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Abstract— This paper presents an efficient approach to cal-
culate the difference between two probability density functions
(pdfs), each of which is a mixture of Gaussians (MoG). Unlike
Kullback-Leibler divergence (DKL), the authors propose that
the Cauchy-Schwarz (CS) pdf divergence measure (DCS) can
give an analytic, closed-form expression for MoG. This property
of the DCS makes fast and efficient calculations possible, which
is tremendously desired in real-world applications where the
dimensionality of the data/features is very high. We show that
DCS follows similar trends to DKL, but can be computed much
faster, especially when the dimensionality is high. Moreover, the
proposed method is shown to significantly outperform DKL

in classifying real-world 2D and 3D objects, and static hand
posture recognition based on distances alone.

I. INTRODUCTION

THE Gaussian mixture model has been a very useful

probability model for a variety of applications due to

the fact that the number of parameters used in a mixture of

Gaussians (MoG) is very small and due to its flexibility to

model distributions whose parametric forms are unknown. In

many applications, one would like to compare two pdfs, each

of which is a MoG, by measuring the difference between

the two pdfs using various types of available divergences or

distance measures. However, not all divergences are equally

useful for the MoG model because most well known diver-

gences, including the Kullback-Leibler divergence (DKL),

do not yield an analytic closed-form expression for MoG.

To work around this problem, a few approaches are

used to estimate the DKL in practice, such as numerical

integration (NI) and stochastic integration (SI) [1], [2]. In

NI, the whole feature space is uniformly gridded, then each

gridded cell is used in the calculation of the DKL. Thus, the

accuracy will highly depend on the resolution of the grid. The

smaller the grid size, the better accuracy obtained, but this

comes with the cost of a larger memory size being used to

store those cells. This is the trade-off between memory and

accuracy when using NI. In addition, the size of memory

used in NI grows exponentially with the dimensionality of

the data/feature vector (the curse of dimensionality). Another

severe drawback of NI is that it sometimes misses narrow

peaks of MoG components [3].

Stochastic integration techniques have been proposed to

mitigate this problem by sampling directly from the MoG of

interest. This reduces the chance of missing narrow peaks.
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However, this approach also cannot avoid the dimensional-

ity curse. When the dimensionality increases, the number

of samples has to increase in order to keep up with the

additional details of the MoG. In addition, there is no

theoretical criterion to relate the number of samples to the

dimensionality. Consequently, a closed-form expression for

divergence of a MoG model is desired.

The rest of the paper looks into criteria to reach closed-

form expressions and identifies Cauchy-Schwarz divergence

as one of the measures that yields closed-form solutions

for MoG. The results show that DCS performs in a similar

manner to DKL, however DCS is more efficient. This could

lead to real-time application of this measure in machine

learning on mobile devices.

The organization of this paper is as follows. In section II,

the authors investigate why DKL does not yield a closed-

form expression for MoG. In section III, the authors show

that the Cauchy-Schwarz (CS) pdf divergence measure yields

an analytic closed-form expression for MoG. Numerical

examples are shown in section IV. In section V, the pro-

posed expression is tested in real-world 2D and 3D object

classifications. Finally, in section VI, the proposed method is

applied to the real-world hand posture recognition problem

where classification accuracy and the run-time are reported.

II. CLOSED-FORM EXPRESSION OF DKL FOR MOG?

In this section, we demonstrate that an analytic closed-

form expression of DKL for MoG is not possible. Let

q(x) and p(x) denote two distributions each of which is a

mixture of Gaussians with different parameters and number

of clusters:

q(x) =
M
∑

m=1

πmN (x|µm,Λ−1
m )

and

p(x) =

K
∑

k=1

τkN (x|νk,Ω
−1
k )

where M and K denote the number of Gaussian components

in q(x) and p(x) respectively. Let πi , µi and Λi denote

the mixture coefficient, the mean, and the precision matrix

of the ith component of q(x), and τk, νk, and Ωk denote

the respective terms of the kth component of p(x). The

multivariate Gaussian distribution is given by

N (x|µi,Λ
−1
i ) =

|Λi|
1/2

(2π)D/2
exp

(

−
1

2
(x− µi)

⊤Λi(x− µi)

)

where x ∈ RD.



In the Kullback-Leibler divergence,

DKL(q||p) =

∫

q(x) log
q(x)

p(x)
dx

=

∫

q(x) log

[

M
∑

m=1

πmN (x|µm,Λ−1
m )

]

dx

−

∫

q(x) log

[

K
∑

k=1

τkN (x|νk,Ω
−1
k )

]

dx.

the integral and the summations cannot be interchanged

due to the logarithm operator. The functional form of KL-

divergence contains the log operator inside the integral.

In addition, an MoG, as shown above, is the weighted

summation of Gaussians (terms as expanded in 2nd and 3rd

rows above). Since, the integral and summation are separated

by the log, x cannot be marginalized out by the integral. This

prevents the solution from being an analytic closed-form.

(Note that as long as x appears in the final expression, it

will not result in an analytic closed-form solution).

The authors also investigated other divergence measures

which have the integral inside the log in the hope that the

integral would be distributed inside the summation and, thus,

x will be marginalized out. The α-divergence [4] is one well-

known measure, however, it failed to give a closed form

expression despite having the integral inside the log. That

is because there is no clear insight into how to calculate an

x-independent closed-form expression from the inverse of a

MoG generated by a minus-sign power (1 − α) in the α-

divergence.

From the failures learned from these two divergences

and based on Gaussian identities, search domain for a dis-

tance/divergence measure can be narrowed significantly. The

authors found that a closed-form expression for MoG can be

derived from some divergences, such as the Cauchy-Schwarz

pdf divergence measure (DCS) [5], Jensen-Renyi divergence

(DJR) [6], and corresponding concordance [7]. In this paper,

we restrict our discussion to DCS as its behavior is similar

to DKL [8], and it is simple to implement and understand

due to its relation to the Cauchy-Schwarz inequality.

III. CLOSED-FORM EXPRESSION FOR DCS

Inspired by the renowed Cauchy-Schwarz inequality, the

Cauchy-Schwarz PDF divergence measure [5] is given by:

DCS(q, p) = − log





∫

q(x)p(x)dx
√

∫

q(x)2dx
∫

p(x)2dx



 . (1)

This is a symmetric measure for any two pdfs q and p,

such that 0 ≤ DCS < ∞, where the minimum is obtained

if and only if q(x) = p(x). The measure plays important

roles in information theoretic learning (ITL), non-parametric

density estimation [9], graph theory, Mercer kernel theorey

and spectral theory [5]. Before we present its derivation, it is

important to understand why DCS is considered in the MoG

case. First, it is obvious that the integral can be distributed

into the weighted summation of Gaussian components be-

cause these terms appear inside the log operator. Moreover,

we know that the integral of the product of two MoGs is a

MoG in the space of the mean parameters µ.

The closed-form expression for DCS of a pair of MoGs

can be derived by rewritting (1) as

DCS(q, p) = − log

(∫

q(x)p(x)dx

)

(2)

+
1

2
log

(∫

q(x)2dx

)

+
1

2
log

(∫

p(x)2dx

)

.

By distributing the integral into the summation, and using

the Gaussian identity,

N (x|µ1,Λ
−1
1 )N (x|µ2,Λ

−1
2 ) = z12N (x|µ12,Λ

−1
12 )

where Λ12 = Λ1 + Λ2, µ12 = Λ−1
12 (Λ1µ1 + Λ2µ2) and

z12 = N (µ1|µ2, (Λ
−1
1 + Λ−1

2 )), the first term on the r.h.s.

of (2), log
(∫

q(x)p(x)dx
)

, can be written in a closed-form

expression independent of x:

log

(

∫ M
∑

m=1

K
∑

k=1

πmτkN (x|µm,Λ−1
m )N (x|νk,Ω

−1
k )dx

)

= log

(

M
∑

m=1

K
∑

k=1

πmτk

∫

N (x|µm,Λ−1
m )N (x|νk,Ω

−1
k )dx

)

= log

(

M
∑

m=1

K
∑

k=1

πmτkzmk

)

.

Applying the same trick to the second and third terms, the

closed-form expression is given by:

DCS(q, p) =

− log

(

M
∑

m=1

K
∑

k=1

πmτkzmk

)

+
1

2
log

(

M
∑

m=1

π2
m|Λm|1/2

(2π)D/2
+ 2

M
∑

m=1

∑

m′<m

πmπm′zmm′

)

+
1

2
log

(

K
∑

k=1

τ2k |Ωk|
1/2

(2π)D/2
+ 2

K
∑

k=1

∑

k′<k

τkτk′zkk′

)

(3)

where

zmk = N (µm|νk, (Λ
−1
m +Ω−1

k ))

zmm′ = N (µm|µm′ , (Λ−1
m + Λ−1

m′ ))

zkk′ = N (νk|νk′ , (Ω−1
k +Ω−1

k′ ))

are the integrals of product of two corresponding Gaussian

pdfs. The expression has a complexity of order O(M2) when

M ≥ K, which is much smaller than that of NI and SI whose

complexities depend on the dimensionality of the data D and

the number of samples (in general, N ≫ M2) respectively.
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Fig. 1. Comparison of divergences evaluated from DCS , D
(NI)
KL

and

D
(SI)
KL

in numerical experiment.

TABLE I

AVERAGE RUN-TIME (SECONDS) IN NUMERICAL EXPERIMENT

dimensionality (D) DCS D
(NI)
KL

D
(SI)
KL

2 0.002 26 4.3

3 0.002 37.2 4.3

IV. NUMERICAL EXAMPLES

In this experiment, the behavior of DCS and that of

DKL are compared in terms of their values in several

circumstances and their run-time when the feature vectors

are all 2D. The parameters for q(x) = q([x1 x2]
⊤), a mixture

of 3 Gaussian pdfs, are given by

(π1, µ1,Σ1) = (0.3, [0 0]⊤, I)

(π2, µ2,Σ2) = (0.3, [3 0]⊤, I)

(π3, µ3,Σ3) = (0.4, [8 0]⊤, I)

For illustrative purposes, the distribution p(x) is picked to

be an x2−shifted version of q(x), that is p(x) = q([x1 x2 +
∆x2]

⊤) where the shifts are ∆x2 ∈ {−20,−19, ..., 19, 20}.

In this experiment, we calculate divergences using 3 ap-

proaches: 1) DCS , 2) KL-divergence using NI (D
(NI)
KL ) and

3) KL-divergence using SI (D
(SI)
KL ). The DCS is calculated

by (3). The D
(NI)
KL is evaluated on the region of interest

(x1, x2): x1 = [−15, 23] and x2 = [−15, 15] with equal

resolution of 0.01 on both the x1 and x2 axis. The D
(SI)
KL

is evaluated by sampling (as in Monte Carlo method) from

the distributions q(x) using number of sample N = 1000
samples. The results and run-time are shown in Fig. 1 and

Table I respectively.

The results in Fig. 1 show that the divergence DCS = 0
when q(x) and p(x) are the same distribution, and the value

of DCS increasing when the distributions move away from

each other. In addition, the curves depict the similarity in

behavior between DCS and DKL in terms of performance,

where both reach the minimum when the distributions are

identical and as the difference between the distributions

increases so does the divergence value.

The average run-time is shown in Table I. The table

illustrates the run-time performance for the experiment in 2D

and 3D vector space. We found that when the dimensionality

of the data increases, the run-time of D
(NI)
KL increases sig-

nificantly, whereas that of DCS remains almost the same.

In the table, you will notice that the run-time of D
(SI)
KL

also remained the same, however this is not the case when

dimensionality increases significantly. In the next section, the

divergences are compared on real-world 2D and 3D object

classification.

V. OBJECT CLASSIFICATION

Object classification has been an active area of research

for years. Nowadays, the area of object classification is

more interesting and challenging because richer and more

informative feature vectors can be obtained by novel sensor

technology, which in turn makes it possible to classify

objects of more complicated shapes in many real-world

applications. Several approaches have been proposed. Pdf-

based classification [8], [10], [11] is among the well-known

methods, as the pdf of features can be viewed as a very

informative descriptor of an object [8]. In this paper, we take

advantage of having extracted features as MoGs to exploit

pdf-distance-based classification, i.e. the model/class whose

divergence to the test sample is smallest will be assigned to

the sample. Let C denote the set of models, ci ∈ C denote

the ith model, sj denote the jth (test) sample, q(x|sj) and

p(x|ci) denote the pdf of extracted features for sj and ci
respectively. Then the class c⋆ will be assigned to the sample

sj if c⋆ = argmin
ci∈C

D(q(x|sj)||p(x|ci)). In this section, we

present the performance of the proposed algorithms in 2D

and 3D object recognition.

A. Experiment1: Object classification in 2D

In this experiment, we have 3 types/classes of images

(front cover of 3 books), A, B and C as shown in Fig. 2 (a).

The features are extracted from each image by converting the

RGB value of each pixel to CIELuv [12], which is a very

powerful feature in image recognition because the Euclidean

distance between two sets of color coordinates approximates

the human perception of color difference. Therefore, each

image is modeled by a 3D MoG with 2 Gaussian components

decided using BIC. The probability model of each type is

built using 4 sample images of the same book with different

scales and orientations. The performance of DCS is tested

against that of D
(SI)
KL (with varying number of samples N

= 1000, 500, 100, 50) on the test dataset, which comprise 3

types of front covers, each of which having 3 sample images

resulting in 9 test images total. The objective is to classify

the front cover of the 3 books based on the pdf distance

mentioned earlier. The divergences evaluated in each case

and their computational times are shown in Fig. 2 (b) and

Table II respectively. The results will be discussed at the end

of this section.



(a) Sample of type A, B and C from left to right

respectively
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(b) (left-most) The results from using DCS . Next are D
(SI)
KL

using number of sample N= 1000, 500, 100, 50

respectively.

Fig. 2. Data samples and results from Experiment1.

TABLE II

RUN-TIME OF EXPERIMENT1

DCS D
(SI)
KL

number of sample N - 1000 500 100 50

runtime (sec) 0.006 3.7 1.9 0.37 0.19

B. Experiment2: Object classification in 3D

In this experiment, we have 4 types/classes of synthesized

3D objects A, B, C and D whose 2D footprints are shown in

Fig. 3 (a), (b), (c) and (d), each of which is modeled by 3D-

MoG with 6, 6, 7 and 7 Gaussian components respectively.

The inputs of this experiment are MoG parameters learned

from the object point cloud whose footprints are shown in

Fig. 4 (a), (b), (c) and (d). We test the performance of DCS

against D
(SI)
KL (with varying number of samples N = 1000,

500, 200, 100) on 3 datasets; Dataset ns1, ns2 and ns3 where

the number represents the noise level from low to high. Each

dataset contains 4 object types and each type has 10 samples,

resulting in 40 samples total in each dataset. Our goal is

to classify/label each sample based on minimum divergence

criteria mentioned earlier. The performances of DCS and

D
(SI)
KL are shown in the total accuracy matrix in Table III.

C. Discussion of object classification

In Experiment 1, by the nature of the dataset the com-

plexity of distributions is not very high, so it can be fitted

appropriately using an MoG with 2 components. In Fig. 2 (b),

the y-axis represents the 9 test images. The x-axis represents

classes A, B and C from left to right respectively. The test
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(d) Type D

Fig. 3. 2D footprints of objects in Experiment2. (a)-(d) illustrate ideal
footprint of object of Type A-D respectively.
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(b) Type A, noise level 1
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(d) Type A, noise level 3

Fig. 4. Random samples of noisy footprint of object of Type A in
Experiment2 from level 1 (small) to level 3 (big).

images 1-3, 4-6 and 7-9 are from types A, B and C respec-

tively. The resulting figure shows that for each image in 1-3,

4-6, 7-9 the minimum divergence is reached on the correct

type A, B and C respectively. That yields 100% classification

accuracy for all the approaches. However, looking further at

the divergence results (the color codes), we notice that the

divergence values (the color) of the correct type compared

to the incorrect types for DCS are more distinct in the color

spectrum compared to the values of D
(SI)
KL . This is easily

noticed on test images 1-3 where the results of the incorrect

types B and C for DCS are very far in the spectrum compared

to those of type A, however the results for D
(SI)
KL are very

close. In addition, DCS tends to be more time-efficient than



TABLE III

TOTAL PERCENT ACCURACY MATRIX OF EXPERIMENT2

noise level
ns1 ns2 ns3 run-time (sec)

DCS 100% 100% 82.5% 0.037

D
(SI)
KL

, N = 1000 100% 87.5% 65% 5.82

D
(SI)
KL

, N = 500 100% 83.75% 60% 2.92

D
(SI)
KL

, N = 200 98.33% 80.83% 55% 1.15

D
(SI)
KL

, N = 100 96.87% 78.12% 56.88% 0.58

D
(SI)
KL as shown in the run-times in Table II.

In Experiment 2, the results indicate excellent performance

of both approaches in the low noise environment (ns1) when

the sample number is large enough. In the intermediate

noise level (ns2), the DCS still performs flawlessly, however

D
(SI)
KL performance decreases significantly. This degradation

continues as the number of samples decreases. When the

noise level is high (ns3), the performance of DCS also drops.

However, the D
(SI)
KL performance is considerably worse. In

all the cases, DCS outperforms DKL, and its run time is a

fraction of that of DKL regardless of the number of samples

used.

The results of Experiment 1 and 2 show that the closed-

form expression DCS outperforms and computationally out-

runs the solution of DKL significantly in both applications.

That is because the number of parameters used by an MoG is

only M(D2 +1)(D+1), which is much less than the number

of samples N needed in order to maintain a good estimator

of distribution. Furthermore, when the number of dimensions

D becomes very high, the sample size N in DKL will grow

exponentially with the dimension. The results also illustrate

similar behavior of DCS and D
(SI)
KL which implies that

replacing D
(SI)
KL with DCS is possible in many applications

especially when the input is given in terms of MoG, or when

fast computation is required, or when there are limitations

in computational resources and power consumption which

usually happens when working in modern mobile or hand-

held devices.

VI. APPLICATION: STATIC HAND POSTURE

RECOGNITION

Hand gesture recognition has been an active area of

research for years. There are mainly two types of hand

gestures: 1) dynamic hand gesture which involves the hand

movement, hence the recognition of this type must be done

on sequence of images or video, and 2) static hand posture

recognition which does not involve hand movement, hence

can be done using still images. Our approach is applied on the

latter type. In this section, the minimum divergence measure

classifier is applied to the static hand posture recognition.

Additionally, we compare the performance and the runtime of

our proposed method against KL-divergence using stochastic

integration with various numbers of samples NS .

� � � � � � � � 	 A

Fig. 5. Sample images of 3 people in the database.

A. Static hand posture recognition database

In this experiment, we use Jochen Triesch Static Hand

Posture Database [13], which is available on the Internet1.

The database is composed of gray-scale 128 × 128 images

taken from 10 hand postures forming the alphabetic letters:

(A, B, C, D, G, H, I, L, V, and Y) for 24 persons on 3

different backgrounds: (light, dark, complex). Details can be

found from the paper [13]. In our experiments, we use images

with light background only because we want to restrict

our attention to the hand posture recognition alone without

focusing on the background. There are 16-20 images for

each hand posture (168 images total) remaining after visually

screening and applying background-removing algorithms to

the images in the original database. A sample of hand posture

images for each letter is shown in Fig. 5.

B. Preprocessing and feature extraction

Due to the positional inconsistences of hand appearance

on images in this database, the rectangular bounding box

of hand is created in each image, and all the pixels outside

the box are removed. In addition, the lower part of wrist

is removed because of its size inconsistence. Each bounding

box is then standardized such that the most top-left pixel and

the most bottom-right pixel are coordinates (0,0) and (1,1)

respectively which enables the algorithm to be more invariant

to the size of the hand.

At this point the feature vector of each image pixel site

s ∈ S is encoded by [x(s), y(s), i(s)]⊤ where S denotes a set

of image site indices; the x(s) and y(s) denote standardized

x-y location respectively at the pixel site s; and i(s) denotes

intensity at the pixel site s. In fact, it is interesting to view the

intensity as an arbitrary nonnegative function of x-y location,

so we write i([x, y]) instead i(s). The function i([x, y]) can

be approximated by a Gaussian mixture:

i([x, y]) = αq([x, y])

q([x, y]) =

C
∑

c=1

πcN ([x, y];µc,Λ
−1
c )

where α denotes the scale constant converting an MoG

q([x, y]) to the arbitrary function i([x, y]), and other param-

eters are the same as ones in previous sections. This requires

a special type of EM algorithm similar to that proposed in

1http://www.idiap.ch/resource/gestures/



(a) A sample image of hand pos-
ture ’C’

(b) Preprocessed image of hand
posture ’C’
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Fig. 6. (a) A sample image of hand posture ’C’. (b) Processed image of
hand posture ’C’. (c) The intensity function i([x, y]) after preprocessing. (d)
Approximate i([x, y]) with a mixture of 10 Gaussian components q([x, y]).

[14]. In this experiment, we pick the number of Gaussian

components C = 10 so as to collect significant details of

the intensity function. After the EM algorithm converges,

we discard the constant α, but keep the MoG q([x, y]) of its

corresponding image. Consequently, we will have a Gaussian

mixture of 10 components for each hand posture image in

our database as shown in Fig. 6.

C. Similarity measure

We first compare the performance of our proposed method

DCS with DKL calculated by stochastic integration using

100 samples to create the similarity matrix of the database.

Ten sample images are randomly picked from each posture,

100 images total, resulting in the similarity matrix of size

100 × 100. The (i, j) element of the similarity matrix is

calculated using the divergence measure between the MoG

qi([x, y]) and qj([x, y]) from image i and image j respec-

tively. The values of members in both similarity matrices

are normalized so that the maximum and minimum take the

value of 1 and 0 respectively. The results are shown in Fig.

7.

From the results, shown in Fig. 7, both divergence mea-

sures behave as expected. The similarity within the same

posture images is higher than similarity between different

posture samples as shown from the low divergence values

gathered around the diagonal elements (same-class boxes).

But, we can also spot some different posture pairs whose

divergence measures are also low, for instance A and I, or

G and H, whose shapes look very similar. Nevertheless,

when comparing the performance of DCS against DKL,

the similarity matrices visually depict that DCS performs

better than DKL on distinguishing different postures. When

looking at both similarity matrices, we can visually notice

that similarity values of positions from different classes for

DCS are distinguishably larger than those of same-class

positions compared to DKL.

D. Hand posture recognition

In this experiment, we exploit the DCS capability to

recognize static hand posture on the aforementioned database

and compare the results to those of using DKL with var-

ious number of samples NS = 10, 25, 50, 75, 100, 125,

150, 175, 200, 225 and 250. Minimum divergence measure

classifier and 5-fold cross-validation are used to evaluate the

performances of DCS and the different settings of DKL. The

classification accuracy of this experiment is represented by

the confusion matrices shown in Fig. 8, and the summary

of the accuracy and computational run-time are illustrated

in Fig. 9. The classification accuracy of DKL increases as

the number of samples used increases and gives its best

at 92.3% accuracy with NS = 175 and averaged run-time

0.45 sec per run. Nevertheless, that is still outperformed by

DCS whose classification accuracy is 95.2% with averaged

run-time 0.03 sec per run. Unlike DKL, the accuracy of

DCS does not depend on the number of samples, but instead

depends on how well the MoG can approximate the arbitrary

function, and note that the run-time of DKL depends on only

the number of the Gaussian components in the MoG. (This

experiment was performed using MATLAB r2010a on an

Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz machine

with Ubuntu operating system.)

E. Discussion on hand posture recognition

Both DCS and DKL are applied to the real-world problem

of hand posture recognition. In this experiment, we assume

that divergence calculated from two similar postures is

greater than that obtained from two different postures, there-

fore we use minimum divergence measure based classifier

for this application despite of the fact that there are many

possibilities for alternative classifier. Even though we know

from the previous section that DCS and DKL share similar

behaviors, DCS outperforms DKL in this application in simi-

larity visualization, classification accuracy and computational

run-time.

Regarding similarity visualization, both DCS and DKL

perform well on grouping same postures together, but DCS

seems to outperform DKL when discriminating different

groups of postures. The similarity matrices are normalized

so that its members are ranged from 0 to 1 before visually

comparison. Due to the obvious difference between the

two matrices, it is sufficient in this experiment to evaluate

the performance of two divergence measures using eye-

ball estimation instead of resorting on entropy-based mea-

surement. In addition, unlike DKL, DCS offers symmetry

measure which is more intuitive when comparing 2 postures

in general.

In hand posture recognition, DCS outperforms DKL in

both classification accuracy and computational run-time.

Since DKL does not provide closed-form expression for
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(a) Similarity matrix calculated by DKL
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Fig. 7. Similarity matrices of DKL and DCS on 100 hand posture images from 10 hand postures (10 samples from each posture).
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(a) DKL, NS = 10

groundtruth class

d
e

te
c
te

d
 c

la
s
s

 

 
A B C D G H I L V Y

A

B

C

D

G

H

I

L

V

Y

0

2

4

6

8

10

12

14

16

18

20

(b) DKL, NS = 25
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(c) DKL, NS = 50

groundtruth class

d
e

te
c
te

d
 c

la
s
s

 

 
A B C D G H I L V Y

A

B

C

D

G

H

I

L

V

Y

0

2

4

6

8

10

12

14

16

18

20

(d) DKL, NS = 75
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(e) DKL, NS = 100
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(f) DKL, NS = 125
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(g) DKL, NS = 150

groundtruth class

d
e

te
c
te

d
 c

la
s
s

 

 
A B C D G H I L V Y

A

B

C

D

G

H

I

L

V

Y

0

2

4

6

8

10

12

14

16

18

20

(h) DKL, NS = 175

groundtruth class

d
e

te
c
te

d
 c

la
s
s

 

 
A B C D G H I L V Y

A

B

C

D

G

H

I

L

V

Y

0

2

4

6

8

10

12

14

16

18

20

(i) DKL, NS = 200
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(j) DKL, NS = 225
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(k) DKL, NS = 250
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(l) DCS

Fig. 8. The confusion matrices. Detected class and groundtruth class are
corresponding to row and column respectively. Each confusion matrix is
plotted with the same color scale with 20 at maximum and the confusion
matrix summed to 168, the number of total samples in the database.

MoG, stochastic integration is a good way to calculate the

quantity. The more samples used in the process, the more

accurate the estimated divergence measure is. However, when
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Fig. 9. The percentage of classification accuracy vs the averaged run-time
per run (sec). The number over each read square represents the number of
samples NS . The DKL curve is below that of DCS , which indicates that
the latter outperforms the former even with big number of NS .

comparing the run-time of the two divergence measures for

the same accuracy, DCS is significantly more computation-

ally efficient than DKL. We did not use numerical integration

to calculate DKL in this application because the method

requires a relatively great amount of resources which is

less efficient than stochastic integration approach for large

databases.

This experiment emphasizes that the divergence of two

MoGs can be computed more efficiently using DCS . To

benefit this approach even further, more efficient ways of

extracting MoG from the input data/feature is required. In

some cases, producing MoG can be a bottleneck to the entire

process. Therefore finding the right application and setting

model parameters (e.g. number of Gaussian components) to

apply this approach is still an open problem.

VII. CONCLUSION AND FUTURE WORK

In this paper, we illustrate why DKL and α-divergence

do not give a closed-form expression for MoG. From this

observation, we come up with some preliminary criteria to



search for divergences that provide closed-form expressions.

We then restrict our attention to the Cauchy-Schwarz pdf

divergence measure. Using the Gaussian multiplication iden-

tity, we come up with a closed-form expression for DCS

which does not depend on x. This reduces the complexity to

O(M2), which is much smaller than that of NI and SI whose

complexities depend on the number of samples N ≫ M2 in

general.

We also show that DCS outperforms and outruns D
(SI)
KL

significantly in real-world object classification in both 2D and

3D, and also in the static hand posture recognition problem.

Additionally, similar trends between both approaches suggest

the possibility to replace DKL with DCS in many real-world

applications where the form of input is appropriate. In future

work, we will further pursue more general criteria to pinpoint

such divergences in the hope that the criteria will lead to

the way to construct divergences that give a closed-form

expression for MoG.
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