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Abstract— Neural networks present a fundamentally different
model of computation from conventional sequential hardware,
making it inefficient for very-large-scale models. Current neu-
romorphic devices do not yet offer a fully satisfactory solution
even though they have improved simulation performance, in
part because of fixed hardware, in part because of poor
software support. SpiNNaker introduces a different approach,
the “neuromimetic” architecture, that maintains the neural
optimisation of dedicated chips while offering FPGA-like uni-
versal configurability. Central to this parallel multiproc essor
is an asynchronous event-driven model that uses interrupt-
generating dedicated hardware on the chip to support real-
time neural simulation. In turn this requires an event-driven
software model: a rethink as fundamental as that of the
hardware. We examine this event-driven software model for
an important hardware subsystem, the previously-introduced
virtual synaptic channel. Using a scheduler-based system service
architecture, the software can “hide” low-level processesand
events from models so that the only event the model sees is
“spike received”. Results from simulation on-chip demonstrate
the robustness of the system even in the presence of extremely
bursty, unpredictable traffic, but also expose important model-
level tradeoffs that are a consequence of the physical nature
of the SpiNNaker chip. This event-driven subsystem is the first
component of a library-based development system that allows
the user to describe a model in a high-level neural description
environment and be able to rely on a lower layer of system
services to execute the model efficiently on SpiNNaker. Sucha
system realises a general-purpose platform that can generate
an arbitrary neural network and run it with hardware speed
and scale.

I. EVENT-DRIVEN HARDWARE: A NEED FOR AN

EVENT-DRIVEN SOFTWARE MODEL

SIMULATION of large-scale neural networks is difficult
and can generate tremendous demands on communi-

cations capacity, processing speed, and memory usage. If
there is a need to run the network at real-time speeds, for
example, when interacting with a real-world environment,
these challenges become almost insurmountable with con-
ventional synchronous hardware that, even below the heavy
layering of necessary system software, uses a model of
computation different from and rather unsuitable for spiking
neural networks. Thus on the one hand there is a need
for dedicated hardware that can implement neural networks
explicitly, and on the other for an event-driven model of
computation at both the hardware and software level that
matches the spiking model of neural computation.
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Fig. 1. SpiNNaker chip.

Dedicated neural hardware has been attractive for some
time, forming the basis of the neuromorphic architecture
and a series of associated chips [1], [2]. One difficulty
with these chips is that they have typically included ana-
logue components that are either fixed-function or offer at
best limited configurability. This hard-wired nature severely
constrains the ability to use neuromorphic chips to explore
neural models, because they limit the experimenter to the
class of neural model the chip has implemented in hardware,
making inter-model comparisons impossible - and unless the
chip matches the experimenter’s model of choice, it is of
little value. Recently, we have introduced a new form of
neural hardware: the SpiNNaker chip (fig. 1), a general-
purpose platform containing programmable general-purpose
processors embedded in a configurable asynchronous net-
work. This architecture retains the essential massive paral-
lelism and rewirable network topology but allows freedom in
model choice - perhaps closer to the “ideal” neural hardware
architecture.

There remains a major gap in tool support: neuromorphic
architectures tend not to integrate seamlessly into existing
simulators [3]. The user cannot therefore simply run a
predeveloped model on the hardware: it needs translation, as-
suming, furthermore, that the target model is compatible with
what the hardware supports [4]. Being outside mainstream
commercial technology, such translation tools are scanty
to nonexistent [3]. There has tended to be no tool chain



other than a basic interface, usually in the form of a device
driver [5]. With minimal tool support, using such chips has,
historically, been difficult [6]. The would-be modeller usually
has to have intimate knowledge of the low-level details of
the hardware. Integrating these chips, containing proprietary
interfaces, into larger systems is equally difficult because the
entire system must be built from the ground up [7]. Bare
hardware without appropriate development tools is in effect
useless: there is thus a need for an integrated tool chain for
neural hardware.

The tool support problem is particularly acute if the archi-
tecture is event-driven; event-driven software is a specialist
field with limited tools even at a basic level, and scant
literature. Much of the knowledge seems to pass more by
word of mouth than by publication. When it is difficult,
such as here, to get even standard reference models to run,
an understandable reaction of the biological modeller is to
express scepticism about the validity of the models the chip
implements [8] - because he cannot test it against a model he
is familiar with and trusts [9]. Thus neuromorphic chips have
not to date provided a compelling platform for discovering
valid biological abstractions, because it has been difficult to
make direct comparisons against detailed models. Here we
introduce an event-driven tool chain, built from the ground
up to support asynchronous, spiking neural networks on
dedicated hardware platforms - an essential for large-scale
real-time neural network modelling.

II. EVENT-DRIVEN NEURAL MODELLING

A. Pure Software Simulation

Software simulation of spiking neural networks tends
to be slow and may require large computers for detailed
simulations on large-scale models [10]. To improve perfor-
mance, recent software tools have turned to event-driven
computing [11] [12]. Most such simulators actually run an
event-driven emulation by using a small timestep, record-
ing events in an event queue, and updating all processes
dependent upon the events in the queue at the appropriate
timestep [13]. While this improves efficiency over fully
synchronous approaches, it still encounters limitations with
very large networks that require either using simple dynamics
such as leaky integrate-and-fire, or modelling populationsof
neurons as a single object rather than each individual neuron.

B. Event-Driven General-Purpose Hardware

The emergence of various general-purpose devices sup-
porting some level of parallel processing has generated
numerous attempts to map various neural algorithms to the
hardware. A remarkable early attempt using a processor with
strong similarities to SpiNNaker, the Datawave chip [14]
appears not to have been pursued further because of the
limited commercial success and eventual disappearance of
the hardware. While the increasing ubiquity of standard
multicore microprocessors and graphics processors (GPU’s)
[15] introduces an obvious opportunity to exploit parallelism,
these devices use an emphatically synchronous, coherent

model. Some approaches attempt to exploit the reconfigura-
bility of field-programmable gate arrays (FPGA’s) and were
among the first to hint at an event-driven architecture [16].
However, attempts to create reconfigurable or event-driven
dynamics do not appear in most cases to have proceeded
beyond the design-exploration phase [13]. A severe limita-
tion with FPGA’s is the circuit-switched architecture, which
hampers the ability to create the dense connectivity patterns
realistic neural networks require [17]. Even more problematic
has been power consumption: a typical large FPGA may
dissipate∼ 50W. Thus adapting general-purpose FPGA’s for
neural networks has been useful for design exploration, but
not widely pursued for full-scale modelling [17].

C. Neuromorphic Hardware

Dedicated “neuromorphic” devices have generated the
greatest level of research activity in event-driven models.
Spiking networks make it possible to abstract the signalling
to a zero-time point process, and this forms the basis of
the emerging neural data serialisation standard: Address-
Event Representation (AER) [18]. AER uses packets that
encode the source of the spike as an address and is a proven,
efficient way to serialise and then multiplex multiple neural
signals onto the same series of lines [19] while making the
converters themselves trivial [20]. AER is well established
on the way to becoming a defined standard [1], thus making
it overwhelmingly the signalling method of choice for future
neural designs. Nothing limits AER signalling to mixed-
signal devices [21], and thus it can be the basis of a
“template” for neural hardware. The system that emerges is a
chip containing blocks of configurable functionality, possibly
mixed-signal [22], embedded in a connectivity network using
AER signalling, using a standard modelling tool chain that
likewise uses an event-driven model: the “neuromimetic”
architecture [23].

III. T HE SPINNAKER ASYNCHRONOUSEVENT-DRIVEN

ARCHITECTURE

SpiNNaker (fig. 3) integrates the essential elements of the
neuromimetic architecture: a hardware model designed to
support flexibility in model exploration while implementing
as many known features of the neural model of computation
explicitly in hardware for maximal performance ([24]). The
SpiNNaker chip is the core building block component of
a large-scale system using an array of chips arranged in a
2-dimensional triangular torus topology (fig. 2). Using this
diagonal-link topology increases system robustness through
the connection redundancy inherent in the toroidal physical
topology, while permitting an arbitrary mapping of large-
scale neural networks to physical chips and links.

SpiNNaker implements the key architectural features us-
ing a mixture of off-the-shelf and custom components. We
identify four features as fundamental to the neuromimetic
architecture.



Fig. 2. SpiNNaker system topology.

Fig. 3. SpiNNaker Architecture. The dashed box indicates the extent of
the SpiNNaker chip. Dotted grey boxes indicate local memoryareas.

A. Concurrent Multineuron Processing

SpiNNaker contains multiple (2 in the test chip used
for current simulations, 18 in the full version) independent
ARM968 processors, each simulating a variable number of
neurons which could be as few as 1 or as many as 1,700.
Each processor operates entirely independently (on separate
clocks) and has its own private subsystem containing vari-
ous event-generating devices to support neural functionality.
These are: a communications controller that handles input
and output traffic in the form of “spike” packets, a DMA
controller that provides fast virtual access to synaptic data

residing off-chip in a separate memory, and a Timer that
supports the generation of periodic events where models need
them. This “processing node” operates asynchronously from
other processing nodes using an event-driven model: local
interrupts from devices and software control execution.

B. Asynchronous Event-Driven Communications

SpiNNaker’s communication network is a configurable
packet-switched asynchronous interconnect using Address-
Event Representation (AER) to transmit neural signals be-
tween processors. SpiNNaker extends the basic address-only
standard with an optional 32-bit payload. The interconnect
itself extends both on-chip and off-chip as the Communica-
tions Network-on-Chip (Comms NoC) [25]. At the processor
node, the communications controller receives and generates
AER spikes, issuing an interrupt (i.e., an event) to the proces-
sor when a new packet arrives. The communications fabric
itself has very minimal buffering, therefore it is important
that packets be serviced as quickly as possible. Such events,
normally corresponding to spikes, areasynchronous: they
may happen at any time as a process “dropping from the
sky” so to speak, and therefore changing the process flow.

C. Reconfigurable Structure

SpiNNaker uses a distributed routing subsystem to direct
AER packets through the Comms NoC. Each chip has
a packet-switching router that handles these packets and
distributes them seamlessly to all connected neurons through
the GALS interconnect. The router incorporates a multicast
diffusion mechanism devised to support biologically realistic
neural fan-out (∼ 1000 connections/neuron) A 1024-word
associative routing table within each router defines the neural
connectivity. Routes are fully reprogrammable by changing
the routing table, making it possible, in principle, to reconfig-
ure the model topology on the fly (although these capabilities
have not yet been explored).

D. Virtually-Private Distributed Memory

SpiNNaker processors have access to 2 primary mem-
ory resources: their own local “Tightly-Coupled Memory”
(TCM) and a chip-wide SDRAM device. The TCM is only
accessible to its own processor and contains both the exe-
cuting code (in the 32 KB “Instruction TCM” (ITCM)) and
any variables that must be accessible on-demand (in the 64
KB “Data TCM” (DTCM)). The off-chip SDRAM contains
the synaptic data (and possibly other large data structures
whose need can be triggered by an event) Since synapses
in the SDRAM always connect 2 specific neurons, which
themselves individually map to a definite processor (not nec-
essarily the same for both neurons), it is possible to segment
the SDRAM into discrete regions for each processor, grouped
by postsynaptic neuron, with incoming spikes carrying presy-
naptic neuron information. At the processor node level, the
DMA controller handles synaptic data transfer, making the
synapse appear virtually local to the processor by bringing
it into DTCM when an incoming packet arrives ([26]). The
DMA controller also generates an event - DMA complete



- when the entire synaptic block has been transferred into
local memory. Overall therefore, the SDRAM behaves more
as an extension of local memory into a large off-chip area
than a shared memory area, and thus from a system point of
view, effectively all memory is local.

IV. T HE SYNAPSE CHANNEL IN SOFTWARE

A. The Synapse Channel Architecture

The subsystem - the “virtual synaptic channel” - that,
triggered by an incoming spike, accesses the synaptic data,
executes a DMA transfer, and brings the synaptic data into
local memory, then stores them back when the update is
complete, is one of the critical components of the SpiN-
Naker execution model. We have previously introduced the
hardware model for the synapse channel in [26], and various
algorithms for the synapses themselves in [27], [28], [29].At
a low level, however, it interacts tightly with two interrupt
sources (and devices): the communications controller and
the DMA controller, even though from a model point of
view, only one event - spike arrived - occurs. The underlying
software model must therefore be able to hide the DMA
operations and events from the user-level model, while
at the same time generating additional internal (software)
events to trigger writeback once the synaptic data has been
processed. It also needs to use the limited local memory and
processing resources efficiently, since there is a 64K local
data memory limit, and a (nominally 1 ms) time limit to
complete operations in order to maintain real-time update.
These considerations lead to a fully event-driven architecture
for the synapse channel at the software level.

B. Model-Level View

From the point of view of themodel, there is only
one event: “spike arrived”. However, rather than a single
monolithic event-triggered process, it is better to break down
the processing into a series of steps, executing in an event-
driven pipeline. By considering what hardware can usu-
ally implement efficiently, in combination with observations
about the nature of processing in typical neural models, we
have created a generalised function pipeline to represent a
neural process that is adequate for most models (fig. 4).

For the implementation of the neural and synaptic models,
three considerations emerge that interact with the event pro-
cessing. First, the spike arrived event is a high-priority FIQ
interrupt, because spikes have a “use-it-or-lose-it” nature:
new packets must receive immediate, pre-emptive servicing
or they will be lost. Second, since we use a periodic hardware
Timer event to drive an Euler-method differential equation
solver in the last stage, all other stages must complete within
the interval (nominally 1 ms) of a pair of Timer events or the
system will lose real time. Third, the virtual synaptic channel
model stores synaptic data off-chip in SDRAM, bringing it
into local memory via DMA operations [26] which generate
events upon completion. There needs to be a system software
layer that controls SpiNNaker’s hardware devices to make all
these events and processes transparent to the model.

Fig. 4. A general event-driven function pipeline for neuralnetworks.
Variable retrieval recovers values stored from deferred-event processes as
well as local values. Polynomial evaluation computes simple functions
expressible as multiply and accumulate operations. These then can form the
input to lookup table evaluation for more complex functions. Polynomial
interpolation improves achieved precision where necessary, and then finally
the differential equation solver can evaluate the expression (via Euler-
method integration). Each of these stages is optional (or evaluates to the
identity function).

C. Device-Level View

At the device level, the synapse channel consists of
the SDRAM (where synaptic weights reside), the System
NoC (simply the data link between the SDRAM and the
processor node) the DMA controller (which transfers the
data over the System NoC), and the local DTCM. The com-
munications controller activates the synapse channel when
a packet arrives. Obviously, the communications controller
and DMA controller provide 2 interrupt sources (events) to
control the synapse channel. To complete the channel, the
software needs to provide, at minimum, one other event:
Update Complete, indicating that all processing that needs
the current local synaptic buffer has completed, and the
buffer can be thus invalidated and possibly be written back,
freeing it for use by another arriving packet. This event uses
the ARM’s software interrupt (SWI) mechanism. To ensure
best performance for packet servicing, we add an additional
software queue for incoming packets, and a pair of additional
events (also SWI’s). This software functionality corresponds
to a second, higher level: System Level, which provides a
series of services including the software implementation of
the synapse channel.

D. System-Level View

The architectural model for the SpiNNaker system layer is
that of a scheduler and a series of services (fig. 5). Its core
component is the event handler, which acts as an efficient
scheduler of self-contained processes. Interrupt handlers (in-
cluding SWI’s) trigger the scheduler, which schedules an
appropriate service that then executes. The scheduler is
pre-emptive, allowing high-priority events such as packet
received to receive immediate servicing.

Libraries implement individual services. Thus, a given
model can load only the services it needs. Services them-
selves are independent modules that simply terminate when
complete rather than returning to a “background” process.
Within the synaptic channel, there are 3 relevant services:



Fig. 5. SpiNNaker event-driven software model. Events are asynchronous
signals that trigger the scheduler from the interrupt service routine. It then
in turn triggers various services, which may run concurrently. Services
start in ARM System (SYS) mode but may drop into user (USR) mode
after completing critical entry point tasks. Each service has its own local
context: the register file and user stack; that the schedulermust preserve. The
scheduler does not need to preserve the global context between service calls;
it can (asynchronously) update global context, consistingof main memory
(DTCM), device registers, and any registers marked as global. (The number
of global registers should be kept to an absolute minimum.) Updates to the
global context are the primary method of inter-process communication. The
ISR has its own private context. The ARM968 has 3 interrupt modes, FIQ,
IRQ and SWI; in addition to separate stacks for each, the FIQ mode has its
own private registers. Thus no interrupt need preserve scheduler context.

RequestDMA, StartDMA, and UpdateWeights. The first two
of these are system-level services we introduce to process
the incoming packet queue and compute DMA requests.
RequestDMA services the packet queue. When an incoming
spike arrives, it simply places the neuron ID and any payload
into a queue, then exits to the scheduler with the Request-
DMA service. This process then dequeues a packet and
computes the necessary parameters (in particular, the location
in SDRAM of the synaptic data) for the DMA. It then triggers
an event, which in turn reaches the scheduler again with the
StartDMA service. StartDMA issues the DMA transaction,
then terminates silently. The UpdateComplete event has two
variants. The first variant, active if synapses have plasticity
which require writeback to SDRAM, triggers a StartDMA
service. The second, UpdateBypass, retains the event-driven
model by providing a software eventin lieu of the DMA
interrupt that would complete the weight update. Thus either
when the DMA completes, or when UpdateBypass triggers
its SWI, the system can invalidate the current buffer and
move to the next. Figure 6 captures the behaviour of the
entire event-driven synapse channel software layer.

The critical benefits of a fully event-driven model for the
software side of the synapse channel are: 1) It allows both
the system and higher-level model code to handle updates

Fig. 6. Representation of the states and possible event-driven transitions
within the SpiNNaker synapse channel software system. States (circles) have
3 values indicating the condition of the packet queue (emptyor occupied),
the condition of the local data buffers, and the number and type of DMA
transactions currently in flight. Arrows indicate events, which trigger state
transtions: red = packet arrived; magenta = DMA request; dark cyan = DMA
start; green = DMA complete; blue = update complete.

regardless of the order and timing of events; 2) It permits
efficient use of DMA hardware and buffering while keeping
track of what operations are in progress; 3) it permits a
reentrant, prioritisable model of process scheduling, allowing
high-priority events like incoming packets to pre-empt long,
low-priority tasks like synaptic update; 4) it permits an
absolute minimum of time to be spent in critical sections
during interrupt processing, so that the system can quickly
reenable event handling when an event occurs. These benefits
are essential to permit real-time simulation with neurons
having high fan-ins and reasonable spike rates, as we show
in the next section.

V. SIMULATION OF SPIKING MODELS ONSPINNAKER

A. Resilience to Input Bursting

To test the new model under a variety of high-stress
conditions we created two scenarios. In the first scenario
we tested the response of the system in the presence of
intense traffic with bursting behaviour. We implemented a
synfire chain model [30] as follows. We connected 50 pools
of 10 neurons in a feed-forward one-to-one fashion, each
spike arriving from a presynaptic neuron being strong enough
to elicit a spike in the corresponding postsynaptic neuron
(weight=30). Neurons are modelled as LIF with the following
parameters:τm = 16msec, Vrest = −65mV, Vreset =

−75mV, Vthresh = −55mV . We stimulated the first pop-
ulation with a currentI = 1. Results are in fig. 7 where it
can be see that the volley of spikes are propagated to each
pool in a feed-forward fashion. The rate plot shown in fig. 8.

To stress test the packet-handling system we adapted the
synfire chain model in the following way: we connected 3
pools of 300 neurons each with fixed delays, and stimulated
the first population of neurons so to make them all fire
together. Fig. 9 shows the results of this test. The activity
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Fig. 7. Synfire chain with 500 neurons
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Fig. 8. Synfire chain: mean population rate rises up to a mean of 45Hz

propagates regularly across the 3 pools, each neuron firing
in the same millisecond generating 300 synchronous packets.
The ability of the system to handle this (much-higher-than-
normal) input rate demonstrates the robustness of the event-
driven mechanism.

B. Buffer Failure

During testing we noticed certain potential failure modes,
which emphasize the need for careful design and testing
of event-driven systems, and demonstrates the effects of
asynchronous behaviour. We connected 3 input LIF neurons
(with the same parameters as the previous test) to 15 output
neurons in an all-to-all fashion. The 15 output neurons
connect back to the input neurons providing mild inhibition
(weight = -1). We then stimulated the 3 input neurons so
as to make them spike with a mean frequency of 40 Hz. In
some tests, we saw the expected behaviour (fig. 11). Others,
however, gave the output in fig. 10. An analysis revealed
that the triggering factor was the presence or absence of
debugging messages; a common symptom in event-driven
design. This pathology does not affect the “release” code
base but it does provide an illuminating example of the need
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Fig. 9. Simulation of a highly synchronous synfire chain model. The
system simulates 3 populations of 300 neurons each. All neurons fire in
precise synchrony - a worst-case test for the packet-handling system
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Fig. 10. One-to-all: failure of the network

for system libraries: a SpiNNaker user could not be expected
to identify, much less debug, such behaviour if they had to
write their own system functions.

VI. A G ENERAL EVENT-DRIVEN FRAMEWORK FOR THE

SPINNAKER SYSTEM

In principle, SpiNNaker can implement virtuallyany net-
work, but, by virtue of being a hardware device, it is naturally
subject to definite limitations which place bounds on its uni-
versality. In a previous work ([24]), we reflected, “from the
models that have successfully run it is clear that SpiNNaker
can support multiple, very different neural networks; how
general this capability is remains an important question.”
The experiments we have performed using the event-driven
synapse channel software model put us in a position to start
to examine this question.

The central theme of the answer is this: SpiNNaker does
have limitations, but not in the fixed sense typical of most
neuromorphic devices, such as having a definite maximum
number of neurons X or number of connections Y. Rather,
the chip offers a variety of design tradeoffs to the neural
modeller, depending on the complexity of the model, the
expected rate of operation (real-time; accelerated-time;re-
tarded time), and the dynamics of activity. As it is, for most
models, memory capacity rather than processing overhead is
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Fig. 11. One-to-all: Expected behaviour

the limiting factor: a limit of 1724 AMPA/GABA-A-only
neurons/processor. However, this assumes uniform traffic
patterns. With very bursty traffic, the experiments revealed
that in fact the size of the synaptic row, i.e. the mean connec-
tivity per axon, tends to become a limiting factor before the
system exhausts the packet-handling capacity of the network.
This is consistent with the model, in that synaptic updating
dominates the time to process the complete function pipeline.
This creates a tradeoff between number of neurons, number
of connections per neuron, and peak activity rate. Careful
pre-instantiation analysis is therefore important for networks
with the potential to generate large, synchronous resonances,
and users of such networks will probably need to follow an
incremental approach, testing first on small networks before
building large and complex networks. However, the simple
fact that the user is presented with tradeoffs rather than
hard model limits is new for hardware, and is one of the
distinguishing features of the “neuromimetic” architecture as
opposed to a traditional “neuromorphic” architecture.

The synapse channel is only one part of the complete
SpiNNaker software environment, and is the first component
we have transformed from early prototype software using
conventional sequential programming into a fully event-
driven system. We are working on rebuilding the entire soft-
ware “stack” into an event-driven architecture, with standard
interfaces that handle the low-level implementation details
transparently to the model and permit a much more general
system: a system framework for neural models that abstract
as much of SpiNNaker system as is not integral to the neural
model itself.

Fig. 12 shows the basic architecture of the event-driven
framework. The neural model developer writes callback rou-
tines associated with the events that are of interest,e.g. arrival
of a spike (packet), completion of a memory transfer or
periodic time interval. These callbacks are registered with the
system kernel to be executed when the corresponding event
takes place. The kernel is responsible for the initial handling
of events, servicing hardware devices, and scheduling the
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Fig. 12. An event-driven framework. The left side is the model space,
consisting of callback routines. The right side is the system space, consisting
of a scheduler and interrupt-service routines.

corresponding callback for execution. The callback routine,
executing entirely in model space, transfers control back to
the kernel on completion allowing the scheduler to transfer
control to the next pending callback.

The flexibility of the SpiNNaker architecture depends in
part upon node homogeneity and an absence of dedicated,
fixed-structure control hardware but this presents challenges
when loading heterogeneous neural models and structures
into disparate chips. A distinct “configuration” phase, neces-
sarily preceding model execution, uses a packet-based, event-
driven approach [31]. In this phase scalability is a major
concern. Our current approach: loading each chip in turn
with individual binaries, would incur unacceptable overheads
in machines of only hundreds of chips. Futhermore, it implies
that the human and computational resources are available to
hand-craft billion neuron models “offline”. We are working
on a method to distribute a high-level description of model
functions and data as a generic binary, using a flood-fill
mechanism which loads code concurrently onto chips. Each
packet in the flood-fill will generate an event in receiving
chips triggering local storage and forward retransmissionon
all forward links. Receipt of the final packet will trigger chip
ID-dependent unpacking of the descriptions into neuron and
synapse data structures and computation of the corresponding
routing tables. Even more advanced research is underway to
identify appropriate load and model execution architectures
for very-large-scale systems of tens of thousands of chips.

VII. C ONCLUSIONS

We have demonstrated a fully event-driven implementa-
tion of the software component of the SpiNNaker synapse
channel, matching the hardware’s event-driven model and
insulation of model synapses from the low-level details of
data location and access. This implementation is the first
component of a systematic programme to create a standard,
library-based, event-driven system layer for SpiNNaker de-
velopment. In light of the complexities of event-driven design



and the different model of computation neural networks
represent, such a library can be considered almost mandatory
for widespread hardware adoption. Steinkraus ([5]) is gloomy
on the prospects for dedicated hardware: “Using dedicated
hardware to do machine learning most often ends up in
disaster. The hardware is typically expensive, unreliable,
without libraries, poorly documented, and obsolete within
a few years”. With the SpiNNaker library we hope to start
to change this, at least for one chip. However just as impor-
tantly, we are developing a referencemethodologyfor event-
driven neural hardware development. This is a need just as
crucial. Event-driven software design is hard. The literature
is thin and scattered. Practitioners are a small community,
often relying on empirical knowledge that has become part
of the “unwritten folklore” of the field. Into this world the
neural modeller, interested in running models rather than
relearning programming, enters to face frustration. With
the SpiNNaker model we hope to de-mystify development
through a standard interface. If future neural hardware will
be event-driven, it makes sense that its software environment
should also be event-driven.
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