

search is a costly, time consuming data mining operation.

Therefore, knowing beforehand that the information provided

by the input variables is not enough to build a smooth

model is very helpful. It may give an indication that more

explanatory variables should be incorporated to the data or

that the underlying model may be very complex. If for a

given dataset, the gamma estimates are small, it means that

a smooth deterministic dependency can be expected. It also

gives a threshold in order to avoid overfitting and it can

give an indication of how many observations are minimally

required in order to build a model which performs with that

mean squared error. Overall it gives a measure of the quality

of the data.

Let S be a system described in terms of a set of variables

and with y ∈ R being a variable of interest, potentially

related to a set of m variables ←−x ∈ R
m expressed as

y = f(←−x ) + r (3)

where f is a smooth unknown function representing the

system, ←−x is a set of predictor variables and r is a random

variable representing noise or unexplained variation.

Despite f being an unknown function, under some as-

sumptions it is possible to estimate the variance of the

residual term (r) using available data obtained from S . This

will give an indication about the possibility of developing

models for y based on the information contained in ←−x .

Among the most important assumptions are:

• The function f is continuous within the input space.

• The noise is independent of the input vector ←−x .

• The function f has bounded first and second partial

derivatives.

Let ←−x N⌊i,k⌋ denote the k-th nearest neighbor of ←−x i

in the input set {←−x 1, · · · ,
←−x M}. If p is the number of

nearest neighbors considered, for every k ∈ [1, p] a sequence

of estimates of E
(

1

2
(y′ − y)2

)

based on sample means is

computed as

γM (k) =
1

2M

M
∑

i=1

|yN⌊i,k⌋ − yi|
2 (4)

In each case, an ‘error’ indication is given by the mean

squared distances between the k nearest neighbors, given by

δM (k) =
1

M

M
∑

i=1

|←−x N⌊i,k⌋ −
←−x i|

2 (5)

where E denotes the mathematical expectation and |.| Eu-

clidean distance.

The relationship between γM (k) and δM (k) is assumed

linear as δM (k) → 0 and then Γ = V ar(r) is obtained by

linear regression

γM (k) = Γ +G δM (k) (6)

A derived parameter of particular importance is the vRatio

(Vr), defined as a normalized γ value. Since it is measured



in units of the variance of the output variable, it allows

comparisons across different datasets:

Vr =
Γ

V ar(y)
(7)

This vRatio will be the fundamental parameter used in the

analysis of the present data.

C. Modeling Techniques

1) Neural Networks: Neural networks (NN) are universal

function approximators that can be applied to a wide range

of problems such as classification and model building. It

is already a mature field within computational intelligence

and there are many different NN paradigms. Multilayer feed-

forward networks are the most popular and a large number

of training algorithms have been proposed. In this paper,

networks with sigmoid functions 1/(1 + e−x) in the hidden

layers and linear output are used, which is a usual choice

for function approximation. The neural network weights

are found by optimizing backpropagation errors using the

Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) [5],

[13]. BFGS is a quasi-Newton, second-derivatives method

which is more efficient than steepest descent, conjugate

gradient and other training approaches. The search direction

is determined using an approximation to the inverse of the

Hessian as opposed to gradient information only and line

search is used to determine the step size rather than using

a fixed one. The BFGS algorithm uses a procedure for

updating the approximated Hessian after each step of the

optimization process and only a small number of the recent

updates are required for computing its inverse. Moreover,

as the updating process progresses, the approximations of

the Hessian become increasingly accurate. From the point of

view of training speed, BFGS requires more function evalu-

ations/iteration, but since it requires only a small fraction of

of the number of iterations than classical backpropagation,

the training time is significantly shorter.

2) Local Linear Models: Local linear regression models

(LLR) belong to the class of classical K-nn techniques [3]

from which non-parametric classifiers and function interpo-

lators have been derived. To make a prediction for a given

query point in the input space, LLR first finds the k nearest

neighbours of the query point from the given data set (user

defined) and then builds a multivariate linear model for the

target variable using these k data points. Then the model is

applied to the query point thus producing a predicted output.

Local linear regression using the k nearest neighbours (in

the training data) of the query point can be accomplished

quickly. Thus local linear regression is a very fast and capable

predictive tool.

It is most effective in regions of the input space with a

high density of data points. If data points are few and far

between in the vicinity of the query point then LLR will not

be very effective if the underlying function we are trying

to model is highly nonlinear. However, as the number of

data points increases, the global function produced by LLR

will converge rapidly to the unknown function generating

the data, provided this is itself a smooth function. LLR

can produce very accurate predictions in regions of high

data density in the input space, but it is liable to produce

unreliable results for nonlinear functions in regions of low

data density. Sometimes LLR does not generalize well but is

a very good interpolative tool for large amounts of data.

There are three user-defined parameters in LLR: the num-

ber of near neighbours, whether or not to include a constant

term in the linear model, and a threshold value for filtering

the local eigenvectors. The choice of the number of near

neighbours k in LLR is quite critical. If the noise level

of the output (i.e. the asymptotic Gamma statistic) is low

then some small multiple of the number of inputs should

suffice. If the noise level on the output is high then k needs

to be larger to obtain better noise cancelation. The final

user definable parameter is equivalent to a local principal

components threshold filter on the eigenvectors of the local

linear model. The idea is to predict along the tangent plane

of the local flow and eigenvectors corresponding to relatively

small eigenvalues probably represent noise and lie outside the

tangent plane. The threshold decides which eigenvectors we

should ignore. Setting it low or zero will essentially include

all eigenvectors in the local model, the default is around

10−6. Raising this threshold will filter out more eigenvectors.

3) Model Trees: A decision tree (DT) consists of leaf

or answer nodes that indicate a class defined on the pre-

dicted (dependent or target) variable and non-leaf or decision

nodes that contain a predictor attribute (variable) name and

branches to other decision trees, one for each value of the

predictor attribute. The top-down induction of decision trees

is a popular approach in which the process starts from a

root node and proceeds to generate sub-trees until leaf nodes

are created. Classical algorithms for building decision trees

are ID3 and C4.5 [16], [18]. The success with decision

trees on classification problems induced the development

of extensions of this approach to regression problems with

continuous variables [17]. In some schemes the leaf nodes

represent ranges in the values of the dependent (numeric)

variable, in other constant values (i.e. 0-th order regression

models), 1-st order linear models, splines, etc. In these cases

what is produced is a Model tree (MT). In the particular

case of M5 models, the leaf nodes are multivariate linear

regression models. Accordingly, a M5 model is actually a

combination of piecewise linear models each of which is

suitable for a particular sub-domain of the input space as

determined by the set of predictor variables.

There is a difference with pure linear regression: instead

of a single regression there are several and the necessary

(sub)optimal splitting of the input space is performed au-

tomatically. MTs can learn efficiently and can tackle tasks

with high dimensionality which can be up to hundreds of

attributes. They are transparent and simple to understand:

basically they describe the conditions under which a partic-

ular multivariate linear model describes well the observed

predicted variable. The segmentation (partition) of the input

space can be done in many ways. Easy and fast are greedy



algorithms that explore only a single predictor variable at a

time in a top-down recursive partitioning procedure and a

criterion used for splitting the current variable values for the

creation of the tree branches. Typically the criterion function

has the form:

ϕ(M,A) = I(M)−

n
∑

i=1

I(mi)pi (8)

where I is an inhomogeneity (impurity) function, M is

the parent node, A the current attribute (predictor variable)

considered, mi the i-th child node, n the number of child

nodes and pi is the relative frequency of the instances within

the i-th child node. At each step of the algorithm the idea

is to choose the attribute value that minimizes Eq. 8. The

impurity function is usually chosen to be a measure of

the variability of observations. In the M5 algorithm, the

standard deviation (sd) is used as the impurity [25] function.

The splitting process terminates either when the number of

observations into the node is less than a fixed value (generally

equal to or less than 4), or when the standard deviation of

the instances that reach the leaf is less than a minimum

threshold (generally 5%) of the standard deviation of the

original instance set. After having obtained the model tree,

it is interpreted through ‘if/then’ rules induced by the nodes.

A variety of heuristics and procedures have been proposed

for tree pruning and producing a Rule Set from a MT. Here

the approach described in [24], [8] is used.

IV. EXPERIMENTAL SETTINGS

For this work, the experimental methodology consists of

the application of computational intelligence and machine

learning techniques in two phases: I) data exploration: char-

acterization of the internal structure of the data and assess-

ment of the information content of the predictor variables

and its relation to the predicted (dependent) variables; and

II) modeling: build models relating the dependent and the

predictor variables.

For phase (I) an unsupervised study of the time depen-

dencies structure of multidimensional time series describing

the predictors (FSCS) and the target variable (MRNBX)

(SectionII-A) was performed using nonlinear mapping tech-

niques (Section III-A). The Gamma test was used for esti-

mating the embedded dimension of the target series and was

used in combination with a genetic algorithm for finding

subsets of the predictor variables with modeling potential

(i.e. input variables for function approximation techniques).

These results were used as a base for model search at a

subsequent stage.

In phase (II) three different modeling techniques were

used: Neural Networks (NN), Local Linear Regression (LLR)

and Model Trees (MT) (Section III-C). The first two are

usually regarded as black box techniques, whereas the last is

of the white box kind.

A. Data preprocessing

In order to overcome the effect of the different units of

measurement used for the description of the input variables,

which creates semantic incompatibilities, a normalization

procedure for all variables was required. Among the different

normalization approaches the one applied here transforms

the mean of each variable to zero and its standard deviation

to 0.5. With zero mean and constant variance, all variables

have an equal chance to contribute to an output prediction

and also have an equal weight on similarity and distance

measures, which play a crucial role in the nonlinear space

transformations and the gamma test techniques.

In order to explore the structure of the time dependencies

within the FSCS and the MRNBX variables, phase space

methods [11] were used. In the case of the MRNBX series

(denoted as T ), 20 time lags were considered (which cover

its embedding dimension).

{T (t− 20), T (t− 19), · · · , T (t− 1), T (t)} (9)

For the FSCS variables, a more complex setting was con-

structed in order to capture the nature of the lagged interac-

tions between the whole set of predictors. If Pk(t), denotes

the k-th FSCS time series (k ∈ [1, 30]), tuples describing the

state of the systems in terms of the predictors and the target

can be formed as

{[P1(t− τ), · · · , P1(t)], [P2(t− τ), · · · , P2(t)], (10)

· · · , [P30(t− τ), · · · , P30(t)]}, T (t)

where τ is a maximum embedding lag for the MRNBX

variables and the curly brackets separate the predictor from

the target components of the tuple. In this study τ = 6
in order to cover a time span of approximately two times

the embedding of MRNBX (they are sampled with a 1:8

frequency ratio). The tuples in Eq.9 determine a 20-D phase

space, whereas those of the predictor part of Eq.10, a 180-D

space. The starting point of the analysis was the nonlinear

canonical mapping to a suitable low-D space of the 180-D

FSCS and 20-D MRNBX data. It was done by solving Eq. 2

with the Fletcher-Reeves method, a target dimension of 3 and

using Euclidean distance as dissimilarity measure for both

the original and the transformed spaces (δ(x⃗, y⃗) and ζ(ˆ⃗x, ˆ⃗y)
in Eq. 1). Three different initial random configurations were

used and the one with the smallest mapping error was kept.

From the point of view of the relationship between the

predictors and the target in Eq.10, there are 2180− 1 combi-

nations. They were explored using genetic algorithms (GA)

aimed at minimizing Vr (Eq. 7). The problem representa-

tion chosen was based on binary chromosomes coding the

characteristic functions of each predictor variable, so that

the position of the 1 bits indicate whether the corresponding

variable from the set of 180 predictors is chosen for assem-

bling a multivariate vector used as input variables for the Vr

computation. The number of predictor variables in the initial

GA population is controlled by a parameter representing the

probability of generating 1-bits in the initial chromosomes (a

broad range was considered). Table II shows the set of GA

parameters, defining a collection of 450 GA experiments.

Since this was a preliminary study, exploration was favored

over exploitation (100 generations only). In particular, the



TABLE II

EXPERIMENTAL SETTINGS FOR THE GENETIC ALGORITHM

Parameter Value

number of objects 701

number of predictor variables 180

number of target variables 1

number of nearest neighbors 90

number of generations 100

number of individuals 100

elitism yes

crossover probability 0.3, 0.5, 0.6, 0.8, 0.9

mutation probability 0.010000

quit if function reduced to this amount 1e− 7

probability of generating ’1’s in the 0.1, 0.2, 0.3, 0.4, 0.5,

chromosomes of the initial population 0.6, 0.7, 0.8, 0.9

number of random seeds 10

number of nearest neighbors used for the computation of Vr

was determined from a previous study of their relationship.

B. Modeling Techniques

During phase (II) the original set of normalized tuples

(Eq. 10) was divided into training and testing sets with sizes

701 and 216 respectively (76%). The neural network models

were trained according to the description and algorithm

given in Section III-C.1 using a 180-50-10-1 or 80-50-10-1

architecture (input layer, first hidden, second hidden, output

layer respectively). In the case of the Local Linear Models

the number of nearest neighbors was set to 10 (not to be

confused with those used for computing Vr), a constant term

was included and the local principal components threshold

was 10−6. For M5 Model trees, the minimal number of

observation within a node was set to 4, the standard deviation

of the instances that reach the leaf to 5% of the standard

deviation of the original instance set and the trees were

pruned using the heuristics proposed in [8], [24].

V. RESULTS

A snapshot of the representation of the 20-D phase space

of MRNBX via its nonlinear transformation to a virtual

reality 3-D space is shown in Fig. 2(Top) (it is impossible

to reproduce 3-D structures on hard media. Therefore only

2-D snapshots from a fixed perspective can be presented).

It can be seen that the initial and final states of the system

are very different (distance is inversely related to similarity)

and that the system’s trajectory in the mapped phase space

passes through the same set of states at different times. They

correspond to the two areas associated with the extreme

states, joined in the middle region by a third group of

intermediate or pivotal states, more similar (closer) to each

other. It is interesting to note that a similar situation can be

identified in the mapped phase space corresponding to the

FSCS predictors (Fig. 2(Bottom)), in spite of the fact that

it comes from an original 180 dimensional space, therefore

much harder to map. In this case the mapping error is only

two times larger (0.0694) than the one for the MRNBX

phase space (0.0332), but the original dimensionalities have

a whole order of difference. Therefore, the representation is

Fig. 2. Nonlinear mapping of the target and predictor phase spaces. In both
cases a 3-D polyline links consecutive points along time for the original
180-dimensional time series (from the starting to end state). Top: Space
corresponding to the target MRNBX (R20

→ R
3 mapping. Error = 0.0332).

Bottom: Space corresponding to the FSCS predictors (R180
→ R

3 mapping.
Error = 0.0694).

a reasonable approximation of the high-dimensional process.

The FSCS phase space also shows two very different initial

and final states (recall that both spaces are synchronized in

time, so they can be compared), with two extreme regions

bridged by bottleneck states. The nature of the time tran-

sitions is more irregular in this case, due to the combined

effects of the space distortions introduced by the nonlinear

mapping to a very small dimensional space (3) and the

presence of redundant and/or noisy variables unrelated to

the target. It is important to consider that the unsupervised

nature of the mapping of the FSCS phase space makes more

appealing its structural similarity with the MRNBX phase

space. It suggests the presence of variables within FSCS with

predictive potential, mixed with irrelevant and/or noisy ones.

The search of suitable subsets of the FSCS predictors made

by the GA experiments led to 45, 000 candidate subsets of

predictors in the final populations. The distribution of the Vr

values is shown in Fig. 3. Its high skewness towards the lower



Fig. 3. Distribution of Vr values in the 450 GA experiments.

end indicates that despite the very different search conditions

implied by the broad range of GA controlling parameters

used, the evolutionary process converged to subsets of pre-

dictors with low residual variance, hence, good for modeling.

TABLE III

TEST SET RMSE ERRORS AND CORRELATIONS. LLR: LOCAL LINEAR

REGRESSION. BFGS NEURAL NETWORK, M5: MODEL TREE

All predictor variables (180)

LLR BFGS M5 Ensemble Model

rmse 0.30536 0.24020 0.16504 0.16837

corr 0.78580 0.89595 0.94352 0.94023

Example from the Genetic Algorithm (80 predictor variables)

LLR BFGS M5 Ensemble Model

rmse 0.31017 0.31898 0.27316 0.21127

corr 0.77716 0.84365 0.85585 0.90861

Table III shows the results obtained with the individual

and the ensemble models when using both all predictor and

a subset among those found by the Vr-based GA search. The

first case allows all 180 predictors to be used by the models,

that is, the 30 FSCS parameters as well as their time history

going back 5 time steps for a total of 180 predictor variables

(Eq. 10). The second case uses the subset determined by one

of the GA experiments that after 100 iterations reduced the

number of predictor variables to 80. This case was selected

from the left side of the mode in Fig. 3 but is not necessarily

the best output of from all the experiments.

In the first case, with all 180 predictor variables available

to the models, the LLR, BFGS-NN and M5-Model tree

techniques produced models that predict the target parameter

quite well, with relatively low RMSE and high correlation.

The best individual model was generated by the model tree,

however, it should be noted that it is a greedy technique

that has the ability to discard input variables deemed not

significant during the learning process, whereas the black box

modeling techniques are forced to use all input variables,

particularly LLR. In all cases the ensemble models were

obtained by a simple average of the individual models. They

generated a very close prediction for the target parameter,

illustrated in Fig. 4(Top). It can be seen that the main as

well as the secondary peaks of the main rotor blade normal

bending have been reproduced very well. The phase of the

predicted signal matches the original observations very well,

which is an important feature for helicopter load monitoring.

In the second set of results using only the subset of 80

predictor variables, the models that were generated using

the different techniques again produced close estimates of

MRNBX with slightly higher RMSE values and slightly

lower correlation coefficients than the first case of results.

While the number of input variables was reduced to 44% of

the original number, the performance of the models in pre-

dicting the target sensor suffered very little. The advantage

of a smaller predictor subset is that irrelevant information is

removed allowing for faster and more efficient processing. In

this case, the ensemble model that was constructed from the

three models demonstrated an optimal performance, shown

in Fig. 4(Bottom). From this figure, we see again that the

predicted and target signals line up very well with the peaks

estimated quite closely. There is some under-prediction of

the magnitudes of the peaks, more so than the first case, but

overall the results are very promising.

While the flight condition examined in this work was a

simple steady state manoeuvre, the results of the models

provide some insight into the predictor/target relationship

between the FSCS parameters and the main rotor blade

normal bending. From the results of the GA experiment

leading to the subset of 80 predictor variables, there was

only one FSCS parameter that was completely omitted from

the subset, the roll acceleration, the reason for which could

be related to the flight condition chosen for this study (i.e.

forward level flight). The remaining 29 FSCS parameters

were included in the subset with varying numbers of time

history points. While the GA produced a smaller subset of

predictors, all but one of the FSCS were considered important

in estimating the target sensor.

The highlights of the approach used in this work, not

so often found in traditional methods, include: i) visual

data mining of the high-dimensional phase spaces of the

multivariate time series portraying the structural similarity

of the target and predictor variables from the point of view

of their time evolution and their states, ii) use of residual

variance analysis to determine the likelihood of building

a smooth deterministic model for the target sensor given

the available predictors and to determine the relevant time

dependencies appropriate for predicting the target sensor, and

iii) the use of both black and white box machine learning

techniques for modeling. The inclusion of these aspects

makes for a more robust, statistically sound approach to the

problem of helicopter loads estimation.

VI. CONCLUSIONS

In this work a study of the applicability of computational

intelligence methods to estimate helicopter dynamic loads

was carried out. While the work thus far is preliminary, the

results are able to provide a “proof-of-concept” that such

an approach is feasible since accurate and highly correlated

models for the target sensor were built. The ability to gener-

ate satisfactory estimates show that the problem is solvable



Fig. 4. Main rotor blade normal bending prediction based on FSCS. Top: Ensemble model using 180 predictors (6 time lags)(Eq.10). Bottom: Ensemble
model using one of the subsets found by the genetic algorithm (80 predictors).

by computational intelligence methods. The information ob-

tained enables a better understanding of the physical process

behind the input/output parameter relationship. From the set

of 30 sensors and their time histories used as input variables,

a large amount of irrelevant and/or noisy information was

discovered and identified, but from these 30 inputs it was

possible to create models that were much simpler and also

well-behaved. For the flight condition presented in this paper,

forward level flight at maximum speed (VH ), the models were

able to predict the main rotor blade normal bending based

on input from 30 flight state and control system parameters

with low error and high correlation. Having verified that this

approach is indeed robust and useful for this problem, the

next task will be to extend the scope and complexity of the

output parameters and flight conditions and work towards

the goal of accurately estimating the dynamic loads on the

helicopter indirectly for its entire usage spectrum.
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