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Abstract— Link prediction is an important task in Social Net-
work Analysis. This problem refers to predicting the emergence
of future relationships between nodes in a social network. Our
work focuses on a supervised machine learning strategy for link
prediction. Here, the target attribute is a class label indicating
the existence or absence of a link between a node pair. The
predictor attributes are metrics computed from the network
structure, describing the given pair. The majority of works
for supervised prediction only considers unweighted networks.
In this light, our aim is to investigate the relevance of using
weights to improve supervised link prediction. Link weights
express the ‘strength’ of relationships and could bring useful
information for prediction. However, the relevance of weights
for unsupervised strategies of link prediction was not always
verified (in some cases, the performance was even harmed).
Our preliminary results on supervised prediction on a co-
authorship network revealed satisfactory results when weights
were considered, which encourage us for further analysis.

I. INTRODUCTION

The advance of Internet provided better experiences for
collaboration and interaction between people and organiza-
tions. This advance is the basis for the emergence of social
networks in the Internet, which are nowadays very popular.
A social network can be formally represented as a graph,
in which the vertices represent people or organizations,
and the connecting edges indicate either social connections
or shared characteristics. Social Network Analysis (SNA)
is a broad field of research dealing with techniques and
strategies for the study of social networks [1]. The analysis
and extraction of knowledge of the networks are widely
employed when understanding the behavior of a community
is a strategic objective [1]. SNA provides opportunities and
benefits for different areas such as marketing, economics,
health, sociology and safety.

Link prediction is an important task treated by SNA [2].
This task is concerned to the problem of predicting the
existence (in the future) of relationships between nodes in
a network, based on patterns observed in the existing nodes
and relations. Link prediction can help to understand the
mechanisms that trigger the evolution in a social network.
The literature shows different strategies and approaches to
treat this problem [3], [4]. In general, the most popular
techniques are divided into three approaches, namely: based
on structural measures or patterns in the network; based on
the similarity between nodes (content and/or semantics of
the nodes); based on probabilistic models; These approaches
will be briefly explained in section II.
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In our work, we focused on the topological measures based
approach and employed a supervised learning strategy in
which link prediction is treated as a binary classification
problem (two nodes establish a relationship or not). A pair of
nodes is defined as an instance of the classification problem
in which (1) the predictor attributes are metrics computed
to describe the pair; and (2) the target attribute indicates
the presence (positive label) or absence (negative label) of
a relationship between the nodes in the future. Based on a
set of such instances, the classification can be performed by
different supervised algorithms such as Decision Trees, K-
Nearest Neighbors, Neural Networks, among others [2].

Different metrics to describe node pairs were already
adopted in previous work, including for instance the number
of common neighbors, the path distance between the two
nodes, Jaccard’s coefficient, Adamic-Adar coefficient, among
others [2], [5], [6], [7]. Such metrics explore structural
patterns of the network and commonly provide a degree of
proximity/similarity between the nodes [5]. The used metrics
can be either local (limited to the direct neighbors of nodes)
and global (covers the entire network). We highlight here
that the most part of the previous work in supervised link
prediction consider metrics computed for unweighted social
networks. In such networks, the strength of relationships is
not taken into account (only the existence of relationships is
considered) [2], [6], [4].

Based on the above context, the current paper aims to
investigate whether considering weights on links between
nodes contributes to improve the performance of supervised
link prediction. Subsequently, the unsupervised strategy was
applied to make performance comparisons. In this aim, the
metrics used as predictor attributes need to be adapted for
the case of weighted networks. The existing studies which
investigate the impact of link weights were focused on the
unsupervised link prediction strategy [7], [5], [8] (possibly
the best of these studies). The utility of using weights with
this strategy is a controversial issue [8], because in some case
studies the prediction performance was significantly harmed
when weights in the relationships were considered [8].

Although there are studies investigating the value of
weights for unsupervised link prediction, to the best of our
knowledge, the current work is the first attempt to investigate
this issue specifically for supervised link prediction. In our
work, we performed experiments of link prediction on a co-
authorship network with and without weights. The reason
for using a co-authorship network is that researchers work
together to achieve a common goal. Hence, there is a genuine
intention or need for the establishment of relations, which
can be investigated in detail [7].

The experiments were performed on DBLP (Digital Bi-



bliography & Library Project) which constitutes a biblio-
graphic dataset that provides a vast amount of information
about different research publications in the field of Computer
Science. A number of 8 metrics were adopted as predictor
attributes (for both unweighted and weighted networks). Dif-
ferent learning algorithms from the WEKA environment [9]
were applied in the prediction task. In general, the supervised
strategy shows better results than the unsupervised strategy.
The experiments demonstrate that the performance of the
link prediction in the weighted network is better than the
performance of the network without weights, but with a slight
difference. Although this result is not positive in absolute
terms, it is in contrast to previous work on unsupervised link
prediction in which the use of link weights in some cases was
not recommended [8].

Section II briefly discusses the link prediction problem.
Section III presents social network metrics adopted in our
work in the supervised and unsupervised link prediction.
Section IV brings the experiments and obtained results.
Finally, section V presents some conclusions and future
work.

II. LINK PREDICTION

A classic definition of the link prediction problem is
expressed by: “Given a snapshot of a social network at time
t, we seek to accurately predict the edges that will be added
to the network during the interval from time t to a given
future time t′” [5]. Among several techniques to treat the
problem, the most widespread one (approach) is to explore
the topological/structural patterns from the social network of
interest [7], [10], [11]. As previously mentioned, the starting
point of these techniques is to extract the values/scores of
different metrics that represent the closeness between pairs of
nodes (see section III). Then, the data obtained are processed
to build a model which predicts the hidden links or links that
will appear in the future.

The node-wise similarity based approach searches appro-
priate measures of similarity between two nodes according
to the content and/or semantics that they present [2], [3].
Each node on the network can be represented as a vector of
features. The more two nodes are similar in terms of their
particular attributes, the more they are likely to relate. Cosine
coefficient, mutual information and Dice coefficient [3] are
examples of techniques in this approach.

The probabilistic models based approach aim to learn the
best probabilistic model that abstracts the information of the
network. The basic idea is to create the model through a
set of parameters θ, given the observed social network G
= (V,E) [3]. The existence of the link between a pair of
nodes x and y is estimated by the conditional probability
P (e<x,y>|θ) [3]. This approach examines the elements of
the network through relational data models, they are able to
encapsulate relevant information from nodes, relationships
and the graph as a whole. Relational Markov Networks and
Relational Bayesian Networks are examples of models in this
approach.

Link prediction considering structural patterns can be
performed basically by two different strategies. In a first
strategy, the pairs of non-connected nodes are initially ranked
according to a chosen metric (for instance, the number of
common neighbors) [7], [8]. The top L ranked pairs are
then assigned as the predicted links. We termed this strategy
as an unsupervised solution since no labeled training set
is adopted to derive a prediction model. The unsupervised
strategy presents some limitations. First, what value we
should assign to L (i.e., how many top ranked pairs to
consider as probable future links) [4]? Another point is that
the links are sorted decreasingly according to the score of
the chosen metric. In other words, it is always assumed that
the links with the highest scores are most likely to occur.
However, this is not true depending on the used metric (for
instance, preferential attachment) [7]. Finally, the ranking of
node pairs is performed using only one metric, and hence,
this strategy may not completely explore different structural
patterns contained in the network.

Considering the above limitations of unsupervised link
prediction, we adopted in our work a supervised machine
learning strategy for link prediction (adopted for instance in
[4], [2], [11]). This strategy was already introduced in the
previous section and will be also described in higher detail
in section IV-B. Actually, some authors deployed case studies
considering weighted networks, in [5], [12] for example.
However, no systematic comparisons were performed to
evaluate the real importance of such weights, i.e. whether
better results could be achieved with weights compared to the
results without considering weights. Our work aims to cover
this gap by extending supervised link prediction for weighted
networks and by performing comparisons to investigate the
influence of using link weights. We expected to contribute
to research on link prediction by investigating this specific
issue in this context.

III. PROXIMITY METRICS

In this section, we describe the metrics (with and without
weights) deployed as predictor attributes in the supervised
link prediction. We first provide some definitions and no-
tation which will be useful to understand the descriptions
below. Let Γ(x) be the set of neighbors of node x in the
social network and let |Γ(x)| be the degree (number of
neighbors) of node x. Let w(x, y) be the link weight between
nodes x and y. In our work, we consider undirected graphs
and do not consider self-connections. Moreover, w(x, y) =
w(y, x).

A. Number of Common Neighbors (CN)
The CN measure for unweighted networks is defined as the

number of nodes with direct relationship with both evaluated
nodes x and y:

CN(x, y) = |Γ(x) ∩ Γ(y)| (1)

The CN measure is one the most widespread metrics
adopted in link prediction mainly due to its simplicity. Also,



it is intuitive since it is expected that a high number of
common neighbors make it easier the future contact between
two nodes [13]. For weighted networks, the CN measure can
be extended as:

CN(x, y) =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z) (2)

B. Jaccard’s Coefficient (JC)

The JC measure is well explored in Data Mining [14], it
assumes higher values for pairs of nodes which share a higher
proportion of common neighbors relative to total number
of neighbors they have. For unweighted networks, the JC
measure is defined as:

JC(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(3)

For weighted networks, the JC coefficient can be extended
as:

JC(x, y) =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)∑
a∈Γ(x) w(a, x) +

∑
b∈Γ(y) w(b, y)

(4)

C. Preferential Attachment (PA)

The PA measure assumes that the probability that a new
link is created from a node x is proportional to the node de-
gree |Γ(y)| (i.e., nodes that currently have a high number of
relationships tend to create more links in the future). Barabasi
and Bonabeau [15], and Newman [13] have proposed that
the probability of a future link between two nodes can be
expressed by the product of their number of collaborators.
For unweighted networks the PA measure is given by:

PA(x, y) = |Γ(x)| ∗ |Γ(y)| (5)

For weighted networks, the PA measure can be extended
as:

PA(x, y) =
∑

a∈Γ(x)

w(a, x) ∗
∑

b∈Γ(x)

w(b, y) (6)

D. Adamic-Adar Coefficient (AA)

The AA measure for unweighted networks is defined as:

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log(|Γ(z)|)
(7)

Adamic and Adar [16] formulated this metric related to
the Jaccard’s coefficient, it defines a higher importance to
the common neighbors which have fewer neighbors. Hence,
it measures how exclusive (or strong) is the relationship

between a common neighbor and the evaluated pair of nodes.
The AA measure is extended for weighted networks as:

AA(x, y) =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)

log(1 +
∑

c∈Γ(z) w(z, c))
(8)

E. Path Distance (PD)

The PD for unweighted networks is simply the minimum
number of nodes that must be followed from x in order to
reach y in the graph [1]. As a special case, when two nodes
x and y have a common neighbor then PD(x, y) = 1. The
lower is the PD measure, the higher is the chance to establish
a link. For weighted networks, we identify the minimum
path between the pair of evaluated nodes, considering a score
1/w(a, b) to the distance between adjacent nodes a and b.

F. Resource Allocation Index (RA)

Resource Allocation Index and Adamic-Adar Coefficient
have similar formulas (and both can express the idea of
exclusivity between nodes), but they come from different
motivations. RA is based on physical processes of resource
allocation [17] and can be applied on networks formed by
airports (flow of aircrafts and passengers) or networks formed
by electric power stations (power distribution), for example.
The measure was proposed by Zhou et al. [18] and for
unweighted networks is expressed by:

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

|Γ(z)|
(9)

For weighted networks, the RA measure can be defined
as:

RA(x, y) =
∑

z∈Γ(x)∩Γ(y)

w(x, z) + w(y, z)∑
c∈Γ(z) w(z, c)

(10)

G. Local Path (LP)

The LP measure counts all paths of length exactly 2 and
3 between two nonadjacent nodes. Unlike the other metrics
that only analyze the interactions of the direct neighbors, this
measure has a greater range and can capture more informa-
tion about the neighborhood of the nodes [18]. Obviously,
paths of length 2 are more relevant than paths of length 3,
so an adjustment factor e can be applied in the measure. The
measure for networks without weights is given by:

LP (x, y) =

∞∑
l=2

|paths<l>
x,y |+ e

∞∑
l=3

|paths<l>
x,y | (11)

Considering x and y to the nodes to be evaluated, for
weighted networks such measure can be extended as follows:
for each path of length exactly 2 is used w(x, z) + w(y, z),
where z is a common neighbor of x and y; for each path of
length exactly 3 is used w(x, a) + w(a, b) + w(b, y), where



a is a node adjacent to the x and not to y, b is adjacent to
the node y and not to x, and a and b are directly connected.
So:

LP (x, y) =
∞∑
l=2

w(x, z) + w(y, z) +

e
∞∑
l=3

w(x, a) + w(a, b) + w(b, y) (12)

H. Local Clustering Coefficient (CC)

The CC measure indicates the tendency to form links
between neighboring nodes [19], the CC of a node quantifies
how close its neighbors are becoming a clique (complete
graph), in other words, the local density around the node.
The measure is based on counting of triangles, a triangle
is formed by node i (analyzed node) that binds the other
two nodes m and n, the triangle is considered closed when
m and n are directly connected. In an undirected graph,
consider ti as the number of closed triangles attached to node
i, the Local Clustering Coefficient around of the node i is
calculated by dividing ti by the largest possible number of
distinct triangles linked to i. The weighted and unweighted
versions of this coefficient were discussed in [19]. The
measure for networks without weights is given by:

CC(i) =
2ti

|Γ(i)| ∗ (|Γ(i)| − 1)
(13)

The measure to network with weights is defined by:

CC(i) =
1

|Γ(i)| ∗ (|Γ(i)| − 1)
∗∑

m,n∈Γ(i)

w(i,m) + w(i, n)

2 ∗
∑

z∈Γ(i)
w(i,z)
|Γ(i)|

aimamnain(14)

Consider aimamnain a closed triangles formed by nodes
i, m, n. In this article, we consider the sum of the CC of two
nodes x and y as the metric of similarity/proximity to analyze
the link prediction. Thus: CC(x, y) = CC(x) + CC(y).

IV. EXPERIMENTS AND RESULTS

In this section, we describe the social network data used
in our experiments (section IV-A) and the process adopted to
generate a learning dataset from this network (section IV-B).
We also present the learning algorithms adopted for the link
prediction (section IV-C) and their results, and finally the
experiments with the unsupervised strategy (section IV-D).

A. Social Network Data

The social network adopted in our experiments was the
co-authorship network from DBLP 1 formed between 1995
and 2004. It consists of 175208 distinct authors and 139882
distinct articles, generating a total of 542681 co-authorships
(links). In our work, we performed experiments using three
versions of this social network:

• (1) an unweighted version in which a link is presented
between a pair of authors if they co-authored at least
one paper in the collection;

• (2) a weighted version of the network in which each
link between a pair of authors is weighted by the total
number of papers co-authored by the two authors;

• (3) a weighted version of co-authorship networks was
adopted in [20], [13] in which each link is weighted
by the contribution of the authors in their co-authored
papers. If a paper has n authors, the specific contribution
of a pair of authors for the paper is given by 1/(n −
1). The link between two authors is then computed as
the sum of their specific contributions considering all
the co-authored papers. Hence, the link weight indicates
how exclusive is the relationship between the authors.

Assigning weights in relationships indicates how ‘strong’
is the link between two authors instead of only considering
the binary relation between them (establish a link, or not)
[7]. Besides implementing all the metrics in the traditional
mode (without weights), variants of these same metrics were
implemented using the weight of links in your calculations
(as described in section III). The purpose of creating new
versions of the metrics is to investigate whether the use of
weights in relationships provides better prediction results.

B. Dataset for supervised link prediction

In order to produce a labeled dataset for supervised
learning, we adopted the same procedure described in [5]
for supervised link prediction. Initially, it is assumed that the
evolution of the social network on time is recorded, i.e. we
have information available about the time when each node
and edge was recorded in the graph. We then considered the
state of the network on two different time periods t and t′

(with t < t′). We used information of the social network up
to time t to predict new links which will be formed up to t′.

Let G(V,E) be the social network of interest. Let G[t] be
the sub-graph of G containing the nodes and edges recorded
up to time t. In turn, let G[t′] be the sub-graph of G observed
up to time t′ (t′ > t). In order to generate training examples,
we considered the pairs of nodes in G[t] that do not have an
edge yet (i.e. no relationships were established up to time t).
Each non-connected pair of nodes corresponded to a training
instance storing:

• (1) the predictor attributes: features describing the pair
of nodes. We adopted the measures described in section
III;

1Available to download in http://dblp.uni-trier.de/xml/dblp.xml



• (2) the class label (positive or negative): here, a pair
of nodes was labeled as positive if an edge connecting
the nodes was now observed in G[t′] and labeled as
negative otherwise.

In our experiments on the co-authorship network, the first
sub-graph (G[t]) corresponded to the information available
up to 1999. The second sub-graph (G[t′]) in turn was defined
up to 2004. Hence, our link prediction task consisted of
predicting new links appearing in the period from 2000 to
2004 based on the graph information extracted from 1995
to 1999. From sub-graph (G[t]), a number of 800 non-
connected pairs of authors was randomly identified and the
corresponding features were extracted, thus generating 800
examples. From these instances, 400 examples were assigned
as positive, and 400 pairs in turn were assigned as negative
(the classes are equally distributed).

Three different datasets were created with the all the
identified pairs of authors, each dataset was generated using
one of three cited versions of the network (section IV-A). The
default Accuracy of classification is 50.00%, which reflects
the percentage of the majority class. The default Accuracy
represents the performance achieved by a simple algorithm
that classifies all instances according to the majority class.
Although it is not very useful in practice, it can be used as
a base for comparison of other algorithms.

C. Experiments with supervised strategy

In our experiments, different learning algorithms were
used to link prediction in the datasets described in the
previous section. All algorithms were available in the WEKA
environment [9]:

• (1) NaivesBayes (NB) - Implementation of the Naive
Bayes classifier [21];

• (2) J48 - Implementation of the C4.5 algorithm (Deci-
sion Trees) [22];

• (3) IBk - Implementation of the k-nearest neighbors
algorithm [23];

• (4) LibSVM - A widespread library for support vector
machines [24];

• (5) LibLinear - Linear implementation of support vector
machines [25].

In our experiments, all experiments were applied with the
default parameters of WEKA. Particularly, the LibSVM is
defined with RBF kernel and cost parameter equal to 1. The
algorithms were executed in the module ‘Experimenter’ of
WEKA on the three datasets described in sections IV-A and
IV-B. In all experiments, the algorithms were evaluated with
stratified 10-fold cross-validation. For more reliable results,
the cross-validation procedure was executed 10 times for
each algorithm and dataset. A t-test was performed with a
significance level of 95% in order to statistically compare
the algorithms. Tables I, II and III present the performance
measures obtained for each dataset and algorithm:

First of all, the performance obtained by the evaluated al-
gorithms was compared to the default Accuracy (percentage
of the majority class - 50.00%) in order to verify the viability

TABLE I
ACCURACY OBTAINED BY THE ALGORITHMS ON EACH DATASET

Algorithm/Dataset Unweighted
network

Weighted
network 1

Weighted
network 2

J48 70.99% 70.30% 68.13%
LibLinear 69.13% 71.13% 70.28%
NB 66.15% 67.83% 65.64%
IBk 65.03% 67.13% 66.88%
LibSVM 65.94% 69.72% 67.50%

1number of co-authorships
2contribution of authors

TABLE II
PRECISION (P) AND RECALL (R) RATE OBTAINED BY THE ALGORITHMS

ON EACH DATASET

Algorithm/Dataset Unweighted
network

Weighted
network 1

Weighted
network 2

J48 P:69%
R:76%

P:70%
R:71%

P:65%
R:80%

LibLinear P:67%
R:77%

P:68%
R:81%

P:67%
R:82%

NB P:62%
R:83%

P:63%
R:89%

P:61%
R:88%

IBk P:65%
R:64%

P:68%
R:66%

P:67%
R:68%

LibSVM P:62%
R:82%

P:65%
R:85%

P:63%
R:87%

1number of co-authorships
2contribution of authors

of the supervised link prediction task. Table I shows that the
Accuracy obtained by all algorithms were higher than the
default Accuracy, indicating that useful knowledge can in
fact be acquired from the available datasets. The difference in
performance was verified by the t-test (at 95% of confidence)
for all algorithms and datasets employed. As can be seen in
table I and table II, WEKA statistically ranked LibLinear
with the highest Accuracy, followed by J48. On the other
hand, WEKA presents J48 as the most statistically precise,
but LibLinear is very close. Regarding Recall, NB got the
best rates among all algorithms, independent of the analyzed
network.

There is a known trade-off between Precision and Recall
in the field of Information Retrieval [26]. Some studies
in the literature have shown that there is a tendency that
one measure increases as the other one decreases [26]. The
traditional F-measure (or F-score), which is the harmonic
mean of Precision and Recall, can balance the two measures.
According to the table III (and statistically tested by WEKA),
the LibLinear generally has the best rates for F-measure.

The Area Under the ROC Curve (AUC) is an important
performance measure that relates the sensitivity (true positive
rate) and specificity (true negative rate) of a classifier [27].
All algorithms obtained the AUC higher than the majority
classifier (with AUC = 0.50). By the statistical ranking
generated by WEKA, the algorithms J48 and NB obtained
the best results for the AUC.

The above analysis was performed to verify the utility of
the available data for link prediction as well as to indicate the
best algorithms according to different evaluation measures.



TABLE III
AREA UNDER ROC CURVE (A) AND F-MEASURE (F) OBTAINED BY THE

ALGORITHMS ON EACH DATASET

Algorithm/Dataset Unweighted
network

Weighted
network 1

Weighted
network 2

J48 A:0.73
F:0.72

A:0.73
F:0.70

A:0.69
F:0.71

LibLinear A:0.69
F:0.71

A:0.71
F:0.74

A:0.70
F:0.74

NB A:0.70
F:0.71

A:0.72
F:0.73

A:0.72
F:0.72

IBk A:0.65
F:0.65

A:0.68
F:0.67

A:0.67
F:0.67

LibSVM A:0.66
F:0.71

A:0.70
F:0.74

A:0.67
F:0.73

1number of co-authorships
2contribution of authors

The main issue of our work however is to investigate whether
to deploy link weights can be useful in the prediction task.
It is possible to observe in tables I, II and III that each
classifier had similar performances on the three networks.
However we can point out that in most cases, better results
were achieved for the networks with weights (slightly better).
Also, the better performance on the weighted networks was
more consistent considering different algorithms. In almost
all comparisons between the networks, the unweighted net-
work had a lower performance compared to at least one
of the weighted networks. Although these results are not
conclusive, they indicate that improvements in performance
(even a little) can be achieved by considering link weights
on the link prediction task.

As an unexpected result, we noticed that the results
observed on weighted network 1 (i.e. considering the number
of co-authored papers) were better than the results achieved
on the weighted network 2 (i.e. considering contribution
of authors in their co-authored papers), especially in the
Accuracy. This result was not expected since the weights
in network 2 potentially bring more information than net-
work 1. Aiming to find an explanation, we evaluate the
worth of each attribute by computing the value of the Chi-
Squared statistic with respect to the class. Evaluating the two
weighted networks, it was observed that the contributions of
an predictor attributes across the two networks were very
similar. The exception was the attribute Path Distance. The
merit of this attribute on the network 1 (108.323 points) was
much higher than its merit in the network 2 (33.555 points).
Based on this, we can suppose that the smaller merit of the
Path Distance attribute on the network 2 contributed to
harm the classification performance on this network. More
experiments however should be performed to consolidate this
assumption.

It is important to discuss our results in the light of previous
work on unsupervised link prediction which investigated the
influence of link weights. As said in section I, the results
of unsupervised link prediction can be significantly harmed
by adopting link weights. Although the use of weights in
our experiments usually led to a consistent improvement
in performance, it is important to mention that we did not

observe any significant decrease in performance (as it was
observed in [8] for unsupervised link prediction). This way,
the improvement in performance achieved in our experiments
for some algorithms encourage us to perform more analysis
on supervised link prediction for weighted networks.

D. Experiments with the unsupervised strategy

Aiming to expand our analysis, we also applied the
unsupervised link prediction and perform a comparison to
the supervised strategy. In the traditional application of
unsupervised link prediction, one isolated metric is chosen
to rank the pairs of non-connected nodes. The top ranked
examples are then considered as the future links that are
more likely to appear. In our work we could adopt one
of the 8 different proximity metrics described in section
III to generate such ranking. In order to avoid choosing
only one metric, we alternatively combined the 8 metrics by
adopting the following procedure. First, for each metric we
generated a ranking of the available examples and recorded
the correspond rank value of each instance. Following, we
computed the average rank of each instance across the
metrics. Finally, a resulting ranking of examples is then
generated directly from their average rank values.

In this section, we adopted the Precision, Recall and
F-Measure to evaluate the unsupervised link prediction as
usually deployed in previous work. In our experiments, we
generated the curves of Precision and Recall of positive
examples by evaluating the rank of examples from the top
to the bottom of the list. The curves of Precision, Recall and
F-Measure are shown in figures 1, 2 and 3.

Fig. 1. Precision obtained on each dataset

By observing the three curves, it is possible to observe that
the performance measures of the networks converged in ac-
cordance with the processed instances. It occurs independent
of the network since the final Precision and Recall are re-
spectively 50% (400 positive instances among 800 instances)
and 100% (among the 800 instances, all positive instances
are present). Moreover, as the F-measure is derived from
Precision and Recall, the final F-measure is around 66.66%.
The differences in performance across the networks are more



Fig. 2. Recall obtained on the each dataset

Fig. 3. F-Measure obtained on each dataset

visible in the first halves of the curves. The weighted network
by the contribution of the authors provided the best results
up to the first 340 instances. In turn, the weighted network
by the number of co-authorships becomes the best one later.
The best results were observed for the weighted networks in
almost all points in the curves. The justification for these
results is that the types of weights more accentuated the
values of the metrics of positive instances (the differences
between values with and without weights were higher). This
way, for the weighted networks, the majority of positive
instances concentrated on the top. These results indicate the
using weights can also bring benefits for the unsupervised
link prediction.

By comparing the F-measure observed for the supervised
link prediction (see table III) with the curve of F-measure for
the unsupervised strategy, we observed that the unsupervised
strategy does not exceed the results of the supervised strategy
(which was typically greater than 70%). The only exception
is IBk performance on the network without weights which
was 65%. This comparison is important since it provided
additional evidence that the supervised strategy offers more
advantage compared to the unsupervised strategy.

V. CONCLUSION

This paper has focused on the analysis of supervised
learning link prediction for weighted networks. As a con-
tribution, this article analyzes and compares the supervised
link prediction in a co-authorship network with and without
weights and also confronts the results with the unsupervised
link prediction, unlike previous works that focused only
on the unsupervised strategy [8], [7]. The experiments on
supervised link prediction revealed satisfactory results when
link weights were considered, and generally speaking the
supervised strategy shows better performance than the unsu-
pervised strategy.

This work is still limited regarding the number of the case
studies considered. In fact, our experiments were restricted
to a co-authorship network. Although co-authorship data
have been used by many authors in literature, other social
networks with different dynamics and structures can be
considered in the future. In order to better investigate the
possible benefits of using weights on the links, future work
will focus on analyzing networks in different contexts.
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