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Abstract—As protein folding is a NP-complete problem,
artificial intelligence tools like neural networks and genetic
algorithms are used to attempt to predict the 3D shape of an
amino acids sequence. Underlying these attempts, it is supposed
that this folding process is predictable. However, to the best of
our knowledge, this important assumption has been neither
proven, nor studied. In this paper the topological dynamic of
protein folding is evaluated. It is mathematically established
that protein folding in 2D hydrophobic-hydrophilic (HP) square
lattice model is chaotic as defined by Devaney. Consequences
for both structure prediction and biology are then outlined.

I. INTRODUCTION

Proteins, formed by a string of amino acids folding into
a specific tridimentional shape, carry out the majority of
functionality within an organism. However, simulating per-
fectly the folding processes or molecular dynamic occurring
in biology nature is indeed infeasible, due to the following
reasons. Firstly, the forces involved in the stability of the
protein conformation are currently not modeled with enough
accuracy [13]. Indeed, we can even wonder if it is so realistic
to hope finding one day an accurate model for this problem.
Secondly, due to an astronomically large number of possible
3D protein structures for a corresponding primary sequence
of amino acids [13]: the computation capability required even
for handling a moderately-sized folding transition exceeds
drastically the capacity of the most powerful computers
around the world.

Consequently, proteins structures are not exactly com-
puted, but they are predicted. As this Protein Structure
Prediction (PSP) is a NP-complete problem [9], prediction
for optimal protein structures is principally performed us-
ing computational intelligence approaches such as genetic
algorithms, ant colonies [15], particle swarm, or neural
networks. Models of various resolutions are applied too, to
tackle with the complexity of this problem. In low resolution
models, atoms into the same amino acid can for instance be
considered as a same entity. These low resolutions models
are often used first to predict the backbone of the 3D
conformation. Then, high resolution models come next for
further exploration. Such a prediction strategy is commonly
used in PSP softwares like ROSETTA [8] or TASSER.

In this paper, we demonstrate that protein folding is indeed
unpredictable, that is, it is chaotic according to Devaney.
This well-known topological notion for a chaotic behavior
is one of the most established mathematical definition of
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unpredictability for dynamical systems. This proof has been
achieved in the framework of protein structure prediction for
a 2D hydrophobic-hydrophilic (HP) lattice model [7]. This
popular lattice model with low resolution focuses only upon
hydrophobicity by separating the amino acids into two sets:
hydrophobic (H) and hydrophilic (or polar P) [11]. Numerous
variations are proposed in the general HP model: 2D or
3D lattices, with square, cubic, triangular, or face-centered-
cube shapes... In our demonstration, we have chosen a 2D
square lattice for easy understanding. However the process
still remains general and can be applied to high resolution
models by using a more refined formulation.

After having established the chaotic behavior of the fold-
ing dynamic by using two different proofs, we will outline
the consequences of this fact. More precisely, we will focus
on the following questions. Firstly, is it possible to predict
3D protein structures using artificial intelligence tools if the
folding process is chaotic ? In other words, are genetic
algorithms, neural networks, and so on, able to predict
chaotic behaviors, at least as defined by Devaney (in this
paper, we will only study neural networks) ?

The remainder of this paper is organized as follows. In
Section II, basic notations and terminologies concerning both
HP-model and Devaney’s topological chaos are recalled.
Then in the next two sections the proofs of the chaotic
behavior of protein folding dynamic are established. The first
proof is directly realized in the Devaney’s context whereas
the second one uses a previously proven result concerning
chaotic iterations [2]. Consequences of this unpredictable
behavior are outlined in Section V. Among other things, it is
regarded whether chaotic behaviors are harder to predict than
“normal” behaviors or not. Additionally, reasons explaining
why a chaotic behavior unexpectedly leads to approximately
one thousand categories of folds are proposed. This paper
ends by a conclusion section, in which our contribution is
summarized and intended future work is presented.

II. BASIC RECALLS

In the sequel Sn denotes the nth term of a sequence S
and Vi the ith component of a vector V . fk = f ◦ ... ◦ f is
the kth composition of a function f . Finally, the following
notation is used: J1;NK = {1, 2, . . . , N}.

A. 2D hydrophilic-hydrophobic (HP) model

1) The HP model: In the HP model, hydrophobic interac-
tions are supposed to dominate protein folding. This model
was formerly introduced by Dill, who consider in [11] that
the protein core freeing up energy is formed by hydrophobic
amino acids, whereas hydrophilic amino acids tend to move
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Fig. 1. Hydrophilic-hydrophobic (HP) model (black squares are hydropho-
bic residues).

in the outer surface due to their affinity with the solvent (see
Figure 1).

A protein conformation is then a self-avoiding walk
(SAW) on a 2D or 3D lattice such that its energy E,
depending on topological neighboring contacts between hy-
drophobic amino acids which are not contiguous in the
primary structure, is minimal. In other words, for an amino-
acid sequence P of length N and for the set C(P ) of all
SAW conformations of P , the chosen conformation will
be c∗ = min

{
E(c)

/
c ∈ C(P )

}
[14]. In that context and

for a conformation c, E(c) = −q where q is equal to the
number of topological hydrophobic neighbors. For example,
E(c) = −5 in Figure 1.

2) Protein Encoding: Additionally to the direct coordi-
nate presentation, at least two other isomorphic encoding
strategies for HP model are possible: relative encoding and
absolute encoding. In relative encoding [13], the move direc-
tion is defined relative to the direction of the previous move.
Alternatively, in absolute encoding [1], which is the encoding
chosen in this paper, the direct coordinate presentation is
replaced by letters or numbers representing directions with
respect to the lattice structure.

For a 2D absolute encoding, the permitted moves are:
forward → (denoted by 1), backward ← (2), up ↑ (3), and
down ↓ (4). A 2D conformation c of N residues for a protein
P could then be c ∈ J1; 4KN−2, as the initial move is always
forward (1) [13]. For example, in Figure 1, the 2D absolute
encoding is (1)1144423322414 (starting from the upper left
corner). In that situation, 3N−2 conformations are possible
when considering N residues, even if some of them are
invalid due to the SAW requirement.

B. Devaney’s Chaotic Dynamical Systems
Let us now introduce the notion of chaos used in this doc-

ument. Consider a topological space (X , τ) and a continuous
function f on X .

Definition 1: f is said to be topologically transitive if, for
any pair of open sets U, V ⊂ X , there exists k > 0 such that
fk(U) ∩ V 6= ∅.

Definition 2: An element (a point) x is a periodic element
(point) for f of period n ∈ N∗, if fn(x) = x.

Definition 3: f is said to be regular on (X , τ) if the set
of periodic points for f is dense in X : for any point x in X ,
any neighborhood of x contains at least one periodic point.

Definition 4: f is said to be chaotic on (X , τ) if f is
regular and topologically transitive.

The chaos property is related to the notion of “sensitivity”,
defined on a metric space (X , d) by:

Definition 5: f has sensitive dependence on initial condi-
tions if there exists δ > 0 such that, for any x ∈ X and any
neighborhood V of x, there exist y ∈ V and n ≥ 0 such that
d (fn(x), fn(y)) > δ.

Indeed, Banks et al. have proven in [6] that when f is
chaotic and (X , d) is a metric space, then f has the property
of sensitive dependence on initial conditions (this property
was formerly an element of the definition of chaos). To sum
up, quoting Devaney in [10], a chaotic dynamical system
“is unpredictable because of the sensitive dependence on
initial conditions. It cannot be broken down or simplified into
two subsystems which do not interact because of topological
transitivity. And in the midst of this random behavior, we
nevertheless have an element of regularity”. Fundamentally
different behaviors are consequently possible and occur in
an unpredictable way.

III. PROTEIN FOLDING IS CHAOTIC

We will now give a first proof of the chaotic behavior of
the protein folding dynamic.

A. Initial Premises

Let us firstly introduce the preliminaries of our approach.
The primary structure of a given protein p with N + 1

residues is coded by 11 . . . 1 (N times) in absolute encoding.
Its final 2D conformation has an absolute encoding equal to
1C∗1 . . . C

∗
N−1, where ∀i, C∗i ∈ J1, 4K, is such that E(C∗) =

min
{
E(C)

/
C ∈ C(p)

}
. This final conformation depends on

the repartition of hydrophilic and hydrophobic amino acids
in the initial sequence.

Moreover, we suppose that, if the residue number n + 1
is forward the residue number n in absolute encoding (→)
and if a fold occurs after n, then the forward move can only
by changed into up (↑) or down (↓). That means, in our
simplistic model, only rotations of +π

2 or −π2 are possible.
Obviously, for a given residue that is supposed to be

updated, only one of the two possibilities below can appear
for its absolute move during a fold:
• 1 7−→ 4, 4 7−→ 2, 2 7−→ 3, or 3 7−→ 1 for a fold in the

clockwise direction, or
• 4 7−→ 1, 2 7−→ 4, 3 7−→ 2, or 1 7−→ 3 for an

anticlockwise.
This fact leads to the following definition:
Definition 6: The clockwise fold function is the function

f : J1; 4K −→ J1; 4K defined by:

1 7−→ 4
2 7−→ 3
3 7−→ 1
4 7−→ 2



Obviously the anticlockwise fold function is f−1.
Thus at the nth folding time, a residue k is chosen and

its absolute move is changed by using either f or f−1. As
a consequence, all of the absolute moves must be updated
from the coordinate k until the last one N by using the same
folding function.

Example 7: If the current conformation is C = 111444,
i.e., →→→↓↓↓, and if the third residue is chosen to fold by
a rotation of −π2 (mapping f ), thus the new conformation
will be:

(C1, C2, f(C3), f(C4), f(C5), f(C6)) = (1, 1, 4, 2, 2, 2).

That is, →→↓←←←.
These considerations lead to the formalization of the next

section.

B. Formalization and Notations

Let N+1 be a fixed number of amino acids, where ∈ N∗.
We define

X = J1; 4KN × J−N;NKN

as the phase space of the protein folding process. An element
X = (C,F ) of this dynamical folding space is constituted
by:
• A conformation of the N + 1 residues in absolute

encoding: C = (C1, . . . , CN) ∈ J1; 4KN.
• A sequence F ∈ J−N;NKN of future folds, depending

on hydrophobicity, such that when Fi ∈ J−N;NK is k,
it means that it occurs:

– a fold after the k−th residue by a rotation of −π2
(mapping f ) at the i−th step, if k = Fi > 0,

– no fold at time i if k = 0,
– a fold after the |k|−th residue by a rotation of π

2
(i.e., f−1) at the i−th time, if k < 0.

On this phase space, the protein folding dynamic can be
formalized as follows.

Denote by i the map that transforms a folding sequence
into its first term (the first folding operation):

i : J−N;NKN −→ J−N;NK,
F 7−→ F 0,

by σ the shift function over J−N;NKN, that is to say,

σ : J−N;NKN −→ J−N;NKN,(
F k
)
k∈N 7−→

(
F k+1

)
k∈N ,

and by sign the function:

sign(x) =

 1 if x > 0,
0 if x = 0,
−1 else.

The shift function removes the first folding operation from
the sequence after it has been achieved once.

Consider now the map G : X → X defined by:

G ((C,F )) =
(
fi(F )(C);σ(F )

)
where ∀k ∈ J−N;NK, fk : J1; 4KN → J1; 4KN is defined by:

fk(C1, ..., CN) =

(C1, ..., C|k|−1, f
sign(k)(C|k|), ..., f

sign(k)(CN)).

Thus the folding process of a protein P in the 2D HP
square lattice model, with initial conformation equal to
(1, 1, . . . , 1) in absolute encoding, and a folding sequence
equal to (F i)i∈N provided by hydrophobic interactions, is
defined by the following dynamical system over X :{

X0 = ((1, 1, . . . , 1);F )
Xn+1 = G(Xn),∀n ∈ N.

In other words, at each step n, if Xn = (C,F ), we take
the first folding operation to realize, that is i(F ) = F 0 ∈
J−N;NK, we update the current conformation C by rotating
all of the residues coming after the |i(F )|−th one, which
means that we replace the conformation C with fi(F )(C).
Lastly, we remove this rotation (the first term F 0) from the
folding sequence F : thus F becomes σ(F ).

Example 8: Let us reconsider example 7. One itera-
tion of its dynamical folding process can be described
in this formalization by:

(
(1, 1, 4, 2, 2, 2), (F 1, F 2, . . .)

)
=

G
(
(1, 1, 1, 4, 4, 4), (+3, F 1, F 2, . . .)

)
.

Remark 9: A protein P that has finished to fold, if such
a protein exists, has the form (C; (0, 0, 0, . . .)), where C is
the final 2D structure of P .

Remark 10: Such a formalization allows the study of
proteins that never stop to fold, for instance due to their
never ended interactions with the environment.

C. A Metric for the Folding Process

We define a metric d over X = J1; 4KN × J−N;NKN by:

d(X, X̌) = dC(C, Č) + dF (F, F̌ ).

where δ(a, b) = 0 if a = b, else δ(a, b) = 1, and
dC(C, Č) =

N∑
k=1

δ(Ck, Čk)2N−k

dF (F, F̌ ) =
9

2N

∞∑
k=1

|F k − F̌ k|
10k

This new distance for the dynamical description of the
protein folding process in 2D HP square lattice model can
be justified as follows.

The integral part of the distance between two points
X = (C,F ) and X̌ = (Č, F̌ ) of X measures the differences
between the current 2D structures of X and X̌ . More
precisely, if dC(C, Č) is in J2k, 2k+1K, then the first k terms
in the conformations C and C ′ (absolute encoding) are equal,
whereas the k+1th terms differ. The decimal part of d(X, X̌)
will decrease when the duration the folding process will be
similar increase. More precisely, F k = F̌ k if and only if the
k + 1th digit of this decimal part is 0. Lastly, 9

N is just a
normalization factor.

For instance, if we know where are the N + 1 residues of
our protein P in the lattice, and if we know what will be its
k next folding, then we are into the ball B(C, 10−k), that is,
very close to the point (C,F ) if k is large.



Remark 11: In X0 = ((1, 1, . . . , 1), F ), the folding se-
quence F 0 results, among other things, on the hydrophobic
interactions between amino acids. Indeed, it is this F 0 that
is searched, when trying to predict the folding process of a
given protein P . That is to say, the error on X0 measured
by d corresponds to our incapacity to determine exactly
the whole future folding process F of P . Improving this
prediction with better computational intelligence tools leads
to the reduction of the distance between X0 (what is looked
for) and X ′0 (our approximation).

The question raised by this study is: even if we cannot
have access with an infinite precision to all of the forces
that participate to the folding process, i.e., even if we only
know an approximation X ′

0 of X0, can we claim that the
predicted conformation X ′

n1 still remains close to the true
conformation Xn2 ? Or, on the contrary, do we have a chaotic
behavior, a kind of butterfly effect that magnifies any error
on the evaluation of the forces in presence ?

Raising such a question leads to the study of the dynamical
behavior of the folding process. To do so, we must firstly
establish that G is a continuous map on (X , d).

D. Continuity of the Folding Operation

Theorem 12: G : X → X is a continuous map.
Proof: We will use the sequential characterization of the

continuity. Let (Xn)n∈N = ((Cn, Fn))n∈N ∈ XN, such that
Xn → X = (Č, F̌ ). We will show that G (Xn) → G(X).
Let us firstly remark that ∀n ∈ N, Fn is a sequence: F is
thus a sequence of sequences.

On the one hand, as Xn = (Cn, Fn)→ (Č, F̌ ), we have
dC
(
Cn, Č

)
→ 0, thus ∃n0 ∈ N, n > n0⇒ dC(Cn, Č) = 0.

That is, ∀n > n0, ∀k ∈ J1;NK, δ(Cnk , Ck) = 0, and so Cn =
Č,∀n > n0. Additionally, dF (Fn, F̌ ) → 0, then ∃n1 ∈ N,
dF (Fn, F̌ ) 6 1

10 . As a consequence, ∃n1 ∈ N, ∀n > n1,
the first term of the sequence Fn is F̌ 0: i(Fn) = i(F̌ ).
So, ∀n > max(n0, n1), fi(Fn) (Cn) = fi(F̌)

(
Č
)
, and then

fi(Fn) (Cn) → fi(F̌)
(
Č
)
.

On the other hand, σ(Fn) → σ(F ). Indeed,
Fn → F implies

∑∞
k=1

|(Fn)k−F̌k|
10k → 0. Thus,

1
10

∑∞
k=1

|(Fn)k+1−F̌k+1|
10k → 0, so

∑∞
k=1

|σ(Fn)k−σ(F̌ )k|
10k →

0. Finally, σ(Fn)→ σ(F̌ ).
To conclude, as fi(Fn) (Cn) → fi(F̌)

(
Č
)

and σ(Fn)→
σ(F̌ ), we have G (Xn)→ G(X).

It is now possible to study the chaotic behavior of the
folding process.

E. Regularity of the Folding Operation

Let us firstly introduce the following notations: for X =
(C,F ) ∈ J1; 4KN× J1;NKN, C(X) = C and F(X) = F . We
will now prove that,

Lemma 13: For all C,C ′ in J1; 4KN, there exist
k1, . . . , kN in J−N;NK s.t. GN (C, (k1, . . . , kN, 0, . . .)) =
(C ′, (0, 0, . . .)) .

Proof: We will prove this lemma by a mathematical
induction on N ∈ N∗.

For the base case N = 1, if C1 = C ′1, then the result is
satisfied with k1 = 0. Else, either C ′1 = f1(C1) then k1 = 1
holds, or C ′1 = f−1

1 (C1) then k1 = −1.
Let us now suppose that the statement holds for

some N ∈ N∗. Let C,C ′ ∈ J1; 4KN+1. According
to the inductive hypothesis, ∃k1, . . . , kN ∈ J−N,NK
such that G̃N ((C1, . . . , CN), (k1, . . . , kN, 0, . . .)) =
((C ′1, . . . , C

′
N), (0, 0, . . .)), where G̃ is the

restriction of G on its N−th firsts variables. Let
x = C

(
GN ((C1, . . . , CN+1), (k1, . . . , kN+1, 0, . . .))

)
N+1

. If
x = C ′N+1, then kN+1 = 0 holds. Else, either f(x) = C ′N+1,
and kN+1 = N + 1 holds, or f−1(x) = C ′N+1, and then
kN+1 = −(N + 1).

We can now prove that,
Proposition 14: Protein folding is regular.

Proof: Let X = (C,F ) ∈ X and ε > 0. De-
fine k0 = −blog10(ε)c and X̃ such that: (1) C(X̃) =

C, (2) ∀k 6 k0,F
(
Gk(X̃)

)
= F

(
Gk(X)

)
, (3)

∀i ∈ J1;NK,F
(
Gk0+i(X̃)

)
= ki, and (4) ∀i ∈

N,F
(
Gk0+N+i+1(X̃)

)
= F

(
Gi(X̃)

)
, where k1, . . . , kn

are integers given by lemma 13 with C = C
(
Gk0(X)

)
, C ′ =

C(X). Such a X̃ is a periodic point for G into the ball
B(X, ε). (1) and (2) are to make X̃ ε−close to X , (3) is for
mapping C

(
Gk0(X̃)

)
into C in at most N folding process.

Lastly, (4) is for the periodicity of the folding process.

F. Transitivity of the Folding Operation

Instead of proving the transitivity of G, which is required
in the definition of chaos, we will establish its strong
transitivity:

Definition 15: A dynamical system (X , f) is strongly
transitive if ∀x, y ∈ X , ∀r > 0, ∃z ∈ X , d(z, x) 6 r ⇒
∃n ∈ N∗, fn(z) = y.

Obviously, strong transitivity implies transitivity. Let us
now prove that,

Proposition 16: Protein folding is strongly transitive.
Proof: Let XA = (CA, FA), XB = (CB , FB) and ε >

0. We will show that X ∈ B (XA, ε) and n ∈ N can be
found such that Gn(X) = XB . Let k0 = −blog10(ε)c and
X̌ = Gk0(CA, FA), denoted by X̌ = (Č, F̌ ). According to
lemma 13 applied to Č and CB , ∃k1, . . . , kN ∈ J−N,NK
such that

GN
(
Č, (k1, . . . , kN, 0, . . .)

)
= (CB , (0, . . .)) .

Let us define X = (C,F ) in the following way: (1) C =
CA, (2) ∀k 6 k0, F

k = F kA, (3) ∀i ∈ J1;NK, F k0+i = ki,
and (4) ∀i ∈ N, F k0+N+i+1 = F iB . This point X is thus
an element of B(XA, ε) (due to 1, 2), which is such that
Gk0+N+1(X) = XB (by using 3, 4). As a consequence, G
is strongly transitive.

This property is very important. It shows among other
things that being as close as possible of the true folding
process, for instance by using a very large basis of knowledge
and numerous levels of resolution, is not a guarantee of
success. Indeed, for any possible conformation c, there is



a prediction as good as possible of our considered protein,
which leads to c.

G. Chaotic behavior of the folding process

As G is regular and (strongly) transitive, we have:
Theorem 17: The protein folding process G is chaotic

according to Devaney.
Consequently this process is highly sensitive to its initial

condition. In particular, even a minute difference on an
intermediate conformation of the protein, in forces that act
in the folding process, or in the position of an atom, can lead
to enormous differences in its final conformation, even over
fairly small timescales. This is the so-called butterfly effect.
In particular, it seems very difficult to predict the 2D structure
of a given protein by using the knowledge of the structure
of similar proteins. Let us finally remark that the whole 3D
folding process with real torsion angles is obviously more
complex than this 2D HP model. Indeed, if the complete 3D
folding process were predictable, then this simplistic version
would be predictable too, as one of its particular cases.

As a conclusion, theoretically speaking, the folding pro-
cess in unpredictable. Before studying some practical aspects
of this unpredictability in Section V, we will initiate a second
proof of the chaotic behavior of this process.

IV. OUTLINES OF A SECOND PROOF

A. Motivations

In this section a second proof of the chaotic behavior of the
protein folding process is given. It is proven that the folding
dynamic can be modeled as chaotic iterations (CIs). CIs are
a tool used in distributed computing and in the computer
science security field [5] that has been established to be
chaotic according to Devaney [3].

This second proof is the occasion to introduce these CIs,
which will be used at the end of this paper to study whether
a chaotic behavior is really more difficult to learn with a
neural network than a “normal” behavior.

B. Chaotic Iterations: Basic Recalls

Let us consider a system with a finite number N ∈ N∗
of elements (or cells), so that each cell has a boolean
state. A sequence of length N of boolean states of the cells
corresponds to a particular state of the system. A sequence,
which elements are subsets of J1;NK, is called a strategy.
The set of all strategies is denoted by S and the set B is for
{0, 1}.

Definition 18: Let f : BN −→ BN be a function and S ∈
S be a strategy. The so-called chaotic iterations (CIs) are
defined by x0 ∈ BN and ∀n ∈ N∗,∀i ∈ J1;NK,

xni =

{
xn−1
i if i /∈ Sn(
f(xn−1)

)
Sn if i ∈ Sn.

In other words, at the nth iteration, only the Sn−th cells
are “iterated”. Let us remark that the term “chaotic”, in
the name of these iterations, has a priori no link with the
mathematical theory of chaos recalled previously.

We will now recall that CIs can be written as a dynamical
system, and characterize functions f such that their CIs are
chaotic according to Devaney [2].

C. CIs and Devaney’s chaos

Given a function f : BN −→ BN, define the function Ff :
J1;NK×BN −→ BN such that

Ff (k,E) =
(
Ej .δ(k, j) + f(E)k.δ(k, j)

)
j∈J1;NK

,

where + and . are the boolean addition and product opera-
tions, x is for the negation of x.

We have proven in [2] that chaotic iterations can be
described by the following dynamical system:{

X0 ∈ X̃
Xk+1 = G̃f (Xk).

where G̃f (S,E) = (σ(S), Ff (i(S), E)), and X̃ is a metric
space for an ad hoc distance such that G̃ is continuous on
X [2].

Let now be given a configuration x. In what follows the
configuration N(i, x) = (x1, . . . , xi, . . . , xn) is obtained by
switching the i−th component of x. Intuitively, x and N(i, x)
are neighbors. The chaotic iterations of the function f can
be represented by the graph Γ(f) defined below.

Definition 19: In the oriented graph of iterations Γ(f),
vertices are configurations of BN, and there is an arc labeled
i from x to N(i, x) iff Ff (i, x) is N(i, x).

We have proven in [12] that:
Theorem 20: Functions f : Bn → Bn such that G̃f is

chaotic according to Devaney, are functions such that the
graph Γ(f) is strongly connected.

We will now show that the protein folding process can
be modeled as chaotic iterations, and conclude the proof by
using the theorem recalled above.

D. Protein Folding as Chaotic Iterations

The attempt to use chaotic iterations with a view to
model protein folding can be justified as follows. At each
iteration, the same process is applied to the system (i.e., to the
conformation), that is the folding operation. Additionally, it
is not a necessity that all of the residues fold at each iteration:
indeed it is possible that, at a given iteration, only some of
these residues folds. Such iterations, where not all the cells
of the considered system are to be updated, are exactly the
iterations modeled by CIs.

Indeed, the protein folding process with folding sequence
(Fn)n∈N consists in the following chaotic iterations: C0 =
(1, 1, . . . , 1) and,

Cn+1
|i| =

{
Cn|i| if i /∈ Sn,
fsign(i)(Cn)i else,

where the chaotic strategy is defined by ∀n ∈ N, Sn =
J−N;NK \ J−Fn;FnK.

Thus, to prove that the protein folding process is chaotic as
defined by Devaney, is equivalent to prove that the graph of
iterations of the CIs defined above is strongly connected. This



last fact is obvious, as it is always possible to find a folding
process that map any conformation (c1, . . . , cN) ∈ J1; 4KN to
any other (c′1, . . . , c

′
N) ∈ J1; 4KN (this is lemma 13).

Let us finally remark that it is easy to study processes
s.t. more than one fold occur per time unit, by using CIs.
This point will be deepened in a future work. We will now
investigate some consequences of the chaotic behavior of the
folding process.

V. CONSEQUENCES

A. Is a chaotic behavior incompatible with approximately
one thousand folds ?

Claiming that the protein folding process is chaotic seems
to be contradictory with the fact that only approximately one
thousand folds have been discovered this last decade. The
number of proteins that have an understood 3D structure
increase largely year after year. However the number of new
categories of folds seems to be limited by a fixed value
approximately equal to one thousand. Indeed, there is no
contradiction as a chaotic behavior does not forbid a certain
form of order. For example, seasons are not forbidden even if
weather forecast has a non-intense chaotic behavior. A same
regularity appears in brains: even if hazard and chaos play
an important rule in a microscopic scale, a statistical order
appears in the complete neural network.

That is, a certain order can emerge from a chaotic behavior,
even if it is not a rule of thumb. More precisely, in our
opinion these thousand folds can be related to basins of
attractions or strange attractors of the dynamical system,
objects that are well described by the mathematical theory
of chaos. Thus, it should be possible to determine all of the
folds that can occur, by refining our model and looking for
its basins of attractions with topological tools. However, this
assumption still remains to be more largely investigated.

B. Is Artificial Intelligence able to Predict Chaotic dynamic
?

1) Experimental Protocol: We will now wonder whether
a chaotic behavior can be learned by a neural network or not.
These considerations have been formerly proposed in [4].

We consider f : BN −→ NN, strategies of singletons
(∀n ∈ N, Sn ∈ J1;NK), and a MLP which recognize Ff .
That means, for all (k, x) ∈ J1;NK×BN, the response of the
output layer to the input (k, x) is Ff (k, x). We thus connect
the output layer to the input one as it is depicted in Figure 2,
leading to a global recurrent artificial neural network (ANN)
working as follows [4].

At the initialization stage, the ANN receives a boolean
vector x0 ∈ BN as input state, and S0 ∈ J1;NK in its
input integer channel i(). Thus, x1 = Ff (S0, x0) ∈ BN is
computed by the neural network. This state x1 is published
as an output. Additionally, x1 is sent back to the input
layer, to act as boolean state in the next iteration. Finally,
at iteration number n, the recurrent neural network receives
the state xn ∈ BN from its output layer and i (Sn) ∈ J1;NK
from its input integer channel i(). It can thus calculate
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Fig. 2. RNN modeling Ff

xn+1 = Ff (i (Sn) , xn) ∈ BN, which will be the new output
of the network. Obviously, this particular MLP produces
exactly the same values than CIs with update function f .
That is, such MLPs are equivalent, when working with i(s),
to CIs with f as update function [4] and strategy S.

Let us now introduce the two following functions:
f1(x1, x2, x3) = (x1, x2, x3) and f2(x1, x2, x3) =
(x1, x1, x2). It can easily be checked that these functions sat-
isfy the hypothesis of Theorem 20, thus their CIs are chaotic
according to Devaney. Then when the MLP defined above
learn to recognize Ff1 or Ff2 , indeed it tries to learn these
CIs, that is, a chaotic behavior as defined by Devaney [4].
On the contrary, the function g(x1, x2, x3) = (x1, x2, x3) is
such that Γ(g1) is not strongly connected. In this case, due to
Theorem 20, the MLP does not learn a chaotic process. We
will now study the training process of functions Ff1 , Ff2 ,
and Fg [4], that is to say, the ability to learn one iteration of
CIs.

2) Experimental results: For each neural network we have
considered MLP architectures with one and two hidden
layers, with in the first case different numbers of hidden
neurons (sigmoidal activation). Thus we will have different
versions of a neural network modeling the same iteration
function [4]. Only the size and number of hidden layers
may change, since the numbers of inputs and output neurons
(linear activation) are fully specified by the function. The
neural networks are trained using the quasi-Newton L-BFGS
(Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algo-
rithm in combination with the Wolfe linear search [4]. The
training is performed until the learning error (MSE) is lower
than a chosen threshold value (10−2).

Table I gives for each considered neural network the mean
number of epochs needed to learn one iteration in their ICs,
and a success rate which reflects a successful training in
less than 1000 epochs. Both values are computed considering
25 trainings with random weights and biases initialization.
These results highlight several points [4]. Firstly, the two
hidden layer structure seems to be quite inadequate to learn
chaotic behaviors. Secondly, training networks so that they
behave chaotically seems to be difficult for these simplistic
functions only iterated one time, since they need in average



TABLE I
RESULTS OF SOME ITERATION FUNCTIONS LEARNING, USING

DIFFERENT RECURRENT MLP ARCHITECTURES

One hidden layer
8 neurons 10 neurons

Function Mean Success Mean Success
epoch rate epoch rate

f1 82.21 100% 73.44 100%
f2 76.88 100% 59.84 100%
g1 36.24 100% 37.04 100%

Two hidden layers: 8 and 4 neurons
Mean epoch number Success rate

f1 203.68 76%
f2 135.54 96%
g1 72.56 100%

more epochs to be correctly trained. However, the correctness
of this point needs to be further investigated.

At this point we can only claim that it is not completely
evident that computational intelligence as neural networks
are able to predict, with a good accuracy, protein folding.
To reinforce this belief, tools optimized to chaotic behaviors
must be found – if such tools exist. Similarly, there should
be a link between the training difficulty and the “quality”
of the disorder induced by a chaotic iteration function (their
constants of sensitivity, expansivity, etc.), and this link must
be found.

VI. CONCLUSION

In this paper the topological dynamic of protein folding is
evaluated. More precisely, it is regarded whether this folding
process is predictable or not. It is achieved to determine
if it is reasonable to think that computational intelligence
as neural networks are able to predict the 3D shape of an
amino acids sequence. It is mathematically proven, by using
two different ways, that protein folding in 2D hydrophobic-
hydrophilic (HP) square lattice model is chaotic according
to Devaney.

Consequences both for structure prediction and biology
are then outlined. In particular, the first comparison of the
learning by neural networks of a chaotic behavior on the
one hand, and of a more natural dynamic on the other hand,
are outlined. Obtained results tend to show that such chaotic
behaviors are more difficult to learn than non-chaotic ones. It
is not our pretension to claim that it is impossible to predict
chaotic behaviors as protein folding with computational
intelligence. Our opinion is just that this important point must
now be regarded with attention.

In future work the dynamical behavior of the protein
folding process will be more deeply studied, by using topo-
logical tools as expansivity, topological mixing, Knudsen
and Li-Yorke notions of chaos, topological entropy, etc. The
quality and intensity of this chaotic behavior will then be
evaluated. Consequences both on folding prediction and on
biology will then be regarded in detail. Other molecular or
genetic dynamics will be investigate by using mathematical
topology, and other chaotic behaviors will be looked for

(as neurons in the brain). More specifically, various tools
taken from the field of computational intelligence will be
studied to determine if some of these tools are capable to
predict behaviors that are chaotic. It is highly possible that
prediction depends both on the tool and on the chaos quality.
Moreover, the study presented in this paper will be extended
to high resolution 3D models. Impacts of the chaotic behavior
of the protein folding process in biology will be regarded.
Finally, the links between this established chaotic behavior
and stochastic models in gene expression, mutation, or in
Evolution, will be investigated.
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