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ABSTRACT 

 

OPTIMAL OUTPUT GAIN ALGORITHM FOR FEEDFORWARD NETWORK 

TRAINING, 

 

 

Babu Hemanth Kumar Aswathappa, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Michael T Manry  

A batch training algorithm for feed-forward networks is proposed which uses 

Newton’s method to estimate a vector of optimal scaling factors for output errors in the 

network. Using this vector, backpropagation is used to modify weights feeding into the 

hidden units. Linear equations are then solved for the network’s output weights. 

Elements of the new method’s Gauss-Newton Hessian matrix are shown to be weighted 

sums of elements from the total network’s Hessian. The effect of output transformation 

on training a feed-forward network is reviewed and explained, using the concept of 

equivalent networks. In several examples, the new method performs better than 

backpropagation and conjugate gradient, with similar numbers of required multiplies. 
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The method performs about as well as Levenberg-Marquardt, with several orders of 

magnitude fewer multiplies due to the small size of its Hessian. 
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CHAPTER 1 

INTRODUCTION 

 

The multilayer perceptron (MLP) has been shown to have several properties that 

make it of interest to investigators. First, it can be trained using gradient approaches 

such as back propagation (BP) [1] and Levenburg-Marquardt (LM) [2]. It has the 

universal approximation property [3]. With proper training, the MLP approximates the 

Bayes classifier [4] or the minimum mean square error (mmse) estimator [5]. The MLP 

has found use in many applications including character recognition [6][7], power load 

forecasting[8], prognostics [9], well logging [10], and data mining[11]. 

Unfortunately, MLP training is sensitive to many parameters of the network and 

its training data, including the input means and the initial network weights. In addition, 

MLP training is sensitive to the collinearity of its inputs [12] and outputs. 

In this paper, a fast, convergent training algorithm is developed which attempts 

to compensate for output collinearity. In section II,  matrix-vector notation is introduced 

for BP in the MLP network’s input weights, transforms of the network output vectors 

are analyzed, and a training algorithm incorporating backpropagation [1] (BP) is 

described. The Optimal Output Gain (OOG) algorithm which utilizes Newton’s method 

is described in section III and analyzed in section IV. A combination of the optimal 

output gains and optimal learning factor (OLF) are then found, using Newton’s method. 
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Computational burden for all the algorithms are also discussed. In section V numerical 

results for OOG and other training algorithms are presented for comparison. 

Conclusions and future work are shown in section VI. 
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CHAPTER 2 

MULTILAYER PERCEPTRON 

 

2.1 Introduction 

 

In this chapter we introduce MLP notation and describe a training algorithm 

based upon BP [1]. 

 

2.2 MLP Notation 

 

In the fully connected MLP of Fig 1, input weights w(k,n) connect the n
th

 input 

to the k
th
 hidden unit, Output weights woh(m,k) connect the k

th
 hidden unit’s activation 

op(k) to the m
th

 output yp(m), which has a linear activation. The bypass weight woi(m,n) 

connects the n
th

 input to the m
th

 output. The training data, described by the set { xp, tp } 

consists of N-dimensional input vectors xp and M-dimensional desired output vectors, 

tp. The pattern number p varies from 1 to Nv   where Nv denotes the number of training 

vectors present in the data set. 
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Fig 2.1:  A fully connected multi-layer perceptron 

In order to handle thresholds in the hidden and output layers, the input vectors 

are augmented by an extra element xp(N+1) which is equal to 1 , so xp = [xp(1), 

xp(2),…., xp(N+1)]
T
 . Let Nh denote the number of hidden units in the network. The 

vector of hidden layer net functions, np  and the actual network output vector  yp can be 

written as  

                                                
,p p n W x
                                              (2.1) 

oi p o pp h   W Wy x o
                           (2.2) 

where the k
th

 element of the hidden unit activation vector op is calculated as 

op(k)= f(np(k)) and f(.) denotes the hidden layer activation function. Training an MLP 

typically involves minimizing the mean squared error between the desired and the 

actual network outputs, defined as  
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2

1 1

1
[ ( ) ( )]

vN M

p p

p mv

E t m y m
N  

 
                             (2.3) 

Here  ( )pt m and  ( )py m  respectively denote the thm desired and actual outputs for the 

thp  pattern. 

2.3 Training using OWO-BP 

 

Here we introduce a training algorithm known as Output Weight Optimization-

Backpropagation (OWO-BP). This algorithm alternately solves linear equations for the 

network’s output weights and separately trains the input weights using BP. 

Output Weight Optimization (OWO) is a technique to solve for weights 

connected to the actual outputs of the network [12]. Since the outputs have linear 

activations, finding the weights connected to the outputs is equivalent to solving a 

system of linear equations. The expression for the actual outputs given in (2.2) can be 

re-written as  

                                                   
·p o py W x

                                                  (2.4) 

where [ , ]T T

p p px x o  is the augmented input vector and Wo  = [Woi : Woh ] 

denotes all the output weights. px is a column vector of size Nu  where Nu = N + Nh  + 1 

and Wo is M  by uN . The output weights can be solved by setting / 0oE  W  which 

leads to a set of linear equations given by  

                                               
T

a a o C R W
                                  (2.5) 

where, 
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1

1
,

vN
T T

a p p

pv

t
N 

 C x

                                 (2.6) 

1

1 vN
T

a p p

pvN 

 R x x

                                 (2.7) 

Equation (2.5) is most easily solved using orthogonal least squares [13] (OLS) 

which is equivalent to using the QR decomposition [14] . In the second half of an 

OWO-BP iteration, the input weight matrix W is updated as  

z· W W G                                 (2.8) 

where G is the generic representation of a direction matrix that contains 

information about the direction of learning and z, the learning factor contains 

information about the step length to be taken in the direction G. The weight update zG 

in equation (2.8) can also be denoted as  

z·  G W                                           (2.9) 

For backpropagation [1] , the direction matrix is nothing but the hN  by (N+1) 

negative input weight Jacobian matrix computed as  

1

1
·

vN
T

p p

pvN 

 G δ x

                                (2.10) 

Here p = [p(1) ,  p(2)… ,  p(Nh) ]
T
 is the Nh  by 1 column vector of hidden 

unit delta functions [1]. A description of OWO-BP is given below. For every training 

epoch  

i. Solve the system of linear equations in (2.6) and (2.7) using OLS and update 

the output weights, Wo 
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ii. Find the negative Jacobian matrix G described in equation (2.10) 

iii. Update the input weights, W, using equation (2.8)  

 

This method is attractive for several reasons. First, the training is faster than 

ordinary BP since weights connected to the outputs are found by solving linear 

equations. Second, it helps us avoid some local minima. Third, the method’s G matrix 

and learning factors can be changed without damaging the performance unlike 

conjugate gradient (CG) [15]. 

 

2.4 Optimal Learning Factor 

 

The choice of learning factor z in equation (2.8) has a direct effect on the 

convergence rate of OWO-BP. Early steepest descent methods used a constant learning 

factor, which resulted in  slow convergence. Later methods have used a heuristic scaling 

approach to modify the learning factor between iterations and thus speed up the rate of 

convergence. However, using Newton’s method for one unknown, a non-heuristic 

optimal learning factor (OLF) for OWO-BP can be derived  as,  

2 2

/ z
z

/ z

E

E

 

                                            (2.11) 

where the numerator and denominator partial derivatives are evaluated at z=0. The 

expression for the second derivative of the error with respect to the OLF is found using 

(2.3) as,  
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2 21 1
,

2
1 1 1 1 1 1

( , ) ( , )
( , ) ( , )

h h h hN N N NN N
T k j

k R j

k j n i k j

E E
g k n g j i

z w k n w j i

 

     

 
 

  
  g H g

        (2.12) 

where column vector gk contains elements g(k,n) of G, for all values of n. HR is the 

reduced size input weight Hessian with Niw rows and columns, where Niw =( N + 1) Nh 

is the number of input weights. HR(k, j) contains elements of HR for all input weights 

connected to the jth and kth hidden units and has size (N+1) by (N+1). When Gauss-

Newton [11] updates are used, elements of HR are computed as  

2

1

2
( , ) ( ) ( ) ( ) ( )

( , ) ( , )

v

p

N

p p p

pv

E
u j k x i x n o' j o' k

w j i w k n N 




 


                    (2.13) 

where, 

  1

( , ) ( , ) ( , )
M

oh oh

m

u j k w m j w m k



 

o’p(k) indicates the first partial derivative of op(k) with respect to its net 

function. Because (2.13) represents the Gauss-Newton approximation to the Hessian, it 

is positive semi-definite. Equation (2.12) shows that (i) the OLF can be obtained from 

elements of the Hessian HR , (ii) HR contains useful information even when it is 

singular, and (iii) a smaller non-singular Hessian 
2
E/z

2
 can be constructed using HR.

 

Therefore, it may be profitable to construct Hessian matrices of intermediate size for 

use in Newton’s algorithm. 
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2.5 Equivalent Networks 

 

Definition: Two networks, one trained on original data {xp, tp} and the other on linearly 

transformed data {zp,  pt  } are strongly equivalent if the outputs of the two networks 

are identical and the transforms are invertible 

 

 

 
         Fig 2.2.  Equivalent Networks 

 

 

2.6 Effects of output transformations 

 

In this section we use the concept of equivalent networks to analyze the effects 

of transforming the desired output vectors tp 
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Given a network MLP-1 and its weights, W, Woi, and Woh we train the network by 

minimizing the error function E(W, Woi, Woh), which may be the standard MSE. 

Training data for this first network is {xp , tp} for 1  p  Nv ,  

where dim(x) = (N+1) and  

dim (t) = M. Let MLP-1, be trained using the input vectors xp  and output vector tp as 

described in section 2.2 

MLP 1 has parameters xp , tp, py  , R  , oW  , C  and poδ  

Consider a second network denoted as MLP 2 , trained using data {xp , pt } 

where  p p  t A t  and A is an Mby M rectangular transformation matrix and  M  may 

be unequal to M.  MLP 2 is equivalent to MLP 1 in the sense that its input weight 

matrix W is equal to W in MLP 1 and its net and activation vectors pn and pO  

therefore satisfy 

                   p p n n                                                (2.14) 

                                                p p O O                                               (2.15) 

While training W  in MLP 2 using BP its output delta function is given by                      

                                                                      2[ - ]p ppo  δ t y                                     (2.16)           

                                                                       po po  δ A δ                                         (2.17) 

For MLP 1 the delta function for each hidden unit is given by  

      

M
p p oh po

i=1
δ (k)=f (n (k)) W (i,k) δ (i)                                                   (2.18) 

which can be expressed in matrix vector form as   
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T

p oh po  δ T W δ                                     (2.19) 

                     

[ (1)] 0 0 0

0 [ (2)] 0 0

0 0 [ (3)] 0

0 0

0 0 0 [ ( )]

p

p

p

pf n

f n

f n

f n k

 
 
 

 
  
 
 
 

 

T

          (2.20) 

 

The delta matrix for MLP 2 can similarly be written as   

T
p oh po    δ T W δ                                   (2.21) 

( )T T
oh po    T W A A δ                         (2.22) 

which leads to  

( )T
p p   δ A A δ                      (2.23) 

                                                     p p  δ R δ      

Where  

  
T R A A                                   (2.24) 

The negative Jacobian matrix for training input weights in MLP-1 is given in (2.10). 

The negative Jacobian for training input weights in MLP-2 is then 

 

                          1

1
·

vN
T

p p

pvN 

  G δ x

                  (2.25) 

1

1
·

vN
T

p p

pvN 

 R δ x

                                     (2.26) 
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             1

1
·

vN
T

p p

pvN 

  R δ x

                     (2.27) 

   R G                       (2.28)     

2.6.1  Lemma 1  

A square matrix A  has no effect on training, if it is Orthogonal. 

If A  is orthogonal, then  

         
T  A A R I                                      (2.29) 

Hence we get  

p p δ δ                                         (2.30) 

 G G                                         (2.31) 

If the delta functions and the negative gradients are same then the training is no 

different than in MLP-1. Hence A  does not improve training. Orthogonal transform 

matrices are therefore useless. This also proves that the conventional backpropagation 

does not optimize effects of desired outputs on training. 

 

2.6.2  Lemma  2  

If A  is Non-Orthogonal, training of MLP 1 and MLP 2 diverge in the sense that 

they become no longer strictly equivalent 

If A  is a M’ by M rectangular transformation matrix, for some M’ > M (The extra rows 

are not zero rows) then R I  

This implies that p p δ δ  and  G G . Hence there is an effect on MLP training. 

From Lemma 2 it is clear that  A  should be a non-orthogonal matrix 
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2.6.3  Lemma 3 

Given R, the number of A matrices is uncountably infinite 

T R A A  

From the above equation for one value of R, we can find infinitely many solutions 

Here we look for R  and not for A . There might be only one value of R  

 

2.6.4  Lemma 4 

For the case M=1, OOG behaves same as OWO-BP algorithm 
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CHAPTER 3 

 

OPTIMAL OUTPUT GAIN ALGORITHM 

 

In this section, we discuss the OOG derivation, the utility of non-singular, non-

orthogonal A matrices and steps for the algorithm. We also discuss the OOG-HWO 

algorithm which is an improvement to OOG algorithm. 

 

3.1 OOG Derivation 

 

The matrix notation for the mean-squared error for MLP-2 is given by 

2

1

1
E

Nv

p p

v pN 

    t y

     (3.1) 

                       1

1
= ( ) ( )

Nv
T

p p p p

v pN 

    t y R t y

                    (3.2) 

 

Let R  be a diagonal matrix with diagonal elements ( )r i , Then 

2

1 1

1
E = ( )[ ( ) ( )]

Nv M

p p

v p i

r i i i
N  

  t y

      (3.3) 

where the gains r(i) are usually positive.  

For the pth pattern, output and hidden layer delta functions are respectively found as 
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( ) 2 ( )[ ( ) ( )] ( ) ( )p p popo k r i t i y i r i i   

            (3.4) 

This can also be written as,  

        1

' ( ) '( ) ' ( ) ( , )
M

p pk po oh

i

k f n i w i k 


 
                (3.5) 

Using equation (3.4), the above equation can be expressed as,  

1

( ) '( ) ( ) ( , )
M

pk po oh

i

r i f n i w i k



              (3.6) 

1

( ) ( , )
M

p

i

r i i k



     (3.7) 

From equation (3.6) and (3.7), the delta function can be written as, 

( , ) '( ) ( ) ( , )p pk po ohi k f n i w i k 
    (3.8) 

Now, the negative gradient of E  is  

1 1

' 1
'( , ) ( ) ( , ) ( )

( , )

vN M

p p

p iv

E
g k n r i i k x n

w k n N


 


 



  (3.9) 

1 1 1

1
( ) ( , ) ( ) ( ) ( , ),

vNM M

p p i

i p iv

r i i k x n r i g k n
N


  

   
 (3.10) 

1

1
( , ) ( , ) ( ),

vN

i p p

pv

g k n i k x n
N




 
    (3.11) 

where ( , ) ( , )g k n g k n  for r(i) =1.  

The matrix of negative partial derivatives can be written as 

1

' = ( )
M

i

i

r i


G G

     (3.12) 
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Since G  is used to change hidden units identical to those in the original network, we 

get 

 
z   W W G

    (3.13) 

So, 

W z   G      (3.14) 

where z is the learning factor.  

The error function being minimized with respect to the r(i)s is 

2

1 1

1
[ ( ) ( )]

vN M

p p

p iv

E t i y i
N  

 
    (3.15) 

where 

1 1

1 1 1 1

( ) ( , ) ( ) ( , ) ( ( ( , ) ( ) ( , ) ( )))j

N Nh N M

p oi p oh p

n k n j

y i w i n x n w i k f w k n r j g k n x n
 

   

     
  (3.16) 

The first partial of E with respect to r is a vector g  which is defined as  

E

r





g
      (3.17) 

Therefore the elements of g  can be found as, 

1 1

( )2
( ) [ ( ) ( )]

( ) ( )

vN M
p

p p

p iv

y iE
g m t i y i

r m N r m 

 
  
 


   (3.18) 

1

1 1

( )
( , ) '( ( )) ( , ) ( )

( )

hN N
p

oh p m p

k n

y i
w i k f n k g k n x n

r m



 





 

  (3.19) 

( )
( , )

( )

p

p

y i
v i m

r m




       (3.20) 
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The second partials comprising the M by M Hessian matrix are 

2

1 1

( ) ( )2
( , )

( ) ( ) ( ) ( )

vN M
p p

og

p iv

y i y iE
h m u

r m r u N r m r u 

 
 
   


   (3.21) 

Using the equation (3.19), we can express the Hessian as, 

1 1

1 1 1 1 1 1

2
( , ) '( ( )) ( ) ( , ) ( , ) '( ( )) ( ) ( , )

v h hN N NM N N

oh p p m oh p p u

p i k n v jv

w i k f n k x n g k n w i v f n v x j g v j
N

 

     

    

(3.22) 

by rearranging the terms we get, 

1 1

1 1 1 1 1 1

2
( , ) ( , ) ( ) ( ) '( ( )) '( ( )) ( , ) ( , )

h h vN N NN N M

m u p p p p oh oh

k v n j p iv

g k n g v j x n x j f n v f n k w i v w i k
N

 

     

  

(3.23) 

21 1

1 1 1 1

( , ) ( , )
( , ) ( , )

h hN N N N

m u

k v n j

E
g k n g v j

w k n w v j

 

   




 


            (3.24) 

Let dm denote the mth column of the Nh by (N+1) input weight change matrix such as 

G. Let hmv(j,u) denote the element of the input weight Hessian HR that relates input 

weights w(j,m) and w(u,v). Similarly, hmv(j,u) is an element of the Nh by Nh matrix HR. 

Then  

( , ) T
Rog m vh m v  d H d

     (3.25) 

The vector r is found as the solution to the equation, 

og  H r g
     (3.26) 

The above equation is solved using OLS. Note that elements of r can be positive or 

negative. 
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3.2 OOG Steps 

 

In this section we will describe a series a steps taken in each iteration of OOG 

Algorithm. 

In each iteration of the training Algorithm the following steps are followed. 

1. Solve linear equations for all output weights. 

2. Save all the Weights information 

3. Calculate Error E and compare it with the error in previous iteration.  

4. If error in any iteration is greater than the previous, we read back the weights from 

the previous iteration, calculate the optimal learning factor and update the input 

weights using OLF as in equation (3.13). OLF can be calculated from OOG 

algorithm using the equation (4.7) 

5. Calculate ( , )ig k n  using equation (3.11) 

6. Calculate the vector g using the equation (3.17). 

7. Calculate Hessian Hog  using equation (3.21) 

8. Calculate output gain co-efficient vector r using the equation (3.26). This can be 

solved by OLS algorithm. 

9. Update the input weights as  

1

( )
M

i

i

r i


  W W  G

                                             (3.27) 

10. Go back to step 1 until all iterations are complete. 
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3.3  OOG-HWO Algorithm 

 

In this section, we introduce the hidden weight optimization technique. 

Output weight optimization-hidden weight optimization (OWO-HWO) [25] training is 

very similar to OWO-BP. The weights connected to the outputs are adapted using OWO 

mentioned in II-B. However, unlike BP, HWO minimizes the objective function [33] 

2
1

1 1

( ) ( ) ( , ) ( )
Nv N

p hwo p

p n

E j j g k n x n 


 

 
  

 
 

   (3.28) 

for 0 ≤ I ≤ Nh, by solving for linear equations of the form 

1

1

( , ) ( , )
( , )

N

hwo

n

E
g k n r n m

w j m






 




    (3.29) 

In matrix notation, 

hwo  G R G       (3.30) 

where R is the input auto-correlation matrix and hwoG  is the HWO weight change 

matrix. In other words, hwoG  replaces the matrix G in (3.16), (3.19). The linear 

equations in (3.29) can be solved for hwoG using orthogonal least squares (OLS) or 

matrix inversion using the singular value decomposition (SVD). It can be shown that  

HWO is equivalent to applying a whitening transform [32] to the training data and then 

performing BP. 
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3.3.1  Convergence Proof for HWO Algorithm 

The equation 32 can be rewritten as 

1
hwo

 G G R      (3.31) 

 

Expressing the singular value decomposition (SVD) of the auto-correlation matrix as 

TU U R      (3.32) 

1R  becomes, 

1 1 TU U  R     (3.33) 

Equation 32 now becomes, 

T
hwoG G A A        (3.34) 

 

where, 

1/2 TA U       (3.35) 

Comparing (3.34) with equation (2.25) it is clear that performing OWO-HWO is 

equivalent to performing OWO-BP on transformed data. Since BP with optimal 

learning factor (OLF) converges, it is clear that HWO with an OLF converges as well.
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CHAPTER 4 

ANALYSES 

 

In this chapter we will discuss the relationship between OOG and OLF, the 

effects of linearly dependent outputs on gradient G and Hessian H 

 

4.1  Relationship of OOG to OWO-BP with OLF 

 

The optimal learning factor can be calculated from gradient and Hessian from 

OOG algorithm. This is clearly explained in this section. 

In order to calculate the OLF, we need the first derivative of E with respect to z  that is 

E/z and also the second derivative of E with respect to  z that is 
2
E/z

2  
 

The first derivative can be calculated as, 

1 1

( )2
[ ( ) ( )] ,

vN M
p

p p

p iv

y iE
t i y i

z N z 

 
 

 


    (4.1) 

This gives, 

1

( ) ( )
,

( )

M
p p

m

y i y i

z r m

 


 


      (4.2)
 

(4.2) can be calculated easily using the equation (3.19). After calculating (4.2) we can 

plug in the values in (4.1) to get 
E

z




 

The second derivative of E with respect to z can be written as, 
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2

2
1 1

( ) ( )2 vN M
p p

p iv

y i y iE

z N z z 

 


  


    (4.3) 

This can be further written as below, 

2

2
1 1 1 1

( ) ( )2

( ) ( )

vN M M M
p p

p i n mv

y i y iE

z N r n r m   

 


  


    (4.4) 

2

2
1 1 1 1

( ) ( )2

( ) ( )

vNM M M
p p

n m p iv

y i y iE

z N r n r m   

 


  
 

    (4.5) 

This leads to, 

2

2
1 1

( , )
M M

og

n m

E
h m n

z  







      (4.6) 

The second derivative of E with respect to z is nothing but the sum of all the elements 

of the Hessian H. So now the OLF can be easily calculated as 

2

2

( )

( )

E

zOLF
E

z



 


       (4.7) 

 

4.2  Effects of linearly dependent outputs on G  

The negative gradient of E   is given by  

1

( , ) ( ) ( , )
M

i

i

g k n r i g k n


  
     (4.8) 

Where, 

1

1
( , ) ( , ) ( )

vN

i p p

pv

g k n i k x n
N




 
    (4.9) 
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and, 

( , ) ( ( )) ( , ) ( )p p oh poi k f n k W i k i        (4.10) 

The gradient can now be expressed as, 

1 1

1
( , ) ( ) ( , ) ( ( )) ( ) ( )

vNM

oh p po p

i pv

g k n r i W i k f n k i x n
N


 

    
 (4.11) 

 

Case 1: With one extra linearly dependent desired output 

Let us consider a case with one extra output (output M+1) which is linearly dependent 

on the other M outputs.  

   1

( 1) ( ) ( )
M

p p

i

M r i i


 t t

    (4.12) 

Then the gradient matrix is given by  

1

1 1

1
( , ) ( ) ( , ) ( ( )) ( ) ( )

vNM

oh p po p

i pv

g k n r i W i k f n k i x n
N




 

    
 (4.13) 

            1

1
( , ) { ( 1) ( 1, ) ( ( )) ( 1) ( )}

vN

oh p po p

pv

g k n r M W M k f n k M x n
N




       
 (4.14) 

We can clearly see that the new gradient is linear sum of previous gradient ( , )g k n
 and 

some other terms. Ideally we want r(M+1) to be zero so that the gradients are 

unchanged even when there is an extra dependent output. 

Case 2: With L extra linearly dependent outputs 

Let us consider a case with L extra output (output M+L) which are linearly dependent 

on the other M outputs.  The gradient can be expressed as, 
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1 1

1
( , ) ( , ) ( ) ( , ) ( ( )) ( ) ( )

vNM L

oh p po p

i M pv

g k n g k n r i W i k f n k i x n
N




  

      
  (4.15) 

We can clearly see that the new gradient is sum of previous gradient ( , )g k n  and some 

other distortion terms. 

 

4.3  Effects of linearly dependent outputs on Hessian ogH  

The Hessian ogH  is given by, 

2

( , )
( ) ( )

og

E
h m u

r m r u



       (4.16) 

2

( ) ( )

E

r m r u



             (4.17) 

1 1

( ) ( )2

( ) ( )

vN M
p p

p iv

y i y i

N r m r u 

 


 


          (4.18) 

1 1

2
( , ) ( , )

vN M

p p

p iv

v i m v i u
N  

 
          (4.19) 

Where  ( , )pv i m  is defined as,     

  

1

1 1

( )
( , ) ( , ) '( ( )) ( , ) ( )

( )

hN N
p

p oh p m p

k n

y i
v i m w i k f n k g k n x n

r m



 


 


 
                        (4.20) 

Let us consider a case where we have one extra dependent output. 

Case 1: With one extra linearly dependent output 

The number of outputs will now be M+1. Hence the index i should be from 1 to M+1. 

The new Hessian ogH  can be written as, 
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1

1 1

2
( , ) ( , ) ( , )

vN M

p pog

p iv

h m u v i m v i u
N



 

  
    (4.21) 

We can now separate the term containing only the last output , 

1 1 1

2 2
( , ) ( , ) ( , ) { ( 1, ) ( 1, )}

v vN NM

p p p pog

p i pv v

h m u v i m v i u v M m v M u
N N  

       

(4.22) 

This  leads to, 

1

2
( , ) ( , ) { ( 1, ) ( 1, )}

vN

p pog og

pv

h m u h m u v M m v M u
N 

     
         (4.23) 

Where , 

1

1 1

( 1, ) ( 1, ) '( ( )) ( , ) ( )
hN N

p oh p m p

k n

v M m w M k f n k g k n x n


 

   
   (4.24) 

We can clearly see that the new Hessian is the sum of the previous Hessian ( , )ogh m u  

and a sum of products of the v functions. 

Case 2: With L extra linearly dependent outputs 

The number of outputs will now be M+L. Hence the equation for the new Hessian will 

be as shown below, 

1 1

2
( , ) ( , ) { ( , ) ( , )}

vN M L

og og

p i Mv

h m u h m u v i m v i u
N



  

    
  (4.25) 

We can clearly see that the new Hessian is the sum of the previous Hessian ( , )ogh m u  

and additional noise/distortion terms. 
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4.4  Computational Burden 

 

In this section, we describe the computational burden for using the training 

algorithms compared in this paper. All the algorithms were implemented in Microsoft 

Visual C++ compiler version 6.0. 

 

Let uN = 1hN N   denote the number of weights connected to each output. 

The total number of weights in the network is denoted as 

( 1) ( 1)w h hN M N N N N      

The number of multiplies required to solve for output weights using Orthogonal Least 

Squares [22] is olsM , which is given by 

1 3
( 1) (2 1)

6 2
ols u u u uM N N M N N

 
     

    (4.26) 

The numbers of multiplies required per training iteration using BP, OWO-BP, OOG and 

LM are respectively given by 

 2 ( 1) ( 6 4)bp v u h h wM N MN N N M N N N      
  (4.27) 

 

( 1)
2 ( 2) ( 1) ( 6 4) ( 1)

2
owo bp v h u h ols h

Nu N
M N N N M N M N N M N N

 
           

 

(4.28) 
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 2( 1)(3 1) ( 1)(1 2 ) 2 1oog owo bp v h h olsM M N M N N N N M M M M            
 

(4.27) 

 

2 2 2 3( 3 ( 1)) 4 ( 1)lm bp v u u h h w wM M N MN N N N N N N N           (4.28) 

 

Note that oogM  consists of owo bpM   plus the required multiplies for calculating 

optimal output gains. Similarly, lmM  consists of bpM  plus the required multiplies for 

calculating and inverting the Hessian matrix.. 
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CHAPTER 5 

NUMERICAL RESULTS 

 

 

Here we compare the performance of OOG and OOG-HWO to those of BP-

OLF, LM, and conjugate gradient (CG), where the OLF was used in the latter three 

algorithms. In CG and LM, all weights are varied in each iteration. In  OOG, OOG-

HWO, we first solve linear equations for the output weights and subsequently update 

the input weights. 

For a given network, we obtain the training error and the number of multiplies 

required for each training iteration. We also obtain the validation error for a fully 

trained network. This information is used to subsequently generate the plots and 

compare performances. 

Table 5.1  Data Set Description 

Data Set Name No. of Inputs No. of Outputs No. of Patterns 

Twod.tra 8 7 1768 

Single2.tra 16 3 10000 

Oh7.tra 20 3 15000 

Concrete Data Set 8 1 1030 



 

 

 

29 

Table I lists the data sets used for comparison and generating the plots. We use 

the k-fold validation procedure to obtain the average training and validation errors. 

Given a data set, we split the set into k non-overlapping parts of equal size, and use (k − 

1) parts for training and the remaining one part for validation. The procedure is repeated 

till we have exhausted all k combinations (k = 10 for our simulations). In all our 

simulations we have 4000 iterations for the first order algorithms BP-OLF and CG, 

4000 iterations for OOG and OOG-HWO algorithms and for LM we have 300 

iterations. All the data sets used for simulation are publicly available. In all data sets, 

the inputs have been normalized to be zero-mean and unit variance. 

We have chosen different number of hidden units for different data files for our 

simulations. Given a data file, number of inputs, number of outputs  we first determine 

the MLP network sizing using the NU-MAP 7.1 software that is available in Image 

Processing and Neural Networks Lab repository [19]. MLP Sizing utility gives the 

number of hidden units for which the MLP can perform the best. The description and 

the simulation results for each of the data files and are explained in this section. 

 

5.1 Twod.tra Data Set 

 

This data file is available on the Image Processing and Neural Networks Lab 

repository [19]. The training data file contains 1768 patterns. The inputs consist of  

eight theoretical values of back scattering coefficient parameters at V and H 

polarization and four incident angles. The outputs were the corresponding values of 

permittivity, upper surface height, lower surface height, normalized upper surface 
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correlation length, normalized lower surface correlation length, optical depth and 

single scattering albedo which had a joint uniform pdf. 

  

 

Fig 5.1  Twod.tra data set:  Average error vs. iterations 
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Fig 5.2  Twod.tra data set:  Average error vs. Multiplies per iteration 

 

For this data file, we trained an MLP having 30 hidden units. In Fig. 5.1, the 

average mean square error (MSE) for training from 10-fold validation is plotted versus 

the number of iterations for each algorithm (shown on a log10 scale). In Fig. 5.2, the 

average training MSE from 10-fold validation is plotted versus the required number of 

multiplies (shown on a log10 scale). 
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From Fig. 5.1, OOG and OOG-HWO are better than the previous version of BP-OLF 

and  CG in terms of the overall training error. LM has better overall training error, 

however, the performance comes with a significantly higher computational demand, as 

shown in Fig 5.2 

 

5.2  Single2.tra Data Set 

 

This data file is available on the Image Processing and Neural Networks Lab 

repository [19]. This training data file consists of 16 inputs and 3 outputs and represents 

the training set for inversion of surface permittivity, the normalized surface rms 

roughness, and the surface correlation length found in back scattering models from 

randomly rough dielectric surfaces. The first 16 inputs represent the simulated back 

scattering coefficient measured at 10, 30, 50 and 70 degrees at both vertical and 

horizontal polarization. The remaining 8 are various combinations of ratios of the 

original eight values. These ratios correspond to  those used in several empirical 

retrieval algorithms. 

For this data file, we trained an MLP having 20 hidden units. From Fig. 5.3, the average 

training MSE from 10-fold validation for both OOG and OOG-HWO are better than all 

other algorithms being compared except for LM. 

Fig. 5.4 shows the computational cost of achieving this performance. The proposed 

algorithms consume slightly more computation compared to BP-OLF and CG. 

However, all algorithms utilize about two orders of magnitude fewer computations than 

LM.  
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Fig 5.3 Single2.tra data set:  Average error vs. iterations 
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Fig 5.4 Single2.tra data set:  Average error vs. Multiplies per iterations 

 

 

5.3  OH7.tra Data Set 

 

This data file is available on the Image Processing and Neural Networks Lab 

repository [19]. This data set is given in Oh, Y., K. Sarabandi, and F.T. Ulaby, "An 

Empirical Model and an Inversion Technique for Radar Scattering  from Bare Soil 

Surfaces," in IEEE Trans. on Geoscience and Remote Sensing, pp. 370-381, 1992. The 
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training set contains VV and HH polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg, 

and X 30, 40, 50 deg along with the corresponding unknowns  rms surface height, 

surface correlation length, and volumetric soil moisture content in  g / cubic cm. 

 

Fig. 5.5  OH7.tra data set: average error vs. iterations 
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Fig. 5.6  OH7.tra data set: average error vs. Multiplies per iterations 

 

 

For this data file, we trained an MLP having 15 hidden units. From Fig. 5.5, we 

see a similar trend. The proposed OOG-HWO, perform better than all other algorithms 

considered for comparison except for LM. The required multiplies for the OOG and 

OOG-HWO are not significantly more compared with CG, BP-OLF. Again, OOG and 

OOG-HWO perform better. This is evident from Fig. 5.6 
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5.4  Concrete Data Set 

 

This data file is available on the UCI Machine Learning Repository [21]. It 

contains the actual concrete compressive strength (MPa) for a given mixture under a 

specific age (days) determined from laboratory. The concrete compressive strength is a 

highly nonlinear function of age and ingredients. These ingredients include cement, 

blast furnace slag, fly ash, water, super plasticizer, coarse aggregate, and fine aggregate. 

The data set consists of 8 inputs and one output per pattern, with a total of 1030 

patterns. For this data file, we trained an MLP having 15 hidden units. For this data set, 

the LM algorithm has a better overall training error, however the proposed algorithms 

OOG and OOG-HWO, present a good balance between performance and computational 

cost. These are evident from Fig 5.7 and Fig 5.8 
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 Fig. 5.7 . Concrete data set: average error vs. iterations  
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Fig. 5.8. Concrete data set: average error vs. Multiplies per iteration 

 

 

Table II compares the average training and validation errors of the proposed 

OOG algorithms with CG, BP-OLF and LM on different data sets. For each data set, the 

training and validation errors again come from 10-fold validation. 

 
 
 
 
 



 

 

 

40 

Table 5.2    Average 10-Fold Training and Validation Error 

 
Data Set  BP-OLF CG OOG OOG-HWO LM 

Twod.tra 

trnE  0.218699 0.190905 0.1977993 0.1847215 0.1689533 

valE  0.253583 0.214977 0.248837 0.2033308 0.172326 

Single2.tra 

trnE  0.939597 0.5724019 0.6859521 0.0504069 0.1313133 

valE  1.11143 0.974455 1.045655 0.0630476 0.145549 

OH7.tra 

trnE  1.940934 1.49723053 1.5983069 1.3888627 1.3480560 

valE  2.295675 2.074047 2.069648 1.985654 1.571530 

Concrete 

trnE  43.9238 33.28654328 29.361767 28.694411 26.779379 

valE  68.634015 67.542675 43.782042 42.735953 40.832865 

 

From the plots and the table, we see that the two algorithms OOG and OOG-

HWO are effective in further reducing the training and validation errors. OOG-HWO 

seems to show consistently better performance than the other algorithms. 

 

 

 

 



 

 

 

41 

 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1  Conclusions 

 

We have derived second order methods for simultaneously optimizing output 

gains and the learning factor. These methods have been successfully demonstrated on 

four data sets. Results show that these algorithms perform much better than two 

common first order algorithms with comparable complexity, namely CG and BP-OLF. 

They come close to LM in terms of the training error, but with orders of magnitude less 

computation. This is evident in all of the plots of training error versus the required 

number of multiplies and also from the expressions for the numbers of multiplies. 

Although LM works very well in practice, it has a high computational burden and is 

sub-optimal in the way it handles the ’scaling’ factor, OOG and OOG-HWO on the 

other hand use a Newton type update combined with the optimal learning factor, leaving 

little room for heuristics. 
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6.2  Future Work 

 

Much work remains to be done. We hope to extend our approach to additional 

network parameters, yielding fast second order methods that rival the performance of 

LM, but with greatly reduced complexity. OOG can also be extended for forecasting 

applications where the desired outputs are highly correlated. OOG can be used to 

extract more efficient input change matrices. 
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