
A Sparse Analog Associative Memory via
L1-Regularization and Thresholding

Rakesh Chalasani and Jose C. Principe,Fellow, IEEE

Abstract—The CA3 region of the hippocampus acts as an
auto-associative memory and is responsible for the consolidation
of episodic memory. Two important characteristics of such a
network is the sparsity of the stored patterns and the non-
saturating firing rate dynamics. To construct such a network,
here we use a maximuma posteriori based cost function,
regularized with L1-norm, to change the internal state of the
neurons. Then a linear thresholding function is used to obtain
the desired output firing rate. We show how such a model
leads to a more biologically reasonable dynamic model which
can produce a sparse output and recalls with good accuracy
when the network is presented with a corrupted input.

I. I NTRODUCTION

The CA3 subregion of the hippocampus is responsible
for the storage of the long-term episodic memory [1]. It is
believed that this part of the brain that can store information
for a few hours to a few weeks is a recurrent network acting
as an auto-associative memory and uses synaptic weights to
store the data. One of the important characteristic of this
network is the sparseness of the stored data. As argued in
[1], the Dentrate Granuale cells preceding the CA3 region
sparsify the data entering the network in order to increase
the capacity of the memory. This recurrent feedback network
when presented with an input, which can be a distorted ver-
sion of previously memorized data, it can iteratively recover
it using the information stored in the synaptic weights.

For the reasons described in [2, and references therein]
most of the firing rate based auto-associative memory models
deal with the binary values. But it is observed that most
neurons do not work in saturation and they have a continuous
value firing rates, which undermines the usefulness of the
binary inputs to study such networks. To alleviate this prob-
lem Treves [2] has proposed a model to deal with the graded
response neurons. But subsequently, it has been shown that
the performance of the network deteriorates significantly
even for a modest graded values with 10-levels [3].

More recently, [4, 5] have used a probabilistic approach
for recall from the associative memory where a general
maximum a posteriori based rule is used. Particularly, in
case of [5] the rule naturally leads to memory that can
deal with analog values. It has been shown that such a
network can be compared with the linear firing rate model
of a neuron [6]. But it does not consider two important

Rakesh Chalasani (phone: +1 352 2262344; email: rakeshch@ufl.edu).
Jose C. Principe (phone: +1 352 3922662; email: principe@cnel.ufl.edu).
Both are with the Computational NeuroEngineering Laboratory, De-

partment of Electrical and Computer Engineering, Universityof Florida,
Gainesville, Florida, USA.

This work is supported by ONR grant #N000141010375

characteristics essential for an associative memory model;
viz., the sparseness of the memory patterns and the positive
firing rates.

In their Bayesian-Optimal network Lengyel and Dayan
[5] obtained the output by considering the one that is most
likely to occur given the synaptic weight matrix and the
distorted input. The prior probability density of the output
is considered to be Gaussian distributed which does not lead
to a sparse solution as required. In this paper we set the prior
to be Laplacian distributed, in line with the sparse assumption
on the data. As we will show, this will enhance the ability
of the network to represent the data more accurately.

Also, we show that the cost function obtained with the
MAP rule can be compared with a dynamical model of the
system which are described by the ordinary differentiable
equations that govern the internal states and the neurons’
output firing rate [6]. More elaborately, the internal state
(or total synaptic current) in a neuron is changed in the
direction of the gradient to minimize the cost function and
subsequently, the output firing rate is obtained by using a
linear thresholding function which does not saturate. But to
solve for the gradient of the cost function with an L1-norm,
we use an interior point method to find the direction in which
the internal state of the neuron (or node) changes. In the
following sections we describe this algorithm in detail.

The paper is organized as follows: in section II we describe
the probabilistic approach for recall and show its relationship
with the non-linear firing rate equation. In section III we
propose a method to solve the cost function using interior
point methods with log-barrier function and in section IV
we show the results obtained using this method. We conclude
the papaer in section V discussing the results obtained and
possible future work.

II. BAYESIAN RECALL AND RATE EQUATIONS

A. Firing Rate Model for Recurrent Networks

Consider a recurrent network with two layers, where the
input layer acts as feed forward layer with a persistent
activity x̂ as the total input fed into the output layer, while the
nodes in the output layer have synaptic interconnects without
self feedback. In such a case, for the firing rate model the
dynamic system equation is given by [6]

τr
du

dt
= u̇ = −u+W . Tθ(u) + x̂

x = Tθ(u) (1)

where theu ∈ ℜn is the total synaptic current in the
neurons,W is the synaptic weight matrix between the
neurons, i.e.,i, jth entrywij is the synaptic strength between
the ith andjth neuron in the output layer (withwii = 0) and
x ∈ ℜn is the output firing rates. The functionTθ(.) is called
the activation function or the threshold function, which is
defined asTθ(u) = g[u− θ]+ whereg is the gain.

The synaptic weight matrix is constructed using the Heb-
bian learning rule. Here we have considered the simple
covariance synaptic learning mechanism [7] which modifies
the weight matrix depending on the covariance between the
pre- and post- synaptic firing rates. Since, the covariance
between two nodes is commutative, the weight matrix is fully
connected and symmetric.

wij =

P
∑

p

(ηpi − < η >)(ηpj− < η >) (2)

whereηi is the firing rate of theith component of one of
the stored patterns,P is the total number of stored patterns
and< η > is the mean firing rate taken across a time window
greater than that of the stored elements. We consider this to
be constant throughout the learning and recall process and
replace it with a constant ’a’ which approximately equal to
the mean firing rate of all the stored patterns.

B. Bayesian Recall

Ideally, when the weight matrix is constructed as above,
any recalled elements should lie in the support of only theP
stored elements. But correlation between the stored patterns,
which happens both in biology and in computer models,
leads to many other possibilities and hence, would require a
generalized method to work on the whole space of possible
outcomes.

In this context, according to the maximuma posteriori
(MAP) rule, the optimal output (x) in a recall is the one that
maximizesP (x/W, x̂) wherex̂ is a corrupt input [5]. Using
the Bayes rule

P [x/W, x̂] ∝ P [x,W, x̂]

P [x,W, x̂] = P [W/x, x̂]P [x̂/x]P [x] (3)

If x̂ is a corrupted version of the stored patternx, assuming
ideal recall, it is reasonable to assume that the weight
dependent term in (3) is independent ofx̂. Moreover, the
termP [W/x] points to the error in constructing the weight
matrix when onlyx is the stored pattern. Assuming this error
to be Gaussiani.i.d,

P [W/x] =
∏

i,j 6=i

G(wi,j ; Ω(xi, xj), σ
2
w) (4)

whereΩ(xi, xj) = (xi − µx)(xj − µx). Similarly, with the
assumption that the noise in the corrupted inputx̂ is Gaussian
i.i.d, we get

P [x̂/x] =
∏

i

G(x̂i;x, σ
2
n) (5)

The prior in (3) determines the distribution of the output
and is significant in regularizing the cost function to obtain
the desired output. As argued before, storing sparse data
significantly improves the capacity of the system, therefore
the prior should reflect such an assumption. An appropriate
prior to obtain a sparse output is of the form

P [x] = exp(−λ̃φ(x)) (6)

whereφ(x) = ‖x‖1 leads to Laplacian distribution.
Now, substituting the above equations into (3) and taking

negative log likelihood gives the cost function that needs to
be minimized to obtain the desired output.

x = argmin
x

E(x)

= argmin
x

1

2

∑

i,j 6=i

‖wi,j − Ω(xi, xj)‖
2

+
β

2

∑

i

‖x̂i − xi‖
2 + λφ(x) (7)

where the parametersσw, σn, λ̃ are combined to obtainβ
andλ.

C. Relation Between Bayesian Recall and Neural Dynamic
Equation

The negative gradient of the cost function (7) can be
written as

−
∂E

∂xi

= −[(β + σ2)xi + λφ
′

i(x)]

+[σ2 −
∑

j 6=i

wij]a+
∑

j 6=i

wijxj + βx̂i (8)

whereφ
′

i =
∂φ
∂xi

and σ2 is related to the variance of the
prior distribution. Now, the above obtained gradient equation
can be compared with the dynamic firing rate formulation
described in (1) with the assumption thatu̇i ∝ − ∂E

∂xi

, i.e,
the rate of change of the internal state of the neuron is
proportional to the direction of the change in the output firing
rate. This is a reasonable assumption as long as the function
mapping the internal state of the neuronui to the output
firing ratexi is a monotonically increasing function; such as
Tθ(.).

Comparing the two equations, while neglecting the second
term in (1) as a bias term constant to all the updates,

ui = (β + σ2)xi + λφ
′

i(x)

=⇒ xi = Tθ(ui) =
1

(β + σ2)
[ui − λφ

′

i(x)] (9)

and the synaptic weight term and the input term are similar.
This shows that minimizing the above cost function (7) is
similar to using the dynamic rate equation.

But this optimization is not trivial as the cost function is
not continuously differentiable. In the next section we usethe
interior point method to solve this cost function in order to
change the internal state of the system as well as the output
using thresholding.

III. I NTERIOR POINT METHOD WITH BARRIER FUNCTION

Firstly, the cost function in (7) is a convex function inx
that is not continuously differentiable. In order to minimize
this cost function, it can be written as a convex quadratic
function, with linear inequality constraints by adding a
variabley such that (7) can be written as [8, and ref. there
in]

min
∑

i,j 6=i

‖wi,j − Ω(xi, xj)‖
2 + β

∑

i

‖x̂i − xi‖
2

+λ
∑

i

yi

s.t −yi ≤ xi ≤ yi ∀ i ∈ {1, 2, ..., n} (10)

Now, the above constrained optimization problem can be
solved using the interior point method(IPM) by constructing
a barrier function for the inequality constraints such thatthe
cost function become an unconstrained optimization problem
[9]. It goes as follows:

The bounded constraints in (10) are re-written in the form
of log-barrier function such that

Φ(x,y) = −
∑

i

log(yi + xi)−
∑

i

log(yi − xi)

= −
∑

i

log(y2i − x2
i) (11)

Now, for the cost function

argmin
x,y

Ψ(x,y) = argmin
x,y

t
∑

i,j 6=i

‖wi,j − Ω(xi, xj)‖
2

+tβ
∑

i

‖x̂i − xi‖
2 + tλ

∑

i

yi +Φ(x,y) (12)

as ’t’ varies from 0 to ∞ the minimizer of the above cost
function traces through the central path that contains the
unique optimal solution(x∗,y∗) for (10). So, by gradually
increasing the value of ’t’ one can update the values of(x,y)
to get closer to the optimal solution. In fact, it can be shown
that (x∗,y∗) can not be more than2n/t-suboptimal [9].

As discussed above, (12) is an unconstrained optimization
problem and the cost function can be minimized using New-
ton’s method. The search directions(△x,△y) are obtained
by using

H

[

△x

△y

]

= −g (13)

where g ∈ ℜ2nX1 is the gradient matrix of the function

Ψ(x,y) and is obtained as

g =

[

g1

g2

]

g1(i) = ∇Ψx(i) = −2t
∑

j 6=i

wij(xj − a) + 2tσ2(xi − a)

+2tβ(xi − x̂i) +
2xi

y2i − x2
i

∀ i ∈ {1, 2, ..., n}

g2 = ∇Ψy = tλ1−
2y

y2 − x2
(14)

And the Hessian matrix,H ∈ ℜ2nX2n is

H =

[

A+D2 D1
D1 D2

]

where A = 2t(σ2 + β)I

D1 =
−4xy

(y2 − x2)2

D2 =
2(x2 + y2)

(y2 − x2)2
(15)

But in accordance with the discussion in the previous
section, instead of updatingx we change the internal state,
u, using△x and subsequently find the outputx via thresh-
olding. This is summarized in the algorithm 1:

Algorithm 1 IPM for Sparse Associative Memory
Require: : ǫtol > 0.

Initialize: x,u = 0; y = 1 ∈ ℜn, t = 0.01
while 2n/t < ǫtol do
• Compute the search directions(△x,△y) using (13).
• Compute the step size ’s’ in these directions using

backtracking line search.
• Update the values as:(u,y) = (u,y) + s.(△x,△y)
• Updatex = Tθ(u).
• Updatet

end while

The variablet is updated asµt0, µ2t,0 µ
3t0... per each

iteration whereµ ∈ [2, 50] andt0 is the initial value. A more
rigorous approach is to keep the value of thet constant until
the gradient is small. But since we are using the back tracking
line search, changingt in each iteration is still appropriate.

The back tracking line search is used to obtain the step
size ’s’ in search direction, i.e., give the search direction
(△x,△y) the step size is obtained ass = bk, k > 0 such
that

Ψ(x+ bk△x,y + bk△y)

≤ Ψ(x,y) + αbkgT [△x △y] (16)

whereα ∈ (0, 1/2) and b ∈ (0, 1). For details about back
tracking line search algorithm readers are referred to [9].

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)

Stored
Recall

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)
0 100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

1.5

(d)

Fig. 1. Typical recall obtained when the input has missing values. (a) Stored elements in the memory which is corrupted to obtain the input compared
with the recalled output. (b) Corrupted Input. (c) Point-wise error between the stored pattern and the output. (d) Internal State.

IV. RESULTS

Most of the associative memory system deal with the
inputs that have either binary or graded response. Since either
cases are just special cases of an analog associative memory,
we consider here only analog values to show the performance
of the system.

In this section we show the results obtained when the
proposed algorithm is used over sparse analog inputs. The
memroy elements are obtained from a uniform distribution
between[0, 1] with most of the points zero, i.e., sparse data.
We consider the case where some part of the signal is missing
and this can be extended as well to cases where the input is
corrupted with noise.

Fig.1 shows a typical recall obtained when a corrupted
input cue (with missing values) is presented to the system.
The size of the network is 1000 and the number of stored
elements is 100 with density (or degree of sparseness) of
each element equal to 0.1 (10% sparse). The parameters are
set to the following values:

λ = 10; β = 20; θ = 0.05.

α = 0.0001; b = 0.5; µ = 50 (17)

The value ofβ is annealed (by a factor of0.5) during each
iteration until it is sufficiently small. This is in line with
the cost function whereβ is dependent on the variance of
the error between the input and the output. Also, ideally

we would like to have the threshold,θ = 0. But because of
the jitters around the zeros values, mainly because of the
approximation in the interior point method, the threshold
is taken as a small positive value. The values of these
parameters are kept constant for all the results obtained in
this section; if only specified otherwise.

In Fig.1 (a) the recall obtained is compared with the
stored pattern. In fact, the performance of the method can
be quantified in terms of the correlation between the input,
output and the stored pattern. In this case, the correlation
between the input and stored pattern is0.7553, while that
between the output and the stored pattern is0.9505.

The main factors that influence the performance of the
system are the number of stored patterns and distortion
induced in the inputs. Firstly, we consider the effect of the
distortion on the performance. Fig. 2 shows a plot of the
correlation between the input and the stored patterns versus
the correlation between output and the stored pattern. The
Fig.2 also indicates thex = y line. A point on this line
would effectively mean that the input cue is reproduced at the
output without any additional information about the stored
pattern. Any point above the line indicates that there is some
information extracted from the memory that is not present in
the cue (the farther the better) and any point below would
indicate loss of information, i.e., the output is worse than
the cue (the farther the worser). Thus, such a plot can tell
whether the cue presented to the system has led the system

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Correlation
(a)

O
ut

pu
t C

or
re

la
tio

n

Fig. 2. The plots show the relation between the correlation between the
input cue and the recalled output with the stored element. (a)In case the
input cue has missing values. The straight line indicates equal correlation
values (x = y).

into the right attractor basin or not. High correlation between
the output and memorized pattern indicates that the output is
in fact in the right basin of attraction and lower correlation
indicates it is in the wrong basin of attraction.

From the plot in Fig. 2, it can be inferred that as long
as the correlation is sufficiently high the output is heading
towards the right attractor basin. It can also be observed that
there is a sharp decrease in the performance of the system
when the correlation of the input cue falls below≈ 0.5. This
indicates that when the cue is distorted more than a critical
value it can no longer be recalled correctly from the memory.
This is consistent with the theoretical results obtained shown
in [1].

Another factor that influences the performance of the
system is the number of elements stored in the memory. With
the increase in the number of elements stored in the memory
the information encoded per synapse increases leading to
interference between the two stored data. Having sparse
patterns reduces the covariance between the stored pattern
and in turn, reduces the interference allowing larger storage
capacity. But there will be a critical loading factor, the ratio
of the number of memory elements stored divided by the
number of units, beyond which the system fails to recall the
contents of the memory; in other words the system no longer
acts as a memory.

Fig. 3 shows the results obtained when the loading factor
of the memory is increased. They are obtained for two cases,
when the correlation between the input and the memorized
pattern is set constant at0.8 and0.9. The plots indicate that
with the increase in the number of stored patterns the recall
performance decreases. In particular, there is a steep fall
in performance when the loading factor is beyond 0.7-0.8.
This indicates that the critical loading factor is somewhere
between these values.

We also benchmark our algorithm with the method pro-
posed by Treves [2]. This method is developed to work with
the graded responses without any saturation and sparseness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Loading factor
(a)

O
ut

pu
t C

or
re

la
tio

n

I/P correlation = 0.8
I/P correlation = 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

Loading factor
(b)

M
S

E

I/p Correlation = 0.8
I/P Correlation = 0.9

Fig. 3. The figure shows the variation in the performance of thesystem
with the increase in the loading factor. (a) The plot betweenthe correlation
of the output with the memorized pattern versus the loading factor. (b) The
plot between the mean squared error (MSE) between the output and the
memorized pattern versus the loading factor. The size of the network is 100
and number of stored pattern vary from 10 to 100. The memory patterns
are obtained from a uniform distribution with sparseness density 0.4. The
parameters of the system are kept the same as indicated in (17).Each point
in the curve is obtained by averaging over 10 recalls obtained from 10
different memories.

of the patterns stored is also taken into consideration. In this
algorithm, the patterns are stored similar to covariance rule
and the update rule is asynchronous. At each step, the ’local
field’ is calculated ashi =

∑

j 6=i wi,jxj − κ(a − x̄)3 + x̂i,
then the output is obtained by passing it through the threshold
function Tθ(). Here we considerθ = 0 and κ is set
by iterative search to find the optimal solution. Table. 1
summarizes the results obtained for both the methods where
the stored patterns are obtained from the uniform sparse dis-
tribution with density 0.4 and each pattern has 100 samples.
The performance of our method when compared with the
Treves’ network is much better. In fact, in most cases the
recall obtained using the Treves’ network is worse than the
input itself. This is consistent with the results obtained in
[3, 5] where is shown that the performance of the network
deteriorates greatly with the use of higher levels of graded
response or continuous values. It is also observed in our
simulations that the performance of this network is very
sensitive to its parameterκ.

TABLE I
COMPARING THE PERFORMANCE OF THE RECALL WHEN USEINTERIOR

POINT METHOD (IPM) AND THE METHOD PROPOSED IN[2] (TREVES).
FOR BOTH THE METHODS, THE CORRELATION OF THE RECALLED

OUTPUT WITH THE MEMORIZED PATTERN THAT IS CORRUPTED TO

OBTAIN THE INPUT IS SHOWN FOR TWO DIFFERENT LOADING FACTORS.
THE ENTRIES SHOULD BE READ AS’ MEAN ± SD’.

Loading Factor I/P corr. O/P corr. (IPM) O/P corr. (Treves)
0.2 0.89±0.02 0.95±0.020 0.89±0.170

0.80±0.04 0.89±0.041 0.72±0.100

0.69±0.07 0.83±0.072 0.59±0.010

0.56±0.13 0.64±0.013 0.50±0.097

0.5 0.91±0.02 0.91±0.028 0.86±0.043

0.79±0.06 0.80±0.060 0.74±0.060

0.70±0.09 0.71±0.098 0.65±0.095

0.54±0.09 0.55±0.098 0.48±0.080

V. CONCLUSION

We have shown in this paper the use of L1-norm regu-
larization to obtain a sparse auto-associative memory. The
cost function is obtained by considering a MAP based recall
procedure that is used to update the internal state of the
nodes. A regular thresholding function is used to obtain the
output firing rate from the internal state of the nodes. The
results show that this method can produce a sparse solution
and is able to recall the desired ’memorized’ pattern with
good accuracy.

However, the use of the interior point method might not be
biologically possible. But the motivation of this paper is to
show that the cost function to be minimized is in fact related
to the dynamic firing rate model of a neuron. Moreover, it
has been shown that L1-norm regularized functions can be
solved using thresholding functions [10], albeit in the case
of simple regression case. We hope that the results obtained
is a good motivation to use it and a biologically relevant way
of solving the above cost function is being pursued.

APPENDIX

The negative gradient of the cost function (7) with respect
to the variablexi is:

−
∂E

∂xi

=
∑

j 6=i

(wij − Ω(xi, xj)) ∗ (xj − a)

+β(x̂i − xi)− λφ
′

i(x)

=
∑

j 6=i

wij(xj − a)− (xi − a)
∑

j 6=i

(xj − a)2

+β(x̂i − xi)− λφ
′

i(x)

Now, in the second term in the above equation
∑

j 6=i(xj−a)2

can be considered in terms of the variance of the prior
distribution when (n − 1) samples are considered. This
implies

∑

j 6=i

(xj − a)2 = (n− 1)σ2
x = σ2

Substituting this back into the gradient equation and rear-
ranging term,

−
∂E

∂xi

= −[(β + σ2)xi + λφ
′

i(x)]

+[σ2 −
∑

j 6=i

wij]a+
∑

j 6=i

wijxj + βx̂i

REFERENCES

[1] E. Rolls, Memory, Attention, and Decision-Making: A
unifying computational neuroscience approach, 1st ed.
Oxford University Press, USA, August 2007.

[2] A. Treves, “Graded-response neurons and information
encodings in autoassociative memories,”Physical Re-
view A, vol. 42, no. 4, pp. 2418–2430, Aug 1990.

[3] E. T. Rolls, A. Treves, C. P. Vicente, and D. Foster,
“Simulation studies of the CA3 hippocampal subfield
modelled as an attractor neural network,”Trans. Soc.
Comput. Simul. Int., vol. 14, pp. 1559–1569, December
1997.

[4] F. T. Sommer and P. Dayan, “Bayesian retrieval in
associative memories with storage errors,”IEEE Trans-
actions on Neural Networks, vol. 9, no. 4, pp. 705–713,
July 1998.

[5] M. Lengyel and P. Dayan, “Rate- and Phase-coded
Autoassociative Memory,” inAdvances in Neural In-
formation Processing Systems 17, L. K. Saul, Y. Weiss,
and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005,
pp. 769–776.

[6] P. Dayan and L. F. Abbott,Theoretical Neuroscience:
Computational and Mathematical Modeling of Neural
Systems, 1st ed. The MIT Press, September 2005.

[7] T. J. Sejnowski and P. K. Stanton,Covariance Storage
in the Hippocampus. New York: Academic Press,
1989, pp. 365–377.

[8] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and
D. Gorinevsky, “An Interior-Point Method for Large-
Scale L1-Regularized Least Squares,”Selected Topics
in Signal Processing, IEEE Journal of, vol. 1, no. 4,
pp. 606–617, 2007.

[9] S. Boyd and L. Vandenberghe,Convex Optimization.
New York, NY, USA: Cambridge University Press,
2004.

[10] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A.
Olshausen, “Sparse coding via thresholding and local
competition in neural circuits,”Neural Comput., vol. 20,
pp. 2526–2563, October 2008.

