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Abstract—The CA3 region of the hippocampus acts as an characteristics essential for an associative memory model

auto-associative memory and is responsible for the consolidation vijz,, the sparseness of the memory patterns and the positive
of episodic memory. Two important characteristics of such a firing rates

network is the sparsity of the stored patterns and the non- hei . imal K |
saturating firing rate dynamics. To construct such a network, In their Bayesian-Optimal network Lengyel and Dayan
here we use a maximuma posteriori based cost function, [5] obtained the output by considering the one that is most
regularized with L1-norm, to change the internal state of the likely to occur given the synaptic weight matrix and the
neurons. Then a linear thresholding function is used to obtain  djstorted input. The prior probability density of the outpu
the desired output firing rate. We show how such a model - nqigered to be Gaussian distributed which does not lead

leads to a more biologically reasonable dynamic model which Iuti . hi h .
can produce a sparse output and recalls with good accuracy O @ Sparse solution as required. In this paper we set the prio

when the network is presented with a corrupted input. to be Laplacian distributed, in line with the sparse assionpt
on the data. As we will show, this will enhance the ability
I. INTRODUCTION of the network to represent the data more accurately.

The CA3 subregion of the hippocampus is responsible Also, we show that the cos_t function optained with the
for the storage of the long-term episodic memory [1]. It iMAP rule can be compared with a dynamical model of the
believed that this part of the brain that can store infororati SyStém which are described by the ordinary differentiable
for a few hours to a few weeks is a recurrent network actin§duations that govern the internal states and the neurons’
as an auto-associative memory and uses synaptic weights2tgPut firing rate [6]. More elaborately, the internal state
store the data. One of the important characteristic of thi®" total synaptic current) in a neuron is changed in the
network is the sparseness of the stored data. As argueddifection of the gradient to minimize the cost function and
[1], the Dentrate Granuale cells preceding the CA3 regioptPsequently, the output firing rate is obtained by using a
sparsify the data entering the network in order to increadi@ar thresholding function which does not saturate. But t
the capacity of the memory. This recurrent feedback netwod@!ve for the gr'adlen.t of the cost f“_”Ct'O” V‘{'th an L1-norm,
when presented with an input, which can be a distorted vef{€ Use an interior point method to find the direction in which
sion of previously memorized data, it can iteratively remov the internal state of the neuron (or node) changes. In the
it using the information stored in the synaptic weights. following sections we describe this algorithm in detail.

For the reasons described in [2, and references therein]The paper is organized as follows: in section Il we describe
most of the firing rate based auto-associative memory moddf Probabilistic approach for recall and show its relathop
deal with the binary values. But it is observed that mos#ith the non-linear firing rate equation. In section IIl we
neurons do not work in saturation and they have a continuo#°P0seé @ method to solve the cost function using interior
value firing rates, which undermines the usefulness of tRPint methods with log-barrier function and in section IV
binary inputs to study such networks. To alleviate this probVe show the results obtained using this method. We conclude
lem Treves [2] has proposed a model to deal with the gradét!e papaer in section V discussing the results obtained and
response neurons. But subsequently, it has been shown tRggsible future work.
the performance of the network deteriorates significantly
even for a modest graded values with 10-levels [3]. Il. BAYESIAN RECALL AND RATE EQUATIONS

More recently, [4, 5] have used a probabilistic approac
for recall from the associative memory where a genera
maximum a posteriori based rule is used. Particularly, in Consider a recurrent network with two layers, where the
case of [5] the rule naturally leads to memory that camput layer acts as feed forward layer with a persistent
deal with analog values. It has been shown that such aativity x as the total input fed into the output layer, while the
network can be compared with the linear firing rate modeiodes in the output layer have synaptic interconnects witho
of a neuron [6]. But it does not consider two importanself feedback. In such a case, for the firing rate model the

dynamic system equation is given by [6]
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where theu € R" is the total synaptic current in the The prior in (3) determines the distribution of the output
neurons, W is the synaptic weight matrix between theand is significant in regularizing the cost function to obtai
neurons, i.e., jth entryw;; is the synaptic strength betweenthe desired output. As argued before, storing sparse data
thedth and;jth neuron in the output layer (witty;; = 0) and  significantly improves the capacity of the system, therefor
x € R™ is the output firing rates. The functidiy(.) is called the prior should reflect such an assumption. An appropriate
the activation function or the threshold function, which igprior to obtain a sparse output is of the form
defined asly(u) = g[u — 0], whereg is the gain. ~

The synap(tic) Weigght ma]ltrix is constructed using the Heb- Plx] = exp(=Ad(x)) )
bian learning rule. Here we have considered the Simplﬁhere(b(x) = ||x||; leads to Laplacian distribution.
covariance synaptic learning mechanism [7] which modifies Now, substituting the above equations into (3) and taking
the weight matrix depending on the covariance between thggative log likelihood gives the cost function that neexs t

pre- and post- synaptic firing rates. Since, the covariangg minimized to obtain the desired output.
between two nodes is commutative, the weight matrix is fully

connected and symmetric. x = argminF(x)
1
P = argmin — Z llws ; — Q(xi7xj)||2
wig =Y (= <n>)nf—<n>) ) * 25
P B8 ~ 9
wherer), is the firing rate of theth component of one of N} zl: @ = ill” + Ab(x) 0

the stored patternd? is the total number of stored patterns ~
and< 7 > is the mean firing rate taken across a time windowhere the parameters,, 0,,, A are combined to obtaif
greater than that of the stored elements. We consider thisagd A.

be constant throughout the learning and recall process a&d

I . ) Relation Between Bayesian Recall and Neural Dynamic
replace it with a constant’ which approximately equal to I W 4 Y

the mean firing rate of all the stored patterns. Equation . ) )
The negative gradient of the cost function (7) can be

B. Bayesian Recall written as

Ideally, when the weight matrix is constructed as above,
any recalled elements should lie in the support of onlyfhe OF 5 /
stored elements. But correlation between the stored patter  Ox; = ~B+ o)z + Adi(x)]
which happens both in biology and in computer models, 2 .
leads to many other possibilities and hence, would require a oo - Zwij]a + Zwijxj + AT (8)
generalized method to work on the whole space of possible s s
outcomes. where¢; = 22 ando? is related to the variance of the

In this context, according to the maximuenposteriori  prior distribution. Now, the above obtained gradient emumt
(MAP) rule, the optimal outputx) in a recall is the one that can be compared with the dynamic firing rate formulation

maximizesP(x/W, X) wherex is a corrupt input [5]. Using described in (1) with the assumption that —g—ﬁ, ie,
the Bayes rule the rate of change of the internal state of the neuron is

proportional to the direction of the change in the outpuidjri
. . rate. This is a reasonable assumption as long as the function
P[X/W’)f] x P[X’W’)f] ) mapping the internal state of the neuren to the output
Plx,W,%] = P[W/x,X|P[X/x]P[x] (3)  firing ratez; is a monotonically increasing function; such as
If x is a corrupted version of the stored patt&frassuming Ty(.)- . ) ) )
ideal recall, it is reasonable to assume that the weight COmMParing the two equations, while neglecting the second
dependent term in (3) is independent sof Moreover, the (€M in (1) as a bias term constant to all the updates,
term P[W /x| points to the error in constructing the weight u = (B+ 0D+ Ady(x)
matrix when onlyx is the stored pattern. Assuming this error 1 ,
to be Gaussiali.d, = x;=Tp(w) = m[ui —Ag;(x)]  (9)

P[W /x] = H G(w; ;: Qs 7;),02) 4) angl the synaptic W_ei_gh_t t_erm and the input term are similgr.
i ' This shows that minimizing the above cost function (7) is

o ) similar to using the dynamic rate equation.
whereQ(xz;, x;) = (z; — pa)(z; — pg). Similarly, with the

. T o i But this optimization is not trivial as the cost function is
assumption that the noise in the corrupted inpig Gaussian ot continuously differentiable. In the next section we tee
i.i.d, we get

interior point method to solve this cost function in order to
Pl&/x] = H G(%:;%x,02) (5) ch_ange the inte_rnal state of the system as well as the output
; using thresholding.



[1l. INTERIORPOINT METHOD WITH BARRIER FUNCTION  ¥(x,y) and is obtained as

1
Firstly, the cost function in (7) is a convex function in g = [ g2 ]
. . . : S g
that is not continuously differentiable. In order to minami ' ‘ )
this cost function, it can be written as a convex quadratigl(i) = V¥x (i) = —2t > wij(x; — a) + 2to>(z; — a)
function, with linear inequality constraints by adding a JF#i
yanabley such that (7) can be written as [8, and ref. there 2B (s — ) + — z .
in] Yi — X
vV ie{l,2,..,n}
2
g2=VU, = A\l- > (14)
. ~ — X
min Y fwi = Qi)+ B [l — xi)? Y
b7 k And the Hessian matrixd € R2"X?" s
+A i
2y A+D2 D1
; H = D1 D2
s.t —yi <z <y, ¥V 1€{1,2,..,n} (20)
where A = 2t(c®+ B)I
. o —4
Now, the above constrained optimization problem can be D1 = 5 x312 3
solved using the interior point method(IPM) by construgtin (y 2* X )2
a barrier function for the inequality constraints such tiet D2 — 2(x" +y°) (15)
cost function become an unconstrained optimization proble (y? —x?)?

[9]. It goes as follows:

The bounded constraints in (10) are re-written in the form But in accordance with the discussion in the previous
of log-barrier function such that section, instead of updating we change the internal state,
u, using Ax and subsequently find the outpxtvia thresh-
olding. This is summarized in the algorithm 1:

o(x,y) = - ZZOQ(% +x;) — Zlog(yi — ;)

Algorithm 1 IPM for Sparse Associative Memory
Require: : e, > 0.
N Zloy(yf — ) (11) Initialize: x,u=0; y =1 R", ¢t =0.01
! while 2n/t < €, do
« Compute the search directiofdx, Ay) using (13).
« Compute the step sizes” in these directions using
backtracking line search.

Now, for the cost function

arg min ¥(x,y) = arg min ¢ Z wi; — Qs z5)|? o Update the values asu,y) = (u,y) + s.(Ax, Ay)
X,y Xy .
4,j7#1 ° Updatex = Tg(u).
+HBY |l — il + A g+ @(x,y) (12) e+ Updatet
i i end while

as 't' varies from0 to co the minimizer of the above cost The variablet is updated asito, i%t,o ito... per each

function traces through the central path that contains thgation where € [2,50] andt, is the initial value. A more
unique optimal solutior(x",y*) for (10). So, by gradually (igorous approach is to keep the value of theonstant until
increasing the value of”one can update the values 6f,y) e gradient is small. But since we are using the back trackin
to get closer to the optimal solution. In fact, it can be showfne search, changingin each iteration is still appropriate.
that (x”,y*) can not be more than/t-suboptimal [9]. The back tracking line search is used to obtain the step
As discussed above, (12) is an unconstrained optimizati@fize 's' in search direction, i.e., give the search direction

problem and the cost function can be minimized using NewAx Ay) the step size is obtained as= b*, k > 0 such
ton’s method. The search directiofdx, Ay) are obtained that

by using
U(x + b Ax,y + bF Ay)

H { AA); } =8 (13) < U(x,y) +ab'g’[Ax Ayl (16)

wherea € (0,1/2) andb € (0,1). For details about back
where g € R?"X! is the gradient matrix of the function tracking line search algorithm readers are referred to [9].
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Fig. 1. Typical recall obtained when the input has missingiesl (a) Stored elements in the memory which is corrupted tdrotita input compared
with the recalled output. (b) Corrupted Input. (c) Poinsavierror between the stored pattern and the output. (dnbdt&tate.

IV. RESULTS we would like to have the threshofd= 0. But because of

Most of the associative memory system deal with théhe jitters around the zeros values, mainly because of the

inputs that have either binary or graded response. Sinlgereit gpproxmaﬂon in the mte'rl'or point method, the threshold
is taken as a small positive value. The values of these

cases are just special cases of an analog associative MM fameters are kept constant for all the results obtained in

we consider here only analog values to show the performanﬁqe o o .
is section; if only specified otherwise.
of the system.

In this section we show the results obtained when the ' (Ij:ig.l (@) ':hef recalrl] obta:cned is con;pﬁred wri]thdthe
proposed algorithm is used over sparse analog inputs. T fored pattern. In fact, the performance of the method can
e quantified in terms of the correlation between the input,

memroy elements are obtained from a uniform distributio ) )
output and the stored pattern. In this case, the correlation

between|0, 1] with most of the points zero, i.e., sparse data; he | q d . hile th
We consider the case where some part of the signal is missi tween the input and stored pattem0i3553, while that
tween the output and the stored patterfi.9505.

and this can be extended as well to cases where the inpu } ;
corrupted with noise. The main factors that influence the performance of the
Fig.1 shows a typical recall obtained when a corrupte@yStém are the number of stored patterns and distortion
input cue (with missing values) is presented to the systerﬂ‘_.duce_d in the inputs. Firstly, we _con5|der the effect of the
The size of the network is 1000 and the number of storegfStortion on the performance. Fig. 2 shows a plot of the
elements is 100 with density (or degree of sparseness) grrelation t_)etween the input and the stored patterns sersu
each element equal to 0.10% sparse). The parameters ardhe correlation between output and the stored pattern. The

set to the following values: Fig.2 also indicates the = y line. A point on this line
would effectively mean that the input cue is reproducedat th
A=10; 5=20; 6=0.05. output without any additional information about the stored
o =0.0001; b=0.5; p=>50 (17) pattern. Any point above the line indicates that there isesom

information extracted from the memory that is not present in
The value off3 is annealed (by a factor @f.5) during each the cue (the farther the better) and any point below would
iteration until it is sufficiently small. This is in line with indicate loss of information, i.e., the output is worse than
the cost function whergs is dependent on the variance ofthe cue (the farther the worser). Thus, such a plot can tell
the error between the input and the output. Also, ideallwhether the cue presented to the system has led the system
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into the right attractor basin or not. High correlation beén
the output and memorized pattern indicates that the ousput 01sf 1
in fact in the right basin of attraction and lower correlatio
indicates it is in the wrong basin of attraction. o~ )

From the plot in Fig. 2, it can be inferred that as loncg Loadigfactor
as the correlation is sufficiently high the output is heading

towards the right attractor basin. It can also be observatl tH'9- 3-  The figure shows the variation in the performance ofsysiem
with the increase in the loading factor. (a) The plot betwtencorrelation

there is a sharp decrease in the performance of the systgfihe output with the memorized pattern versus the loadintpfatb) The

when the correlation of the input cue falls belew0.5. This  plot between the mean squared error (MSE) between the outplitie
indicates that when the cue is distorted more than a Criticglemonzed pattern versus the loading factor. The size of theank is 100

. and number of stored pattern vary from 10 to 100. The memory rpatte
value it can no longer be recalled correctly from the memoryye obtained from a uniform distribution with sparsenesssitg 0.4. The

This is consistent with the theoretical results obtainemsh parameters of the system are kept the same as indicated irEdah.point
in [1] in the curve is obtained by averaging over 10 recalls obthinem 10
’ . different memories.
Another factor that influences the performance of the

system is the number of elements stored in the memory. With
the increase in the number of elements stored in the memory
the information encoded per synapse increases leading to
interference between the two stored data. Having sparse
patterns reduces the covariance between the stored pattgfiihe patterns stored is also taken into consideratiorhig t
and in turn, reduces the interference allowing larger s#®@ra algorithm, the patterns are stored similar to covariande ru
capacity. But there will be a critical loading factor, théiza and the update rule is asynchronous. At each step, the 'local
of the number of memory elements stored divided by thgeld’ is calculated as; = S wigry — k(e — %)% + 4,
number of units, beyond which the system fails to recall thghen the output is obtained by passing it through the thidsho
contents of the memory; in other words the system no long@linction 7j(). Here we conside® = 0 and x is set
acts as a memory. by iterative search to find the optimal solution. Table. 1
Fig. 3 shows the results obtained when the loading fact@ummarizes the results obtained for both the methods where
of the memory is increased. They are obtained for two casahe stored patterns are obtained from the uniform sparse dis
when the correlation between the input and the memorizefbution with density 0.4 and each pattern has 100 samples.
pattern is set constant at8 and0.9. The plots indicate that The performance of our method when compared with the
with the increase in the number of stored patterns the recdlteves’ network is much better. In fact, in most cases the
performance decreases. In particular, there is a steep falcall obtained using the Treves’ network is worse than the
in performance when the loading factor is beyond 0.7-0.8aput itself. This is consistent with the results obtained i
This indicates that the critical loading factor is someweher[3, 5] where is shown that the performance of the network
between these values. deteriorates greatly with the use of higher levels of graded
We also benchmark our algorithm with the method proresponse or continuous values. It is also observed in our
posed by Treves [2]. This method is developed to work witkimulations that the performance of this network is very
the graded responses without any saturation and sparseremssitive to its parametey.




TABLE |
COMPARING THE PERFORMANCE OF THE RECALL WHEN USENTERIOR
POINT METHOD (IPM) AND THE METHOD PROPOSED IN2] (TREVES).
FOR BOTH THE METHODS THE CORRELATION OF THE RECALLED
OUTPUT WITH THE MEMORIZED PATTERN THAT IS CORRUPTED TO
OBTAIN THE INPUT IS SHOWN FOR TWO DIFFERENT LOADING FACTORS
THE ENTRIES SHOULD BE READ AS MEAN =+ SD'.

Loading Factor| I/P corr. O/P corr. (IPM) | O/P corr. (Treves)
0.2 0.89+0.02 0.95+0.020 0.89+0.170
0.80+0.04 0.8940.041 0.72+0.100
0.69+0.07 0.83+0.072 0.59+0.010
0.56+0.13 0.6440.013 0.50£0.097
0.5 0.91+0.02 0.9140.028 0.86+0.043
0.79+0.06 0.80+0.060 0.74 £0.060
0.70+0.09 0.71+0.098 0.65+0.095
0.544+0.09 0.55+0.098 0.48 £0.080

V. CONCLUSION

Substituting this back into the gradient equation and rear-
ranging term,

[1]

[2]

3]

We have shown in this paper the use of L1-norm regu-
larization to obtain a sparse auto-associative memory. The
cost function is obtained by considering a MAP based recall
procedure that is used to update the internal state of th4)
nodes. A regular thresholding function is used to obtain the
output firing rate from the internal state of the nodes. The
results show that this method can produce a sparse solution
and is able to recall the desired 'memorized’ pattern with[5]

good accuracy.

However, the use of the interior point method might not be

biologically possible. But the motivation of this paper s t

show that the cost function to be minimized is in fact related
to the dynamic firing rate model of a neuron. Moreover, it [6]
has been shown that L1-norm regularized functions can be

solved using thresholding functions [10], albeit in theecas

oF 5 /
—gp. = B+ 20,60
+[0’2 — Zwij]a + Zwijxj + ﬂi‘l
J#i J#i
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