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Abstract— Neural networks present a fundamentally different
model of computation from conventional sequential hardwae,
making it inefficient for very-large-scale models. Current neu-
romorphic devices do not yet offer a fully satisfactory soltion
even though they have improved simulation performance, in
part because of fixed hardware, in part because of poor
software support. SpiNNaker introduces a different approah,
the “neuromimetic” architecture, that maintains the neural
optimisation of dedicated chips while offering FPGA-like wni-
versal configurability. Central to this parallel multiproc essor
is an asynchronous event-driven model that uses interrupt-
generating dedicated hardware on the chip to support real-
time neural simulation. In turn this requires an event-driven
software model: a rethink as fundamental as that of the
hardware. We examine this event-driven software model for
an important hardware subsystem, the previously-introdued
virtual synaptic channel. Using a scheduler-based systenewvice
architecture, the software can “hide” low-level processesand
events from models so that the only event the model sees is
“spike received”. Results from simulation on-chip demonstate
the robustness of the system even in the presence of extremel
bursty, unpredictable traffic, but also expose important malel-
level tradeoffs that are a consequence of the physical natar
of the SpiNNaker chip. This event-driven subsystem is the fat
component of a library-based development system that allosv
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Fig. 1. SpiNNaker chip.

the user to describe a model in a high-level neural descriptn

environment and be able to rely on a lower layer of system
services to execute the model efficiently on SpiNNaker. Such
system realises a general-purpose platform that can genae

Dedicated neural hardware has been attractive for some
time, forming the basis of the neuromorphic architecture
and a series of associated chips [1], [2]. One difficulty

with these chips is that they have typically included ana-

logue components that are either fixed-function or offer at

best limited configurability. This hard-wired nature sehgr

|. EVENT-DRIVEN HARDWARE: A NEED FOR AN constrains the ability to use neuromorphic chips to explore
EVENT-DRIVEN SOFTWARE MODEL neural models, because they limit the experimenter to the

IMULATION of large-scale neural networks is difficult ¢/ass of neural model the chip has implemented in hardware,

and can generate tremendous demands on commumaking inter-model comparisons impossible - and unless the
cations capacity, processing speed, and memory usage.‘?}i‘l‘p matches the experimenter's model of choice, it is of
there is a need to run the network at real-time speeds, fiifle value. Recently, we have introduced a new form of
example, when interacting with a real-world environment}eural hardware: the SpiNNaker chip (fig. 1), a general-
these challenges become almost insurmountable with cdpHrPose platform containing programmable general-p&rpos
ventional synchronous hardware that, even below the heaR§Pcessors embedded in a configurable asynchronous net-
layering of necessary system software, uses a model werk. This architecture retains the essential massivelpara
computation different from and rather unsuitable for spki lelism and rewirable network topology but allows freedom in
neural networks. Thus on the one hand there is a ne8tPdel choice - perhaps closer to the “ideal” neural hardware
for dedicated hardware that can implement neural networléchitecture. - _ . .
explicitly, and on the other for an event-driven model of There remains a major gap in tool support: neuromorphic
computation at both the hardware and software level thafchitectures tend not to integrate seamlessly into exgsti

matches the spiking model of neural computation. simulators [3]. The user cannot therefore simply run a
predeveloped model on the hardware: it needs translatien, a
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commercial technology, such translation tools are scanty
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Research Council, ARM, Inc, and Silistix. to nonexistent [3]. There has tended to be no tool chain

an arbitrary neural network and run it with hardware speed
and scale.



other than a basic interface, usually in the form of a deviceodel. Some approaches attempt to exploit the reconfigura-
driver [5]. With minimal tool support, using such chips hasbility of field-programmable gate arrays (FPGAS) and were
historically, been difficult [6]. The would-be modeller 'dly among the first to hint at an event-driven architecture [16].
has to have intimate knowledge of the low-level details offowever, attempts to create reconfigurable or event-driven
the hardware. Integrating these chips, containing prtggie dynamics do not appear in most cases to have proceeded
interfaces, into larger systems is equally difficult beeatle  beyond the design-exploration phase [13]. A severe limita-
entire system must be built from the ground up [7]. Baréion with FPGA's is the circuit-switched architecture, whi
hardware without appropriate development tools is in ¢ffehampers the ability to create the dense connectivity petter
useless: there is thus a need for an integrated tool chain f@alistic neural networks require [17]. Even more probléma
neural hardware. has been power consumption: a typical large FPGA may

The tool support problem is particularly acute if the archidissipate~ 50W. Thus adapting general-purpose FPGA’s for
tecture is event-driven; event-driven software is a spistia neural networks has been useful for design exploration, but
field with limited tools even at a basic level, and scannot widely pursued for full-scale modelling [17].
literature. Much of the knowledge seems to pass more by
word of mouth than by publication. When it is difficult, C. N :

. Neuromorphic Hardware

such as here, to get even standard reference models to run,
an understandable reaction of the biological modeller is to Dedicated “neuromorphic” devices have generated the
express scepticism about the validity of the models the chigreatest level of research activity in event-driven madels
implements [8] - because he cannot test it against a model Bgiking networks make it possible to abstract the sigrgllin
is familiar with and trusts [9]. Thus neuromorphic chips@avto a zero-time point process, and this forms the basis of
not to date provided a compelling platform for discoveringhe emerging neural data serialisation standard: Address-
valid biological abstractions, because it has been diffitul Event Representation (AER) [18]. AER uses packets that
make direct comparisons against detailed models. Here w@code the source of the spike as an address and is a proven,
introduce an event-driven tool chain, built from the grounefficient way to serialise and then multiplex multiple nedura
up to support asynchronous, spiking neural networks ofignals onto the same series of lines [19] while making the
dedicated hardware platforms - an essential for largeescalonverters themselves trivial [20]. AER is well establighe
real-time neural network modelling. on the way to becoming a defined standard [1], thus making
it overwhelmingly the signalling method of choice for fugur
neural designs. Nothing limits AER signalling to mixed-
A. Pure Software Simulation signal devices [21], and thus it can be the basis of a

Software simulation of spiking neural networks tendstemplate for neural hardware. The system that emerges is a

to be slow and may require large computers for detaile'ffqip containing blocks of configurable functionality, pixs

simulations on large-scale models [10]. To improve perforr—nixed'SigmII [22], embedded in a conneciivity network gsin
R signalling, using a standard modelling tool chain that

mance, recent software tools have turned to event-drivefr " . “ T
computing [11] [12]. Most such simulators actually run a Ikewise uses an event-driven model: the “neuromimetic
event-driven emulation by using a small timestep, recorcﬁmhItecture [23].
ing events in an event queue, and updating all processes
dependent upon the events in the queue at the appropriate. THE SPINNAKER ASYNCHRONOUSEVENT-DRIVEN
timestep [13]. While this improves efficiency over fully ARCHITECTURE
synchronous approaches, it still encounters limitatioiith w
very large networks that require either using simple dyrmami  SpiNNaker (fig. 3) integrates the essential elements of the
such as leaky integrate-and-fire, or modelling populatmins neuromimetic architecture: a hardware model designed to
neurons as a single object rather than each individual meursupport flexibility in model exploration while implemengn
as many known features of the neural model of computation

B. Event-Driven General-Purpose Hardware explicitly in hardware for maximal performance ([24]). The

The emergence of various general-purpose devices suppiNNaker chip is the core building block component of
porting some level of parallel processing has generatédlarge-scale system using an array of chips arranged in a
numerous attempts to map various neural algorithms to tRedimensional triangular torus topology (fig. 2). Usingsthi
hardware. A remarkable early attempt using a processor wi¢iaggonal-link topology increases system robustness girou
strong similarities to SpiNNaker, the Datawave chip [14}he connection redundancy inherent in the toroidal physica
appears not to have been pursued further because of thgology, while permitting an arbitrary mapping of large-
limited commercial success and eventual disappearance s¢gle neural networks to physical chips and links.
the hardware. While the increasing ubiquity of standard SpiNNaker implements the key architectural features us-
multicore microprocessors and graphics processors (GPUiag a mixture of off-the-shelf and custom components. We
[15] introduces an obvious opportunity to exploit paradled, identify four features as fundamental to the neuromimetic
these devices use an emphatically synchronous, coheranthitecture.

II. EVENT-DRIVEN NEURAL MODELLING

.
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A. Concurrent Multineuron Processing

residing off-chip in a separate memory, and a Timer that
supports the generation of periodic events where modet$ nee
them. This “processing node” operates asynchronously from
other processing nodes using an event-driven model: local
interrupts from devices and software control execution.

B. Asynchronous Event-Driven Communications

SpiNNaker’'s communication network is a configurable
packet-switched asynchronous interconnect using Address
Event Representation (AER) to transmit neural signals be-
tween processors. SpiNNaker extends the basic addregs-onl
standard with an optional 32-bit payload. The interconnect
itself extends both on-chip and off-chip as the Communica-
tions Network-on-Chip (Comms NoC) [25]. At the processor
node, the communications controller receives and gerserate
AER spikes, issuing an interrupt (i.e., an event) to the @sec
sor when a new packet arrives. The communications fabric
itself has very minimal buffering, therefore it is importan
that packets be serviced as quickly as possible. Such gvents
normally corresponding to spikes, aesynchronousthey
may happen at any time as a process “dropping from the
sky” so to speak, and therefore changing the process flow.

C. Reconfigurable Structure

SpiNNaker uses a distributed routing subsystem to direct
AER packets through the Comms NoC. Each chip has
a packet-switching router that handles these packets and
distributes them seamlessly to all connected neurons girou
the GALS interconnect. The router incorporates a multicast
diffusion mechanism devised to support biologically retidi
neural fan-out £ 1000 connections/neuron) A 1024-word
associative routing table within each router defines theaieu
connectivity. Routes are fully reprogrammable by changing
the routing table, making it possible, in principle, to refig-
ure the model topology on the fly (although these capalslitie
have not yet been explored).

D. Virtually-Private Distributed Memory

SpiNNaker processors have access to 2 primary mem-
ory resources: their own local “Tightly-Coupled Memory”
(TCM) and a chip-wide SDRAM device. The TCM is only
accessible to its own processor and contains both the exe-
cuting code (in the 32 KB “Instruction TCM” (ITCM)) and
any variables that must be accessible on-demand (in the 64
KB “Data TCM” (DTCM)). The off-chip SDRAM contains
the synaptic data (and possibly other large data structures
whose need can be triggered by an event) Since synapses

SpiNNaker contains multiple (2 in the test chip usedn the SDRAM always connect 2 specific neurons, which
for current simulations, 18 in the full version) independenthemselves individually map to a definite processor (not nec
ARM968 processors, each simulating a variable number essarily the same for both neurons), it is possible to segmen
neurons which could be as few as 1 or as many as 1,708e SDRAM into discrete regions for each processor, grouped
Each processor operates entirely independently (on geparhy postsynaptic neuron, with incoming spikes carrying pres
clocks) and has its own private subsystem containing vaniaptic neuron information. At the processor node level, the
ous event-generating devices to support neural funcitgnal DMA controller handles synaptic data transfer, making the
These are: a communications controller that handles inpsynapse appear virtually local to the processor by bringing
and output traffic in the form of “spike” packets, a DMA it into DTCM when an incoming packet arrives ([26]). The
controller that provides fast virtual access to synaptimdaDMA controller also generates an event - DMA complete



- when the entire synaptic block has been transferred in( i Data-Broceaing . JEem
local memory. Overall therefore, the SDRAM behaves mon

as an extension of local memory into a large off-chip arel
than a shared memory area, and thus from a system point|
view, effectively all memory is local. '

IV. THE SYNAPSE CHANNEL IN SOFTWARE

Interpolation

Evaluation

A. The Synapse Channel Architecture

Look-Up
Table

Retrieval

The subsystem - the “virtual synaptic channel” - that,
triggered by an incoming spike, accesses the synaptic data,
executes a DMA transfer, and brlngs the synaptic data InE?g. 4. A general event-driven function pipeline for neuratworks.
local memory, then stores them back when the update Vgriable retrieval recovers values stored from deferneshe processes as
complete, is one of the critical components of the SpineII as local values. Polynomial evaluation computes sémfuinctions

: . . pressible as multiply and accumulate operations. Thesedan form the
Naker execution model. We have preV|ou_st introduced _tkﬁput to lookup table evaluation for more complex functioR®lynomial
hardware model for the synapse channel in [26], and variouserpolation improves achieved precision where necgssad then finally
algorithms for the synapses themselves in [27], [28], [2@]. the differential equation solver can evaluate the expoesgvia Euler-
a low level. however. it interacts tightly with two internup _r(r;ethpd finteg_rat)ion). Each of these stages is optional (aluates to the
! ) i . identity function).

sources (and devices): the communications controller and
the DMA controller, even though from a model point of
view, only one event - spike arrived - occurs. The underlying. Device-Level View
software model must therefore be able to hide the DMA A {he device level, the synapse channel consists of

operations and events from the user-level model, Whi|ﬁ:.|e SDRAM (where synaptic weights reside), the System
at the same time generating additional internal (softwarﬂoc (simply the data link between the SDRAM and the
events to trigger writeback once the synaptic data has beﬁfbcessor node) the DMA controller (which transfers the
processed. It also needs to use the limited local memory afd.~ over the System NoC), and the local DTCM. The com-
processing resources efficiently, since there is a 64K locg| nications controller activates the synapse channel when
data memory limit, and a (nominally 1 ms) time limit to , packet arrives. Obviously, the communications controlle
complete operations in order to maintain real-time updatg,,j pia controller provide 2 interrupt sources (events) to
These considerations lead to a fully event-driven architec control the synapse channel. To complete the channel, the
for the synapse channel at the software level. software needs to provide, at minimum, one other event:
B. Model-Level View Update Complete, indica_ting that all processing that needs
) ) ) the current local synaptic buffer has completed, and the
From the point of view of themode| there is only pyffer can be thus invalidated and possibly be written back,
one event: “spike arrived”. However, rather than a singlgeeing it for use by another arriving packet. This eventuse
monolithic event-triggered process, it is better to breawid e ARM's software interrupt (SWI) mechanism. To ensure
the processing into a series of steps, executing in an eveRkst performance for packet servicing, we add an additional
driven pipeline. By considering what hardware can Ususpftware queue for incoming packets, and a pair of additiona
ally implement efficiently, in combination with observai® gyents (also SWI's). This software functionality corresgs
about the nature of processing in typical neural models, wg g second, higher level: System Level, which provides a

have created a generalised function pipeline to represenkgries of services including the software implementatibn o
neural process that is adequate for most models (fig. 4). the synapse channel.

For the implementation of the neural and synaptic models,
three considerations emerge that interact with the event p2- System-Level View
cessing. First, the spike arrived event is a high-priorit® F ~ The architectural model for the SpiNNaker system layer is
interrupt, because spikes have a “use-it-or-lose-it” reatu that of a scheduler and a series of services (fig. 5). Its core
new packets must receive immediate, pre-emptive servicimgmponent is the event handler, which acts as an efficient
or they will be lost. Second, since we use a periodic hardwaseheduler of self-contained processes. Interrupt hamier
Timer event to drive an Euler-method differential equatiorluding SWI's) trigger the scheduler, which schedules an
solver in the last stage, all other stages must completérwithappropriate service that then executes. The scheduler is
the interval (nominally 1 ms) of a pair of Timer events or thepre-emptive, allowing high-priority events such as packet
system will lose real time. Third, the virtual synaptic chah received to receive immediate servicing.
model stores synaptic data off-chip in SDRAM, bringing it Libraries implement individual services. Thus, a given
into local memory via DMA operations [26] which generatemodel can load only the services it needs. Services them-
events upon completion. There needs to be a system softwamves are independent modules that simply terminate when
layer that controls SpiNNaker’s hardware devices to make atlomplete rather than returning to a “background” process.
these events and processes transparent to the model.  Within the synaptic channel, there are 3 relevant services:



Registers  User Stack
le—

(00.00,0 unmn oooo; unwo oomn lnnw] noooa (0000, 0)—{o0,00,1
0 0 R or m« RR HK

c
moou mooo olulu moo] moou mooo mool

FIQ
Registers IRQ/FIQ Stack
le—

Global
Registers
Memory [~ Service Stack
orem 1 —
—
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Fig. 5. SpiNNaker event-driven software model. Events agsehronous

signals that trigger the scheduler from the interrupt servoutine. It then

in turn triggers various services, which may run conculyerervices )
start in ARM System (SYS) mode but may drop into user (USR) enodregardless of the order and timing of events; 2) It permits

after completing critical entry point tasks. Each servies lits own local  afficient use of DMA hardware and buﬁering while keeping
context: the register file and user stack; that the schedulst preserve. The

scheduler does not need to preserve the global context eetwevice calls; track of Wh"_]‘t .o_perations are in progress; 3) i_t permits a
it can (asynchronously) update global context, consistinghain memory — reentrant, prioritisable model of process schedulingyvétg

(DTCM), device registers, and any registers marked as gl¢bae number ivh-Driori ike i i ts to pre-emptdon
of global registers should be kept to an absolute minimunpgddtes to the hlgh priority events like incoming packe P P gO

global context are the primary method of inter-process comication. The ~|OW-priority _t"?‘SkS like _synaptic update; _4) i_t _ permits_ an
ISR has its own private context. The ARM968 has 3 interruptiesp FIQ,  absolute minimum of time to be spent in critical sections

IRQ and SWI; in addition to separate stacks for each, the Ft@erhas its during interrupt processing, so that the system can quickly
own private registers. Thus no interrupt need preservedsibdie context. . .
reenable event handling when an event occurs. These benefits
are essential to permit real-time simulation with neurons
J1avmg high fan-ins and reasonable spike rates, as we show

RequestDMA, StartDMA, and UpdateWeights. The first tw
the next section.

of these are system-level services we introduce to procegs
the incoming packet queue and compute DMA requestsv SIMULATION OF SPIKING MODELS ON SPINNAKER
RequestDMA services the packet queue. When an incoming
spike arrives, it simply places the neuron ID and any payload Resilience to Input Bursting
into a queue, then exits to the scheduler with the Request-To test the new model under a variety of high-stress
DMA service. This process then dequeues a packet awcdnditions we created two scenarios. In the first scenario
computes the necessary parameters (in particular, thédaca we tested the response of the system in the presence of
in SDRAM of the synaptic data) for the DMA. It then triggersintense traffic with bursting behaviour. We implemented a
an event, which in turn reaches the scheduler again with tlsgnfire chain model [30] as follows. We connected 50 pools
StartDMA service. StartDMA issues the DMA transactionpof 10 neurons in a feed-forward one-to-one fashion, each
then terminates silently. The UpdateComplete event has tvgpike arriving from a presynaptic neuron being strong ehoug
variants. The first variant, active if synapses have plgtic to elicit a spike in the corresponding postsynaptic neuron
which require writeback to SDRAM, triggers a StartDMA (weight=30). Neurons are modelled as LIF with the following
service. The second, UpdateBypass, retains the evergrdriparameters:r,,, = 16msec, Viest = —65mV, Vieser =
model by providing a software eveint lieu of the DMA  —75mV, Vipresn = —55mV. We stimulated the first pop-
interrupt that would complete the weight update. Thus eithalation with a current/ = 1. Results are in fig. 7 where it
when the DMA completes, or when UpdateBypass triggersan be see that the volley of spikes are propagated to each
its SWI, the system can invalidate the current buffer angool in a feed-forward fashion. The rate plot shown in fig. 8.
move to the next. Figure 6 captures the behaviour of the To stress test the packet-handling system we adapted the
entire event-driven synapse channel software layer. synfire chain model in the following way: we connected 3
The critical benefits of a fully event-driven model for thepools of 300 neurons each with fixed delays, and stimulated
software side of the synapse channel are: 1) It allows bothe first population of neurons so to make them all fire
the system and higher-level model code to handle updatesyether. Fig. 9 shows the results of this test. The activity
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for system libraries: a SpiNNaker user could not be expected

to identify, much less debug, such behaviour if they had to

write their own system functions.

propagates regularly across the 3 pools, each neuron firir\gI
in the same millisecond generating 300 synchronous packets
The ability of the system to handle this (much-higher-than-
normal) input rate demonstrates the robustness of the-event!n principle, SpiNNaker can implement virtualgny net-
driven mechanism. work, but, by virtue of being a hardware device, it is natiyral
subject to definite limitations which place bounds on its-uni
versality. In a previous work ([24]), we reflected, “from the
During testing we noticed certain potential failure modeanodels that have successfully run it is clear that SpiNNaker
which emphasize the need for careful design and testim@n support multiple, very different neural networks; how
of event-driven systems, and demonstrates the effects géneral this capability is remains an important question.”
asynchronous behaviour. We connected 3 input LIF neuroii$ie experiments we have performed using the event-driven
(with the same parameters as the previous test) to 15 outmynapse channel software model put us in a position to start
neurons in an all-to-all fashion. The 15 output neuron® examine this question.
connect back to the input neurons providing mild inhibition The central theme of the answer is this: SpiNNaker does
(weight = -1). We then stimulated the 3 input neurons shave limitations, but not in the fixed sense typical of most
as to make them spike with a mean frequency of 40 Hz. Ineuromorphic devices, such as having a definite maximum
some tests, we saw the expected behaviour (fig. 11). Othensimber of neurons X or number of connections Y. Rather,
however, gave the output in fig. 10. An analysis revealethe chip offers a variety of design tradeoffs to the neural
that the triggering factor was the presence or absence wibdeller, depending on the complexity of the model, the
debugging messages; a common symptom in event-driverpected rate of operation (real-time; accelerated-tirae;
design. This pathology does not affect the “release” codarded time), and the dynamics of activity. As it is, for most
base but it does provide an illuminating example of the neadodels, memory capacity rather than processing overhead is

Fig. 8. Synfire chain: mean population rate rises up to a méaa5tz

A GENERAL EVENT-DRIVEN FRAMEWORK FOR THE
SPINNAKER SYSTEM

B. Buffer Failure
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Fig. 11.  One-to-all: Expected behaviour Fig. 12. An event-driven framework. The left side is the miosieace,

consisting of callback routines. The right side is the sys$pace, consisting
of a scheduler and interrupt-service routines.

the limiting factor: a limit of 1724 AMPA/GABA-A-only

neurons/processor. However, this assumes uniform traffig e snonding callback for execution. The callback rajtin
patterns. With very bursty traffic, the experiments reV'H’aleexecuting entirely in model space, transfers control back t

t.h"f‘t in fact the size of the synaptic row, i..e. the mean CONNCHe kernel on completion allowing the scheduler to transfer
tivity per axon, tends to become a limiting factor before th%ontrol to the next pending callback.
system exhausts the packet-handling capacity of the nietwor The flexibility of the SpiNNaker architecture depends in

This_is consiste_nt with the model, in that synapt@c up_olatingart upon node homogeneity and an absence of dedicated,

This creates a tradeoff between number of neurons,
of connections per neuron, and peak activity rate. Carefmto disparate chips. A distinct *
pre-instantiation analysis is therefore important forwaerks '

configuration” phase, eec

it th il | h sarily preceding model execution, uses a packet-baseqit-eve
with the potential to generate large, Synchronous reS@®nc e approach [31]. In this phase scalability is a major

and users of such networks will probably need to follow algncern. Our current approach: loading each chip in tumn

incremental approach, testing first on small networks Befof, i, jndividual binaries, would incur unacceptable oveatie
building large and qomplex networks. However, the S'mplfn machines of only hundreds of chips. Futhermore, it ingplie
fact that the- user 1s presented with tradeof_fs rather thelﬂat the human and computational resources are available to
h?‘"?' mc_;dgl limits is new for hardware, a_nd IS one of the and-craft billion neuron models “offline”. We are working
distinguishing feat_u_res of the “neurom_|met|c” grchﬂeetas on a method to distribute a high-level description of model
opposed to a traditional “neuromorphic™ architecture. functions and data as a generic binary, using a flood-fill
The synapse channel is only one part of the compleigechanism which loads code concurrently onto chips. Each
SpiNNaker software environment, and is the first componegicket in the flood-fill will generate an event in receiving
we have transformed from early prototype software usinghips triggering local storage and forward retransmission
conventional sequential programming into a fully eventy|| forward links. Receipt of the final packet will triggeriph
driven system. We are working on rebuilding the entire softp-dependent unpacking of the descriptions into neuron and
ware “stack” into an event-driven architecture, with stamt synapse data structures and computation of the corresppndi
interfaces that handle the low-level implementation d&tairouting tables. Even more advanced research is underway to
transparently to the model and permit a much more geneigentify appropriate load and model execution architestur

system: a system framework for neural models that abstragf very-large-scale systems of tens of thousands of chips.
as much of SpiNNaker system as is not integral to the neural
model itself. VIl. CONCLUSIONS

Fig. 12 shows the basic architecture of the event-driven We have demonstrated a fully event-driven implementa-
framework. The neural model developer writes callback rodion of the software component of the SpiNNaker synapse
tines associated with the events that are of inteeegtarrival channel, matching the hardware’s event-driven model and
of a spike (packet), completion of a memory transfer oinsulation of model synapses from the low-level details of
periodic time interval. These callbacks are registereti thie  data location and access. This implementation is the first
system kernel to be executed when the corresponding evensimponent of a systematic programme to create a standard,
takes place. The kernel is responsible for the initial hiawgdl library-based, event-driven system layer for SpiNNaker de
of events, servicing hardware devices, and scheduling thelopment. In light of the complexities of event-driven ides



and the different model of computation neural networkgi4]
represent, such a library can be considered almost madator
for widespread hardware adoption. Steinkraus ([5]) is glpo [15]
on the prospects for dedicated hardware: “Using dedicated
hardware to do machine learning most often ends up 46!
disaster. The hardware is typically expensive, unreliable
without libraries, poorly documented, and obsolete within
a few years”. With the SpiNNaker library we hope to starf!7]
to change this, at least for one chip. However just as impor-
tantly, we are developing a referenmethodologyor event-
driven neural hardware development. This is a need just a
crucial. Event-driven software design is hard. The literat
is thin and scattered. Practitioners are a small community,
often relying on empirical knowledge that has become pak®l
of the “unwritten folklore” of the field. Into this world the
neural modeller, interested in running models rather than
relearning programming, enters to face frustration. Witif20l
the SpiNNaker model we hope to de-mystify development
through a standard interface. If future neural hardwaré wil
be event-driven, it makes sense that its software envirohmd?21l
should also be event-driven.

[18]
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