

OPTIMAL OUTPUT GAIN ALGORITHM FOR FEED FORWARD NETWORK

TRAINING

by

BABU HEMANTH KUMAR ASWATHAPPA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2010

Copyright © by Babu Hemanth Kumar Aswathappa 2010

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to Dr Michael T. Manry, for

supervising me on this thesis. Throughout my research period he provided

encouragement, sound advice, good teaching, good company, and lots of good ideas

that helped make my research easy and very interesting. I am really thankful to him for

patiently spending so many lab hours with me and even answering all my questions

over the phone when I was doing my internship at Intel. I sincerely believe he is a very

good counselor one can ever hope for. It is an honor for me to be a part of his IPNNL

research group.

I would like thank Dr. Rao and Dr. Wei-Jen Lee for taking interest in my work and

accepting to be a part of my thesis defense committee. I would like to thank my

manager and my team at Intel Corporation, Chandler, Arizona. It is in their company

that I gained a real-world industry exposure.

I must express my sincere gratitude to my family for all their love and support. My

parents Mr. Aswathappa and Mrs. Suvarna, for all their love, faith and support. My

sister and my brother, Mamatha and Gopal, for being there for me whenever I needed

them. I dedicate this thesis to them, whose prayers made this possible.

http://www.uta.edu/ee/faculty_intro.php?id=18

iv

I take this moment to thank all my friends Harish Prakash, Prashanth.R.V,

Mahadevkirthi, Hemanth, Adarsh, Bharath, Rohan, Kashyap, Kiran, Manju, Shreyanka,

Pavithra and Deepa for being with me through all the times of struggle and celebration.

I would never forget the support of my beloved friends back home in India - Balaji,

Nithin, Karthik, Arun, Nikki, Chaithali, Nisha and Geetanjali. Thank you all so much

for all the support across the miles.

October 29, 2010

v

ABSTRACT

OPTIMAL OUTPUT GAIN ALGORITHM FOR FEEDFORWARD NETWORK

TRAINING,

Babu Hemanth Kumar Aswathappa, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Michael T Manry

A batch training algorithm for feed-forward networks is proposed which uses

Newton’s method to estimate a vector of optimal scaling factors for output errors in the

network. Using this vector, backpropagation is used to modify weights feeding into the

hidden units. Linear equations are then solved for the network’s output weights.

Elements of the new method’s Gauss-Newton Hessian matrix are shown to be weighted

sums of elements from the total network’s Hessian. The effect of output transformation

on training a feed-forward network is reviewed and explained, using the concept of

equivalent networks. In several examples, the new method performs better than

backpropagation and conjugate gradient, with similar numbers of required multiplies.

vi

The method performs about as well as Levenberg-Marquardt, with several orders of

magnitude fewer multiplies due to the small size of its Hessian.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT ... v

LIST OF ILLUSTRATIONS .. ix

LIST OF TABLES .. x

Chapter Page

1. INTRODUCTION …………………………………..………..….. 1

2. MULTILAYER PERCEPTRON ... 3

 2.1 Introduction ... 3

 2.2 MLP Notation .. 3

 2.3 Training using OWO-BP .. 5

 2.4 Optimal Learning Factor .. 7

 2.5 Equivalent Networks .. 9

 2.6 Effects of output transformations .. 9

2.6.1 Lemma 1 .. 12

2.6.2 Lemma 2 .. 12

2.6.3 Lemma 3 .. 13

2.6.4 Lemma 4 .. 13

viii

3. OPTIMAL OUTPUT GAIN ALGORITHM .. 14

3.1 OOG Derivation ... 14

3.2 OOG Steps ... 18

3.3 OOG-HWO Algorithm ... 19

3.3.1 Convergence Proof for HWO Algorithm 20

4. ANALYSES .. 21

4.1 Relationship of OOG to OWO-BP with OLF 21

4.2 Effects of linearly dependent outputs on G 22

4.3 Effects of linearly dependent outputs on Hessian Hog 24

4.4 Computational Burden.. 26

5. NUMERICAL RESULTS .. 28

5.1 Twod.tra Data Set ... 29

5.2 Single2.tra Data Set .. 32

5.3 Oh7.tra Data Set ... 34

5.4 Concrete Data Set ... 37

6. CONCLUSIONS AND FUTURE WORK .. 41

6.1 Conclusions .. 41

6.2 Future Work ... 42

REFERENCES ... 43

BIOGRAPHICAL INFORMATION ... 50

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 A Fully connected Multi-layer Perceptron .. 4

2.2 Equivalent Networks. ... 9

5.1 Twod Data Set: Average Error v/s. Iterations. ... 30

5.2 Twod Data Set: Average Error v/s. Multiplies per Iteration..................................... 31

5.3 Single2 Data Set: Average Error v/s. Iterations.. ... 33

5.4 Single2 Data Set: Average Error v/s. Multiplies per Iteration 34

5.5 Oh7 Data Set: Average Error v/s. Iterations. ... 35

5.6 Oh7 Data Set: Average Error v/s. Multiplies per Iteration 36

5.7 Concrete Data Set: Average Error v/s. Iterations. .. 38

5.8 Concrete Data Set: Average Error v/s. Multiplies per Iteration 39

x

LIST OF TABLES

Table Page

5.1 Data Set Description………………………………………………………………..28

5.2 Average 10-Fold Training and Validation Error…………………………………...40

1

CHAPTER 1

INTRODUCTION

The multilayer perceptron (MLP) has been shown to have several properties that

make it of interest to investigators. First, it can be trained using gradient approaches

such as back propagation (BP) [1] and Levenburg-Marquardt (LM) [2]. It has the

universal approximation property [3]. With proper training, the MLP approximates the

Bayes classifier [4] or the minimum mean square error (mmse) estimator [5]. The MLP

has found use in many applications including character recognition [6][7], power load

forecasting[8], prognostics [9], well logging [10], and data mining[11].

Unfortunately, MLP training is sensitive to many parameters of the network and

its training data, including the input means and the initial network weights. In addition,

MLP training is sensitive to the collinearity of its inputs [12] and outputs.

In this paper, a fast, convergent training algorithm is developed which attempts

to compensate for output collinearity. In section II, matrix-vector notation is introduced

for BP in the MLP network’s input weights, transforms of the network output vectors

are analyzed, and a training algorithm incorporating backpropagation [1] (BP) is

described. The Optimal Output Gain (OOG) algorithm which utilizes Newton’s method

is described in section III and analyzed in section IV. A combination of the optimal

output gains and optimal learning factor (OLF) are then found, using Newton’s method.

2

Computational burden for all the algorithms are also discussed. In section V numerical

results for OOG and other training algorithms are presented for comparison.

Conclusions and future work are shown in section VI.

3

CHAPTER 2

MULTILAYER PERCEPTRON

2.1 Introduction

In this chapter we introduce MLP notation and describe a training algorithm

based upon BP [1].

2.2 MLP Notation

In the fully connected MLP of Fig 1, input weights w(k,n) connect the n
th

 input

to the k
th
 hidden unit, Output weights woh(m,k) connect the k

th
 hidden unit’s activation

op(k) to the m
th

 output yp(m), which has a linear activation. The bypass weight woi(m,n)

connects the n
th

 input to the m
th

 output. The training data, described by the set { xp, tp }

consists of N-dimensional input vectors xp and M-dimensional desired output vectors,

tp. The pattern number p varies from 1 to Nv where Nv denotes the number of training

vectors present in the data set.

4

Fig 2.1: A fully connected multi-layer perceptron

In order to handle thresholds in the hidden and output layers, the input vectors

are augmented by an extra element xp(N+1) which is equal to 1 , so xp = [xp(1),

xp(2),…., xp(N+1)]
T
 . Let Nh denote the number of hidden units in the network. The

vector of hidden layer net functions, np and the actual network output vector yp can be

written as

,p p n W x
 (2.1)

oi p o pp h   W Wy x o
 (2.2)

where the k
th

 element of the hidden unit activation vector op is calculated as

op(k)= f(np(k)) and f(.) denotes the hidden layer activation function. Training an MLP

typically involves minimizing the mean squared error between the desired and the

actual network outputs, defined as

5

2

1 1

1
[() ()]

vN M

p p

p mv

E t m y m
N  

 
 (2.3)

Here ()pt m and ()py m respectively denote the thm desired and actual outputs for the

thp pattern.

2.3 Training using OWO-BP

Here we introduce a training algorithm known as Output Weight Optimization-

Backpropagation (OWO-BP). This algorithm alternately solves linear equations for the

network’s output weights and separately trains the input weights using BP.

Output Weight Optimization (OWO) is a technique to solve for weights

connected to the actual outputs of the network [12]. Since the outputs have linear

activations, finding the weights connected to the outputs is equivalent to solving a

system of linear equations. The expression for the actual outputs given in (2.2) can be

re-written as

·p o py W x

 (2.4)

where [,]T T

p p px x o is the augmented input vector and Wo = [Woi : Woh]

denotes all the output weights. px is a column vector of size Nu where Nu = N + Nh + 1

and Wo is M by uN . The output weights can be solved by setting / 0oE  W which

leads to a set of linear equations given by

T

a a o C R W
 (2.5)

where,

6

1

1
,

vN
T T

a p p

pv

t
N 

 C x

 (2.6)

1

1 vN
T

a p p

pvN 

 R x x

 (2.7)

Equation (2.5) is most easily solved using orthogonal least squares [13] (OLS)

which is equivalent to using the QR decomposition [14] . In the second half of an

OWO-BP iteration, the input weight matrix W is updated as

z· W W G (2.8)

where G is the generic representation of a direction matrix that contains

information about the direction of learning and z, the learning factor contains

information about the step length to be taken in the direction G. The weight update zG

in equation (2.8) can also be denoted as

z·  G W (2.9)

For backpropagation [1] , the direction matrix is nothing but the hN by (N+1)

negative input weight Jacobian matrix computed as

1

1
·

vN
T

p p

pvN 

 G δ x

 (2.10)

Here p = [p(1) ,  p(2)… ,  p(Nh)]
T
 is the Nh by 1 column vector of hidden

unit delta functions [1]. A description of OWO-BP is given below. For every training

epoch

i. Solve the system of linear equations in (2.6) and (2.7) using OLS and update

the output weights, Wo

7

ii. Find the negative Jacobian matrix G described in equation (2.10)

iii. Update the input weights, W, using equation (2.8)

This method is attractive for several reasons. First, the training is faster than

ordinary BP since weights connected to the outputs are found by solving linear

equations. Second, it helps us avoid some local minima. Third, the method’s G matrix

and learning factors can be changed without damaging the performance unlike

conjugate gradient (CG) [15].

2.4 Optimal Learning Factor

The choice of learning factor z in equation (2.8) has a direct effect on the

convergence rate of OWO-BP. Early steepest descent methods used a constant learning

factor, which resulted in slow convergence. Later methods have used a heuristic scaling

approach to modify the learning factor between iterations and thus speed up the rate of

convergence. However, using Newton’s method for one unknown, a non-heuristic

optimal learning factor (OLF) for OWO-BP can be derived as,

2 2

/ z
z

/ z

E

E

 

  (2.11)

where the numerator and denominator partial derivatives are evaluated at z=0. The

expression for the second derivative of the error with respect to the OLF is found using

(2.3) as,

8

2 21 1
,

2
1 1 1 1 1 1

(,) (,)
(,) (,)

h h h hN N N NN N
T k j

k R j

k j n i k j

E E
g k n g j i

z w k n w j i

 

     

 
 

  
  g H g

 (2.12)

where column vector gk contains elements g(k,n) of G, for all values of n. HR is the

reduced size input weight Hessian with Niw rows and columns, where Niw =(N + 1) Nh

is the number of input weights. HR(k, j) contains elements of HR for all input weights

connected to the jth and kth hidden units and has size (N+1) by (N+1). When Gauss-

Newton [11] updates are used, elements of HR are computed as

2

1

2
(,) () () () ()

(,) (,)

v

p

N

p p p

pv

E
u j k x i x n o' j o' k

w j i w k n N 




 


 (2.13)

where,

 1

(,) (,) (,)
M

oh oh

m

u j k w m j w m k




o’p(k) indicates the first partial derivative of op(k) with respect to its net

function. Because (2.13) represents the Gauss-Newton approximation to the Hessian, it

is positive semi-definite. Equation (2.12) shows that (i) the OLF can be obtained from

elements of the Hessian HR , (ii) HR contains useful information even when it is

singular, and (iii) a smaller non-singular Hessian 
2
E/z

2
 can be constructed using HR.

Therefore, it may be profitable to construct Hessian matrices of intermediate size for

use in Newton’s algorithm.

9

2.5 Equivalent Networks

Definition: Two networks, one trained on original data {xp, tp} and the other on linearly

transformed data {zp, pt } are strongly equivalent if the outputs of the two networks

are identical and the transforms are invertible

 Fig 2.2. Equivalent Networks

2.6 Effects of output transformations

In this section we use the concept of equivalent networks to analyze the effects

of transforming the desired output vectors tp

10

Given a network MLP-1 and its weights, W, Woi, and Woh we train the network by

minimizing the error function E(W, Woi, Woh), which may be the standard MSE.

Training data for this first network is {xp , tp} for 1  p  Nv ,

where dim(x) = (N+1) and

dim (t) = M. Let MLP-1, be trained using the input vectors xp and output vector tp as

described in section 2.2

MLP 1 has parameters xp , tp, py , R , oW , C and poδ

Consider a second network denoted as MLP 2 , trained using data {xp , pt }

where p p  t A t and A is an Mby M rectangular transformation matrix and M may

be unequal to M. MLP 2 is equivalent to MLP 1 in the sense that its input weight

matrix W is equal to W in MLP 1 and its net and activation vectors pn and pO

therefore satisfy

 p p n n (2.14)

 p p O O (2.15)

While training W in MLP 2 using BP its output delta function is given by

 2[-]p ppo  δ t y (2.16)

 po po  δ A δ (2.17)

For MLP 1 the delta function for each hidden unit is given by

M
p p oh po

i=1
δ (k)=f (n (k)) W (i,k) δ (i)  (2.18)

which can be expressed in matrix vector form as

11

T

p oh po  δ T W δ (2.19)

[(1)] 0 0 0

0 [(2)] 0 0

0 0 [(3)] 0

0 0

0 0 0 [()]

p

p

p

pf n

f n

f n

f n k

 
 
 

 
  
 
 
 

 

T

 (2.20)

The delta matrix for MLP 2 can similarly be written as

T
p oh po    δ T W δ (2.21)

()T T
oh po    T W A A δ (2.22)

which leads to

()T
p p   δ A A δ (2.23)

 p p  δ R δ

Where

T R A A (2.24)

The negative Jacobian matrix for training input weights in MLP-1 is given in (2.10).

The negative Jacobian for training input weights in MLP-2 is then

 1

1
·

vN
T

p p

pvN 

  G δ x

 (2.25)

1

1
·

vN
T

p p

pvN 

 R δ x

 (2.26)

12

 1

1
·

vN
T

p p

pvN 

  R δ x

 (2.27)

  R G (2.28)

2.6.1 Lemma 1

A square matrix A has no effect on training, if it is Orthogonal.

If A is orthogonal, then

T  A A R I (2.29)

Hence we get

p p δ δ (2.30)

 G G (2.31)

If the delta functions and the negative gradients are same then the training is no

different than in MLP-1. Hence A does not improve training. Orthogonal transform

matrices are therefore useless. This also proves that the conventional backpropagation

does not optimize effects of desired outputs on training.

2.6.2 Lemma 2

If A is Non-Orthogonal, training of MLP 1 and MLP 2 diverge in the sense that

they become no longer strictly equivalent

If A is a M’ by M rectangular transformation matrix, for some M’ > M (The extra rows

are not zero rows) then R I

This implies that p p δ δ and  G G . Hence there is an effect on MLP training.

From Lemma 2 it is clear that A should be a non-orthogonal matrix

13

2.6.3 Lemma 3

Given R, the number of A matrices is uncountably infinite

T R A A

From the above equation for one value of R, we can find infinitely many solutions

Here we look for R and not for A . There might be only one value of R

2.6.4 Lemma 4

For the case M=1, OOG behaves same as OWO-BP algorithm

14

CHAPTER 3

OPTIMAL OUTPUT GAIN ALGORITHM

In this section, we discuss the OOG derivation, the utility of non-singular, non-

orthogonal A matrices and steps for the algorithm. We also discuss the OOG-HWO

algorithm which is an improvement to OOG algorithm.

3.1 OOG Derivation

The matrix notation for the mean-squared error for MLP-2 is given by

2

1

1
E

Nv

p p

v pN 

    t y

 (3.1)

 1

1
= () ()

Nv
T

p p p p

v pN 

    t y R t y

 (3.2)

Let R be a diagonal matrix with diagonal elements ()r i , Then

2

1 1

1
E = ()[() ()]

Nv M

p p

v p i

r i i i
N  

  t y

 (3.3)

where the gains r(i) are usually positive.

For the pth pattern, output and hidden layer delta functions are respectively found as

15

() 2 ()[() ()] () ()p p popo k r i t i y i r i i   

 (3.4)

This can also be written as,

 1

' () '() ' () (,)
M

p pk po oh

i

k f n i w i k 


 
 (3.5)

Using equation (3.4), the above equation can be expressed as,

1

() '() () (,)
M

pk po oh

i

r i f n i w i k



 (3.6)

1

() (,)
M

p

i

r i i k



 (3.7)

From equation (3.6) and (3.7), the delta function can be written as,

(,) '() () (,)p pk po ohi k f n i w i k 
 (3.8)

Now, the negative gradient of E is

1 1

' 1
'(,) () (,) ()

(,)

vN M

p p

p iv

E
g k n r i i k x n

w k n N


 


 



 (3.9)

1 1 1

1
() (,) () () (,),

vNM M

p p i

i p iv

r i i k x n r i g k n
N


  

   
 (3.10)

1

1
(,) (,) (),

vN

i p p

pv

g k n i k x n
N




 
 (3.11)

where (,) (,)g k n g k n for r(i) =1.

The matrix of negative partial derivatives can be written as

1

' = ()
M

i

i

r i


G G

 (3.12)

16

Since G is used to change hidden units identical to those in the original network, we

get

z   W W G

 (3.13)

So,

W z   G (3.14)

where z is the learning factor.

The error function being minimized with respect to the r(i)s is

2

1 1

1
[() ()]

vN M

p p

p iv

E t i y i
N  

 
 (3.15)

where

1 1

1 1 1 1

() (,) () (,) (((,) () (,) ()))j

N Nh N M

p oi p oh p

n k n j

y i w i n x n w i k f w k n r j g k n x n
 

   

     
 (3.16)

The first partial of E with respect to r is a vector g which is defined as

E

r





g
 (3.17)

Therefore the elements of g can be found as,

1 1

()2
() [() ()]

() ()

vN M
p

p p

p iv

y iE
g m t i y i

r m N r m 

 
  
 


 (3.18)

1

1 1

()
(,) '(()) (,) ()

()

hN N
p

oh p m p

k n

y i
w i k f n k g k n x n

r m



 





 

 (3.19)

()
(,)

()

p

p

y i
v i m

r m




 (3.20)

17

The second partials comprising the M by M Hessian matrix are

2

1 1

() ()2
(,)

() () () ()

vN M
p p

og

p iv

y i y iE
h m u

r m r u N r m r u 

 
 
   


 (3.21)

Using the equation (3.19), we can express the Hessian as,

1 1

1 1 1 1 1 1

2
(,) '(()) () (,) (,) '(()) () (,)

v h hN N NM N N

oh p p m oh p p u

p i k n v jv

w i k f n k x n g k n w i v f n v x j g v j
N

 

     

    

(3.22)

by rearranging the terms we get,

1 1

1 1 1 1 1 1

2
(,) (,) () () '(()) '(()) (,) (,)

h h vN N NN N M

m u p p p p oh oh

k v n j p iv

g k n g v j x n x j f n v f n k w i v w i k
N

 

     

  

(3.23)

21 1

1 1 1 1

(,) (,)
(,) (,)

h hN N N N

m u

k v n j

E
g k n g v j

w k n w v j

 

   




 


 (3.24)

Let dm denote the mth column of the Nh by (N+1) input weight change matrix such as

G. Let hmv(j,u) denote the element of the input weight Hessian HR that relates input

weights w(j,m) and w(u,v). Similarly, hmv(j,u) is an element of the Nh by Nh matrix HR.

Then

(,) T
Rog m vh m v  d H d

 (3.25)

The vector r is found as the solution to the equation,

og  H r g
 (3.26)

The above equation is solved using OLS. Note that elements of r can be positive or

negative.

18

3.2 OOG Steps

In this section we will describe a series a steps taken in each iteration of OOG

Algorithm.

In each iteration of the training Algorithm the following steps are followed.

1. Solve linear equations for all output weights.

2. Save all the Weights information

3. Calculate Error E and compare it with the error in previous iteration.

4. If error in any iteration is greater than the previous, we read back the weights from

the previous iteration, calculate the optimal learning factor and update the input

weights using OLF as in equation (3.13). OLF can be calculated from OOG

algorithm using the equation (4.7)

5. Calculate (,)ig k n using equation (3.11)

6. Calculate the vector g using the equation (3.17).

7. Calculate Hessian Hog using equation (3.21)

8. Calculate output gain co-efficient vector r using the equation (3.26). This can be

solved by OLS algorithm.

9. Update the input weights as

1

()
M

i

i

r i


  W W G

 (3.27)

10. Go back to step 1 until all iterations are complete.

19

3.3 OOG-HWO Algorithm

In this section, we introduce the hidden weight optimization technique.

Output weight optimization-hidden weight optimization (OWO-HWO) [25] training is

very similar to OWO-BP. The weights connected to the outputs are adapted using OWO

mentioned in II-B. However, unlike BP, HWO minimizes the objective function [33]

2
1

1 1

() () (,) ()
Nv N

p hwo p

p n

E j j g k n x n 


 

 
  

 
 

 (3.28)

for 0 ≤ I ≤ Nh, by solving for linear equations of the form

1

1

(,) (,)
(,)

N

hwo

n

E
g k n r n m

w j m






 




 (3.29)

In matrix notation,

hwo  G R G (3.30)

where R is the input auto-correlation matrix and hwoG is the HWO weight change

matrix. In other words, hwoG replaces the matrix G in (3.16), (3.19). The linear

equations in (3.29) can be solved for hwoG using orthogonal least squares (OLS) or

matrix inversion using the singular value decomposition (SVD). It can be shown that

HWO is equivalent to applying a whitening transform [32] to the training data and then

performing BP.

20

3.3.1 Convergence Proof for HWO Algorithm

The equation 32 can be rewritten as

1
hwo

 G G R (3.31)

Expressing the singular value decomposition (SVD) of the auto-correlation matrix as

TU U R (3.32)

1R becomes,

1 1 TU U  R (3.33)

Equation 32 now becomes,

T
hwoG G A A   (3.34)

where,

1/2 TA U  (3.35)

Comparing (3.34) with equation (2.25) it is clear that performing OWO-HWO is

equivalent to performing OWO-BP on transformed data. Since BP with optimal

learning factor (OLF) converges, it is clear that HWO with an OLF converges as well.

 21

CHAPTER 4

ANALYSES

In this chapter we will discuss the relationship between OOG and OLF, the

effects of linearly dependent outputs on gradient G and Hessian H

4.1 Relationship of OOG to OWO-BP with OLF

The optimal learning factor can be calculated from gradient and Hessian from

OOG algorithm. This is clearly explained in this section.

In order to calculate the OLF, we need the first derivative of E with respect to z that is

E/z and also the second derivative of E with respect to z that is 
2
E/z

2

The first derivative can be calculated as,

1 1

()2
[() ()] ,

vN M
p

p p

p iv

y iE
t i y i

z N z 

 
 

 


 (4.1)

This gives,

1

() ()
,

()

M
p p

m

y i y i

z r m

 


 


 (4.2)

(4.2) can be calculated easily using the equation (3.19). After calculating (4.2) we can

plug in the values in (4.1) to get
E

z





The second derivative of E with respect to z can be written as,

 22

2

2
1 1

() ()2 vN M
p p

p iv

y i y iE

z N z z 

 


  


 (4.3)

This can be further written as below,

2

2
1 1 1 1

() ()2

() ()

vN M M M
p p

p i n mv

y i y iE

z N r n r m   

 


  


 (4.4)

2

2
1 1 1 1

() ()2

() ()

vNM M M
p p

n m p iv

y i y iE

z N r n r m   

 


  
 

 (4.5)

This leads to,

2

2
1 1

(,)
M M

og

n m

E
h m n

z  







 (4.6)

The second derivative of E with respect to z is nothing but the sum of all the elements

of the Hessian H. So now the OLF can be easily calculated as

2

2

()

()

E

zOLF
E

z



 


 (4.7)

4.2 Effects of linearly dependent outputs on G

The negative gradient of E is given by

1

(,) () (,)
M

i

i

g k n r i g k n


  
 (4.8)

Where,

1

1
(,) (,) ()

vN

i p p

pv

g k n i k x n
N




 
 (4.9)

 23

and,

(,) (()) (,) ()p p oh poi k f n k W i k i    (4.10)

The gradient can now be expressed as,

1 1

1
(,) () (,) (()) () ()

vNM

oh p po p

i pv

g k n r i W i k f n k i x n
N


 

    
 (4.11)

Case 1: With one extra linearly dependent desired output

Let us consider a case with one extra output (output M+1) which is linearly dependent

on the other M outputs.

 1

(1) () ()
M

p p

i

M r i i


 t t

 (4.12)

Then the gradient matrix is given by

1

1 1

1
(,) () (,) (()) () ()

vNM

oh p po p

i pv

g k n r i W i k f n k i x n
N




 

    
 (4.13)

 1

1
(,) { (1) (1,) (()) (1) ()}

vN

oh p po p

pv

g k n r M W M k f n k M x n
N




       
 (4.14)

We can clearly see that the new gradient is linear sum of previous gradient (,)g k n
 and

some other terms. Ideally we want r(M+1) to be zero so that the gradients are

unchanged even when there is an extra dependent output.

Case 2: With L extra linearly dependent outputs

Let us consider a case with L extra output (output M+L) which are linearly dependent

on the other M outputs. The gradient can be expressed as,

 24

1 1

1
(,) (,) () (,) (()) () ()

vNM L

oh p po p

i M pv

g k n g k n r i W i k f n k i x n
N




  

      
 (4.15)

We can clearly see that the new gradient is sum of previous gradient (,)g k n and some

other distortion terms.

4.3 Effects of linearly dependent outputs on Hessian ogH

The Hessian ogH is given by,

2

(,)
() ()

og

E
h m u

r m r u



  (4.16)

2

() ()

E

r m r u



  (4.17)

1 1

() ()2

() ()

vN M
p p

p iv

y i y i

N r m r u 

 


 


 (4.18)

1 1

2
(,) (,)

vN M

p p

p iv

v i m v i u
N  

 
 (4.19)

Where (,)pv i m is defined as,

1

1 1

()
(,) (,) '(()) (,) ()

()

hN N
p

p oh p m p

k n

y i
v i m w i k f n k g k n x n

r m



 


 


 
 (4.20)

Let us consider a case where we have one extra dependent output.

Case 1: With one extra linearly dependent output

The number of outputs will now be M+1. Hence the index i should be from 1 to M+1.

The new Hessian ogH can be written as,

 25

1

1 1

2
(,) (,) (,)

vN M

p pog

p iv

h m u v i m v i u
N



 

  
 (4.21)

We can now separate the term containing only the last output ,

1 1 1

2 2
(,) (,) (,) { (1,) (1,)}

v vN NM

p p p pog

p i pv v

h m u v i m v i u v M m v M u
N N  

       

(4.22)

This leads to,

1

2
(,) (,) { (1,) (1,)}

vN

p pog og

pv

h m u h m u v M m v M u
N 

     
 (4.23)

Where ,

1

1 1

(1,) (1,) '(()) (,) ()
hN N

p oh p m p

k n

v M m w M k f n k g k n x n


 

   
 (4.24)

We can clearly see that the new Hessian is the sum of the previous Hessian (,)ogh m u

and a sum of products of the v functions.

Case 2: With L extra linearly dependent outputs

The number of outputs will now be M+L. Hence the equation for the new Hessian will

be as shown below,

1 1

2
(,) (,) { (,) (,)}

vN M L

og og

p i Mv

h m u h m u v i m v i u
N



  

    
 (4.25)

We can clearly see that the new Hessian is the sum of the previous Hessian (,)ogh m u

and additional noise/distortion terms.

 26

4.4 Computational Burden

In this section, we describe the computational burden for using the training

algorithms compared in this paper. All the algorithms were implemented in Microsoft

Visual C++ compiler version 6.0.

Let uN = 1hN N  denote the number of weights connected to each output.

The total number of weights in the network is denoted as

(1) (1)w h hN M N N N N    

The number of multiplies required to solve for output weights using Orthogonal Least

Squares [22] is olsM , which is given by

1 3
(1) (2 1)

6 2
ols u u u uM N N M N N

 
     

  (4.26)

The numbers of multiplies required per training iteration using BP, OWO-BP, OOG and

LM are respectively given by

 2 (1) (6 4)bp v u h h wM N MN N N M N N N      
 (4.27)

(1)
2 (2) (1) (6 4) (1)

2
owo bp v h u h ols h

Nu N
M N N N M N M N N M N N

 
           

 

(4.28)

 27

 2(1)(3 1) (1)(1 2) 2 1oog owo bp v h h olsM M N M N N N N M M M M            
 

(4.27)

2 2 2 3(3 (1)) 4 (1)lm bp v u u h h w wM M N MN N N N N N N N          (4.28)

Note that oogM consists of owo bpM  plus the required multiplies for calculating

optimal output gains. Similarly, lmM consists of bpM plus the required multiplies for

calculating and inverting the Hessian matrix..

 28

CHAPTER 5

NUMERICAL RESULTS

Here we compare the performance of OOG and OOG-HWO to those of BP-

OLF, LM, and conjugate gradient (CG), where the OLF was used in the latter three

algorithms. In CG and LM, all weights are varied in each iteration. In OOG, OOG-

HWO, we first solve linear equations for the output weights and subsequently update

the input weights.

For a given network, we obtain the training error and the number of multiplies

required for each training iteration. We also obtain the validation error for a fully

trained network. This information is used to subsequently generate the plots and

compare performances.

Table 5.1 Data Set Description

Data Set Name No. of Inputs No. of Outputs No. of Patterns

Twod.tra 8 7 1768

Single2.tra 16 3 10000

Oh7.tra 20 3 15000

Concrete Data Set 8 1 1030

29

Table I lists the data sets used for comparison and generating the plots. We use

the k-fold validation procedure to obtain the average training and validation errors.

Given a data set, we split the set into k non-overlapping parts of equal size, and use (k −

1) parts for training and the remaining one part for validation. The procedure is repeated

till we have exhausted all k combinations (k = 10 for our simulations). In all our

simulations we have 4000 iterations for the first order algorithms BP-OLF and CG,

4000 iterations for OOG and OOG-HWO algorithms and for LM we have 300

iterations. All the data sets used for simulation are publicly available. In all data sets,

the inputs have been normalized to be zero-mean and unit variance.

We have chosen different number of hidden units for different data files for our

simulations. Given a data file, number of inputs, number of outputs we first determine

the MLP network sizing using the NU-MAP 7.1 software that is available in Image

Processing and Neural Networks Lab repository [19]. MLP Sizing utility gives the

number of hidden units for which the MLP can perform the best. The description and

the simulation results for each of the data files and are explained in this section.

5.1 Twod.tra Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [19]. The training data file contains 1768 patterns. The inputs consist of

eight theoretical values of back scattering coefficient parameters at V and H

polarization and four incident angles. The outputs were the corresponding values of

permittivity, upper surface height, lower surface height, normalized upper surface

30

correlation length, normalized lower surface correlation length, optical depth and

single scattering albedo which had a joint uniform pdf.

Fig 5.1 Twod.tra data set: Average error vs. iterations

31

Fig 5.2 Twod.tra data set: Average error vs. Multiplies per iteration

For this data file, we trained an MLP having 30 hidden units. In Fig. 5.1, the

average mean square error (MSE) for training from 10-fold validation is plotted versus

the number of iterations for each algorithm (shown on a log10 scale). In Fig. 5.2, the

average training MSE from 10-fold validation is plotted versus the required number of

multiplies (shown on a log10 scale).

32

From Fig. 5.1, OOG and OOG-HWO are better than the previous version of BP-OLF

and CG in terms of the overall training error. LM has better overall training error,

however, the performance comes with a significantly higher computational demand, as

shown in Fig 5.2

5.2 Single2.tra Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [19]. This training data file consists of 16 inputs and 3 outputs and represents

the training set for inversion of surface permittivity, the normalized surface rms

roughness, and the surface correlation length found in back scattering models from

randomly rough dielectric surfaces. The first 16 inputs represent the simulated back

scattering coefficient measured at 10, 30, 50 and 70 degrees at both vertical and

horizontal polarization. The remaining 8 are various combinations of ratios of the

original eight values. These ratios correspond to those used in several empirical

retrieval algorithms.

For this data file, we trained an MLP having 20 hidden units. From Fig. 5.3, the average

training MSE from 10-fold validation for both OOG and OOG-HWO are better than all

other algorithms being compared except for LM.

Fig. 5.4 shows the computational cost of achieving this performance. The proposed

algorithms consume slightly more computation compared to BP-OLF and CG.

However, all algorithms utilize about two orders of magnitude fewer computations than

LM.

33

Fig 5.3 Single2.tra data set: Average error vs. iterations

34

Fig 5.4 Single2.tra data set: Average error vs. Multiplies per iterations

5.3 OH7.tra Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [19]. This data set is given in Oh, Y., K. Sarabandi, and F.T. Ulaby, "An

Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil

Surfaces," in IEEE Trans. on Geoscience and Remote Sensing, pp. 370-381, 1992. The

35

training set contains VV and HH polarization at L 30, 40 deg, C 10, 30, 40, 50, 60 deg,

and X 30, 40, 50 deg along with the corresponding unknowns rms surface height,

surface correlation length, and volumetric soil moisture content in g / cubic cm.

Fig. 5.5 OH7.tra data set: average error vs. iterations

36

Fig. 5.6 OH7.tra data set: average error vs. Multiplies per iterations

For this data file, we trained an MLP having 15 hidden units. From Fig. 5.5, we

see a similar trend. The proposed OOG-HWO, perform better than all other algorithms

considered for comparison except for LM. The required multiplies for the OOG and

OOG-HWO are not significantly more compared with CG, BP-OLF. Again, OOG and

OOG-HWO perform better. This is evident from Fig. 5.6

37

5.4 Concrete Data Set

This data file is available on the UCI Machine Learning Repository [21]. It

contains the actual concrete compressive strength (MPa) for a given mixture under a

specific age (days) determined from laboratory. The concrete compressive strength is a

highly nonlinear function of age and ingredients. These ingredients include cement,

blast furnace slag, fly ash, water, super plasticizer, coarse aggregate, and fine aggregate.

The data set consists of 8 inputs and one output per pattern, with a total of 1030

patterns. For this data file, we trained an MLP having 15 hidden units. For this data set,

the LM algorithm has a better overall training error, however the proposed algorithms

OOG and OOG-HWO, present a good balance between performance and computational

cost. These are evident from Fig 5.7 and Fig 5.8

38

 Fig. 5.7 . Concrete data set: average error vs. iterations

39

Fig. 5.8. Concrete data set: average error vs. Multiplies per iteration

Table II compares the average training and validation errors of the proposed

OOG algorithms with CG, BP-OLF and LM on different data sets. For each data set, the

training and validation errors again come from 10-fold validation.

40

Table 5.2 Average 10-Fold Training and Validation Error

Data Set BP-OLF CG OOG OOG-HWO LM

Twod.tra

trnE 0.218699 0.190905 0.1977993 0.1847215 0.1689533

valE 0.253583 0.214977 0.248837 0.2033308 0.172326

Single2.tra

trnE 0.939597 0.5724019 0.6859521 0.0504069 0.1313133

valE 1.11143 0.974455 1.045655 0.0630476 0.145549

OH7.tra

trnE 1.940934 1.49723053 1.5983069 1.3888627 1.3480560

valE 2.295675 2.074047 2.069648 1.985654 1.571530

Concrete

trnE 43.9238 33.28654328 29.361767 28.694411 26.779379

valE 68.634015 67.542675 43.782042 42.735953 40.832865

From the plots and the table, we see that the two algorithms OOG and OOG-

HWO are effective in further reducing the training and validation errors. OOG-HWO

seems to show consistently better performance than the other algorithms.

41

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We have derived second order methods for simultaneously optimizing output

gains and the learning factor. These methods have been successfully demonstrated on

four data sets. Results show that these algorithms perform much better than two

common first order algorithms with comparable complexity, namely CG and BP-OLF.

They come close to LM in terms of the training error, but with orders of magnitude less

computation. This is evident in all of the plots of training error versus the required

number of multiplies and also from the expressions for the numbers of multiplies.

Although LM works very well in practice, it has a high computational burden and is

sub-optimal in the way it handles the ’scaling’ factor, OOG and OOG-HWO on the

other hand use a Newton type update combined with the optimal learning factor, leaving

little room for heuristics.

42

6.2 Future Work

Much work remains to be done. We hope to extend our approach to additional

network parameters, yielding fast second order methods that rival the performance of

LM, but with greatly reduced complexity. OOG can also be extended for forecasting

applications where the desired outputs are highly correlated. OOG can be used to

extract more efficient input change matrices.

43

REFERENCES

[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning internal representations

by error propagation," in D.E. Rumelhart and J.L.McClelland (Eds.), Parallel

Distributed Processing, Vol. I, Cambridge, Massachusetts: The MIT Press, 1986.

[2] M. Hagan and M. Menhaj, “Training feedforward networks with the marquardt

algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.

[3] G. Cybenko, "Approximations by Superpositions of a Sigmoidal Function," Math.

Contrl., Signals, Syst., Vol. 2, pp. 303-314, 1989.

[4] Dennis W. Ruck et al., "The Mulitlayer Perceptron as an Approximation to a Bayes

Optimal Discriminant Function," IEEE Trans. on Neural Networks, Vol. 1, No. 4, 1990.

[5] M.T. Manry, S.J. Apollo, and Q. Yu, "Minimum Mean Square Estimation and

Neural Networks," Neurocomputing, vol. 13, September 1996, pp. 59-74.

[6] Matan C J., Burges C., Le Cun Y. and Denker J S. Multi-digit recognition using a

space displacement neural network. In: Advances in Neural Information Processing

Systems, vol. 4, pp. 488-495, 1991

44

[7] S-B. Cho, “Neural-Network Classifiers for Recognizing Totally Unconstrained

Handwritten Numerals”, IEEE Trans. on Neural Networks, vol. 8, pp. 43-53, 1997.

[8] K. Liu, S. Subbarayan, R.R.Shoults, M.T.Manry, C.Kwan, F.L.Lewis, and

J.Naccarino, "Comparison of Very Short-Term Load Forecasting Techniques," IEEE

Transactions on Power Systems, vol.11, no.2, May 1996, pp. 877-882.

[9] M.T. Manry, H. Chandrasekaran, and C-H Hsieh, "Signal Processing Applications

of the Multilayer Perceptron," book chapter in Handbook on Neural Network Signal

Processing, edited by Yu Hen Hu and Jenq- Nenq Hwang, CRC Press, 2001.

[10] Odom, R.C., Pavlakos, P., Diocee, S.S., Bailey, S.M., Zander, D.M., and Gillespie,

J.J., 1999, Shaly sand analysis using density-neutron porosities from a cased-hole

pulsed neutron system, SPE Rocky Mountain regional meeting proceedings: Society of

Petroleum Engineers, p. 467-476.

[11] Lipo Wang and Xiuju Fu, Data Mining With Computational Intelligence, Springer-

Verlag, 2005.

[12] S.A. Barton, “A matrix method for optimizing a neural network,” Neural

Computation, vol. 3, no. 3, pp. 450-459, 1991.

45

[13] F. J. Maldonado and M.T. Manry, "Optimal Pruning of Feed Forward Neural

Networks Using the Schmidt Procedure", Conference Record of the Thirty Sixth Annual

Asilomar Conference on Signals, Systems, and Computers., November 2002, pp. 1024-

1028

[14]QR_decomposition”,Wikipedia, http://en.wikipedia.org/wiki/QR_decomposition

[15] R. Fletcher, "Conjugate Direction Methods," chapter 5 in Numerical Methods for

Unconstrained Optimization, edited by W. Murray, Academic Press, New York, 1972.

[16] Y. LeCun, “Efficient Learning and Second-Order Methods, “ A Tutorial at NIPS

93, Denver 1993.

[17] M.T. Manry, H. Chandrasekaran, and C-H Hsieh, "Signal Processing Applications

of the Multilayer Perceptron," book chapter in Handbook on Neural Network Signal

Processing, edited by Yu Hen Hu and Jenq- Nenq Hwang, CRC Press, 2001.

[18] A. K. Fung, Z. Li, and K. S. Chen, "Back scattering from a Randomly Rough

Dielectric Surface," IEEE Trans. Geo. and Remote Sensing, Vol. 30, No. 2, March

1992.

http://en.wikipedia.org/wiki/QR_decomposition

46

[19] A. Mennon, K. Mehrotra, C. K. Mohan, and S. Ranka, “Characterization of a

class of sigmoid functions with applications to neural networks,” Neural Networks, vol.

9, pp. 819{835, 1996.

[20] US Census Bureau [http://www.census.gov] (under Lookup Access

[http://www.census.gov/cdrom/lookup]: Summary Tape File 1)

[21] Source: http://www.stls.frb.org/fred/index.html

[22] Source: http://www-ee.uta.edu/eeweb/ip/training_data_files.htm

[23] Source: http://www.cs.toronto.edu/~delve/data/datasets.html

[24] Source: http://archive.ics.uci.edu/ml/datasets.html

[25] F. J. Maldonado, M. T. Manry, Tae-Hoon Kim, "Finding optimal neural network

basis function subsets using the Schmidt procedure", Proceedings of the International

Joint Conference on Neural Networks, 20-24 July 2003, vol. 1, pp. 444 - 449.

[26] Changhua Yu, Michael T. Manry, and Jiang Li, "Effects of nonsingular pre-

processing on feed-forward network training ". International Journal of Pattern

Recognition and Artificial Intelligence , Vol. 19, No. 2 (2005) pp. 217-247.

http://www-ee.uta.edu/eeweb/ip/training_data_files.htm
http://www.cs.toronto.edu/~delve/data/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

47

[27] S. S. Malalur, M. T. Manry, “Feed-forward Network Training Using Optimal Input

Gains,”Proceedings of the International Joint Conference on Neural Networks,

Georgia, Atlanta, USA, pp. 1953-1960, June 14-19, 2009

[28] A. J. Shepherd Second-Order Methods for Neural Networks, Springer-Verlag New

York, Inc., 1997.

[29] S.A. Barton, “A matrix method for optimizing a neural network,” Neural

Computation, vol. 3, no. 3, pp. 450-459, 1991.

[30] T. Vogl, J. Mangis, J. Rigler, W. Zink, D. Alkon, “Accelerating the convergence of

the back-propagation method,” Biological Cybernetics 59, pp.257263, 1988.

[31] R. Battiti, “Accelerated backpropagation learning: Two optimization methods,”,

Complex Systems 3, pp. 331342, 1989.

[32] S. Raudys, Statistical and Neural Classifiers: An Integrated Approach to Design,

Springer-Verlag, 2001.

48

[33] R.S. Scalero, N. Tepedelenlioglu, “A fast new algorithm for training feedforward

neural networks,” IEEE Transactions on Signal Processing, Vol. 40, Issue 1 pp. 202-

210, 1997.

[34] “Levenberg-Marquardt Algorithm”, Wikipedia,

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

[35] “Newton’s Method in Optimization”, Wikipedia,

http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

[36] R. Battiti, “First- and Second-Order Methods for Learning: Between Steepest

Descent and Newton’s Method,” Neural Computation vol. 4, pp. 141-166, 1992.

[37]] M.T. Manry, S.J. Apollo, L.S. Allen, W.D. Lyle, W. Gong, M.S. Dawson, and

A.K. Fung, "Fast Training of Neural Networks for Remote Sensing," Remote Sensing

Reviews, vol. 9, pp. 77-96, 1994

[38] W.H. Delashmit and M.T. Manry, “A Neural Network Growing Algorithm that

Ensures Monotonically Non Increasing Error”, Advances in Neural Networks, vol.14,

August 2007, pp.280-284.

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

49

[39] Fahlman, S. E. and C. Lebiere (1990) "The Cascade-Correlation Learning

Architecture" in Advances in Neural Information Processing Systems 2, D. S.

Touretzky (ed.), Morgan-Kaufmann, 1990

[40] P. L. Narasimha, W.H. Delashmit, M.T. Manry, Jiang Li, and F. Maldonado, “An

Integrated Growing-Pruning Method for Feedforward Network Training,” NeuroComp.,

vol. 71, Spring 2008, pp. 2831-2847

50

BIOGRAPHICAL INFORMATION

Babu Hemanth Kumar was born in India in 1984. He did his Bachelor of

Technology in Electronics and Communication Engineering from M.S.Ramaiah

Institute of Technology Bangalore in May 2006. He obtained his Master of Science

degree from the University of Texas at Arlington in December 2010. He worked for

Intel as an intern in the spring and summer of 2010, where he worked in developing test

application for media drivers. He will be joining Intel as a full-time employee in

January 2011. His current research interests includes neural networks, image processing

and multimedia processing. He has served as a Graduate Teaching Assistant for the

courses Digital signal Processing / Statistical Signal Processing in the Electrical

Engineering department of University of Texas at Arlington (2010)

