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Abstract— Conventional sparse coding learns optimal dictio-
naries of feature bases to approximate input signals; however,
it is not favorable to classify the inputs. Recent research has
focused on building discriminative sparse coding models to
facilitate the classification tasks. In this paper, we develop
a new discriminative sparse coding model via bidirectional
flows. Sensory inputs (from bottom-up) and discriminative
signals (supervised from top-down) are propagated through a
hierarchical network to form sparse representations at each
level. The ¢y-constrained sparse coding model allows highly
efficient online learning and does not require iterative steps
to reach a fixed point of the sparse representation. The
introduction of discriminative top-down information flows helps
to group reconstructive features belonging to the same class
and thus to benefit the classification tasks. Experiments are
conducted on multiple data sets including natural images, hand-
written digits and 3-D objects with favorable results. Compared
with unsupervised sparse coding via only bottom-up directions,
the two-way discriminative approach improves the recognition
performance significantly.

I. INTRODUCTION

Sparse coding of visual inputs draws considerate research
attention in recent years. Specially, it caused great interest
to find the sparse visual representations and to learn the
dictionary of feature bases from unlabeled raw data (e.g.,
[1]-[4]). The objective of sparse coding is to approximate an
input signal X € R™*! using a linear combination of over-
complete bases W = [W1, Wa, ..., W,,,] € R"*™ with the
sparse coefficient vector Y € R™*! (m > n). The over-
complete bases can either be a set of pre-defined functions,
such as Gabor wavelets, or be developed from a set of input
examples. For the case of given bases, the sparse coding
is posed as an optimization problem to minimize ||Y||p or
[Y]||1 through the greedy search (e.g., Matching Pursuit
(MP) [5], Orthogonal Matching Pursuit (OMP) [6]) or the
convex optimization (e.g., Basis Pursuit (BP) [7], FOCUSS
[8] and ¢; regularization [9], [10]). The pre-defined bases,
however, lack the dictionary adaptiveness to the data, thus
do not perform well in the reconstructive manner.

A majority of sparse coding algorithms seek to learn
both over-complete bases W and sparse vector Y. A well-
known sparse coding algorithm was proposed in Olshausen
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and Field 1997 [3] to minimize the reconstruction error
|| X—WY||2 with a sparse constraint to independent prior Y.
Subsequently, a number of iterative batch learning algorithms
have been developed for sparse coding, mainly focusing
on various cost penalties and sparse constraints [11]-[14].
These studies are purely generative models, where learned
dictionaries are used to reconstruct the input effectively. Even
though some of the above sparse coding models have been
applied to the discriminative tasks, e.g., image classification,
the approach was limited to the simple combination of
generative sparse coding and a stand-alone classifier. Recent
research is aimed at integrating both input reconstruction
and class discrimination within the sparse coding paradigm.
Mairal et al. 2008 [15] proposed a supervised sparse learning
framework, where a logistic loss function regarding input
class was added to the reconstruction cost of sparse coding.
Bradley and Bagnell [16] introduced a differential sparse
prior rather than the conventional ¢; norm to learn the
dictionary of feature bases. Yet, no existing work used top-
down connections as a natural information flow to construct
the discriminative sparse coding model.

Another important progress of sparse coding is to model
the hierarchical visual cortex [4], [17], [18]. Some afore-
mentioned articles have demonstrated the development of
Vl1-like features using natural images [3], [14], but lim-
ited sparse coding algorithms were extended to learn deep
hierarchical structures, due to difficulties in inferring the
states of the hidden layers. A few existing sparse coding
networks [19], [20] approximate internal hidden states as a
function of feed-forward and perhaps lateral connections, and
performed greedy learning layer by layer. Still, discriminative
information (e.g, top-down feedback) is not involved in the
hierarchical learning of bases and sparse representation. Back
propagation [21] once provided a powerful way to propagate
the top-down signals, but it suffers the problems of local
minimum, expensive computation and poor performance in
multiple hidden layers.

In this paper, we develop a new discriminative sparse
coding model via bidirectional information flows. Sensory
inputs (from bottom-up) and discriminative signals (super-
vised from top-down) are propagated through a hierarchical
network to form sparse representations at each level. A
series of advances have been made in this paper: (1) The
£y-constrained sparse coding model allows highly efficient
online learning and does not require iterative steps to reach a
fixed point of sparse representation. (2) Using discriminative
top-down connections, reconstructive features belonging to
the same class are grouped together, shaping the topographic



areas to facilitate the classification tasks. (3) The proposed
sparse coding model can be implemented in a divide-and-
conquer manner within a hierarchical architecture, providing
a solution to learn a deep network with feed-back connec-
tions.

The paper is organized as follows. Sec. II describes the
network model and algorithms for the discriminate sparse
coding. Sec. III discusses the development of deep hierar-
chical networks using the proposed learning procedure. Ex-
perimental results and conclusions are presented in Sections
IV and V, respectively.
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Fig. 1. A sparse coding network with one hidden layer (best viewed in
color). Only connections to a centered cell are shown, but all the other cells
in the hidden layer have the same default connections.

II. BIDIRECTIONAL DISCRIMINATIVE SPARSE CODING

The proposed sparse coding model contains a hierarchy
of layers, each with a set of cells, arranged in a 2-D grid. It
is a fully connected network from the sensory input to the
corresponding label vector '. Local connectivity is possible
and subject to the future studies. We first consider a simplest
network structure with one hidden layer only, and learning
of a deeper network structure will be addressed in Sec. III
using the same sparse coding algorithm described here.

As shown in Fig. 1, each hidden cell ¢ is connected with
two types of connection weights:

1) Bottom-up weight vector wy,; that links connections

from the previous layer.

2) Top-down weight vector wy; that links connections

from the next layer.

To learn an over-complete dictionary with m cells in
the hidden layer, the sparse coding scheme minimizes the

I The label vector is composed of a number of motor cells, each presenting
one discriminative class identity.

reconstruction error with both bottom-up input X € R™*!
and top-down input of label vector Z € RP*!, constrained
by a fixed sparsity factor L.

min

Y, Wy, W 2

s.t. [[Y]lo <L
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{E=152% - Wi + Sz - wev

(D
where 0 < o < 1 is a constant parameter to control the
influence of top-down contribution. Wy, = [Wpq, Who,

~~~7Wbm] € R™™ and W; = [th,Wt% ...,th] S
RP*™ are bottom-up and top-down connection weights to be
learned. ||'Y||o denotes the £g-norm of vector Y, measuring
sparsity by counting the number of non-zero elements in a
vector.

It is noted that the overall problem of sparse coding with
{y constraint is non-convex, and in some existing studies the
£y norm was replaced by the ¢; norm for convex optimization
purpose, but yielding expensive computations. In this work,
we used the ¢y norm for the discriminative sparse coding
based on its three advantages: (1) The ¢y norm is the true
sparsity measure of a representation, superior to ¢;-based
sparsity in terms of similarity to receptive fields of neurons
in the visual cortex [22]. (2) The £y norm leads to an online
close-form solution to infer the sparse representation without
iterations. (3) The ¢y norm provides a solution to learn a deep
network with feed-back connections, which will be discussed
in detail in Sec. III. In practice, moreover, extensive studies
have established that if the sought solution Y is sparse
enough, meaning that L is small, the £, norm can recover
the sub-optimality well (e.g., MOD [11] and K-SVD [13]).
In this study, L is set to 1 accordingly.

A. Learning rule

Eq. 1 can be solved by a gradient descent strategy as
follows:

dY  0FE
dt  9Y
dWy,  OF
a . awy 2
dW,  0F

dt ~ OW,

where we have

AY = (1 - a)Wp' (X = WpY) + aW, ' (Z - W,Y)
3
In our case, |[Y||o is constrained to be 1, meaning that
only one component of vector Y is allowed to be active
with non-zero response. We assume the k-th component is
active and all others are set to 0. Eq. 3 can be rewritten as

Ay = (1 —a) Wpi X +a Wi Z

—(1—a) Wy, Why, yx —a Wi Wy, Zk

“4)

We normalize each column (i.e., Wy; and Wy;) in /5
norm, such that |[Wp;||2 = 1 and |[Wy;||2 = 1. Thus

Ay = (1 — )Wpi X + oWl Z — 1y (5)



When Y reaches a fixed point, meaning that Ay=0,
aWp X+ (1—a)Wel Z -y, =0 (6)
and equally
T T
Y= (1 —a)Wp X+ oW, Z @)

Determination of the index £ here entails a ranking in Y
space, where the maximum component is pooled:

k = arg nax. yi(t) (8)
The proposed sparse coding model has a closed-form
solution for the hidden variable Y via the ¢y constraint,
where no iterations is required. In this sense, the learning
efficiency is boosted dramatically.
The learning rule of connection weights Wy, and Wy can
be derived from Eq. 2 coordinately:

AWy =7 (X - W,Y) YT

9
= AWy =1 (X =Wy, yi) uk

and
AW, =17 (Z—-WY) YT

(10)
= AWi =10 (Z - Wiy yr) Uk

By controlling the parameter o for top-down influence,
the sparse coding model can easily adjust the supervised or
unsupervised learning mode. When o = 0, it becomes a pure
unsupervised learning.

The learning rate of weight adaption is determined by a
plasticity function:

1+ p(ng)
”7_7
N

; (1)

where p(ny) is the plasticity function depending on the
maturity of cell k. The cell maturity increments as nj <
ng + 1 every time a cell updates its weights, starting from
zero. We use the following three-sectioned profile for p(ny):

0 if g < 1,
c(nk — tl)/(tg — tl) if t1 < np <to,
c+ (ng —ta)/r if to < ny,

pu(rue) = 12)

in which, parameters t; = 20, to = 200, ¢ = 2, r =
2000 in our implementation. Given the small n, the multi-
sectional function p(n) performs straight average pu(n) = 0
to reduce the error coefficient for earlier estimates. Then,
w(n) enters the rising section from ¢; to to linearly, where
cells compete for the different partitions by increasing their
learning rates for faster convergence. Finally, n enters the
third section for long-term adaptation section: p(n) increases
at a rate of 1/r constantly. As discussed in [23], this kind
of plasticity scheduling is more suited for practical signals
with unknown non-stationary statistics, where the distribution
does not follow i.i.d assumption in all the temporal phase.

B. Online learning algorithm

Because the proposed discriminative sparse coding al-
gorithm does not require iterative search in representation
space nor compute the second order statistics, it has high
learning efficiency. Given each n-dimensional input x(¢)
and p-dimensional label vector z(t), the system complexity
for updating m neurons is O(mn + mp). It is not even a
function of the number of inputs ¢, due to the nature of online
incremental learning. The overall online learning procedure is
summarized in Algorithm 1. In this single hidden layer case,
the update of responses and bottom-up weights is similar to
what is described in [24].

Algorithm 1 Learning a single hidden layer of the proposed
hierarchical discriminative network, at each time ¢

Require: The bottom-up input x(¢) and top-down input z(t).
Require: The connection matrices Wy, and Wy.
Require: The layer-specific parameter c.

1: Normalize each column of connection matrices W, and
W, and compute candidate response of each neuron ¢
using Eq. 7.

2: Pool the neuron £ with maximum response (i.e., Eq. 8)
and set the responses of other neurons to be zero.

3: Update the number of hits (cell age) ny for the winning
neuron k: ny <+ ni + 1, and compute p(ng) by the
amnesic function in Eq. 12.

4: Determine the learning rate of the winning neuron k& by
Eq. 11.

5: Update the synaptic weights of winning neurons using
Egs. 9 and 10.

6: All other neurons keep their ages and weight unchanged.

C. Discriminative top-down connection

Top-down connections propagate discriminative informa-
tion originated from the label vector. What is the advantage
of the proposed discriminative sparse coding rather than the
purely reconstructive ones? In this section, we will discuss
the functional role of top-down connections, which was first
described in [24].

Given the sparse coding model described in Sec. II-A,
we assume that the bottom-up input space X is a high-
dimensional manifold composed of relevant subspace R and
irrelevant subspace I, where the “relevance” is with respect
to distinguish the data for class labels. Introducing the top-
down connection provides a new subspace Z to boost relevant
information and thus recruit more cells spread along the
relevant space for the discrimination purpose.

Fig. 2 illustrates this top-down connection role. As shown
in Fig. 2(d), after the variance boosting via top-down con-
nections, the cells spread along in the way to partition the
classes favorably. But before that, the classes in Fig. 2(b) are
mixed in the bottom-up subspace X.

D. Lateral spatial pooling

It is known that £y norm max pooling without smoothness
(similar to vector quantization) may cause a number of
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Fig. 2. Illustration of discriminative top-down connections (best
viewed in color). (a) Consider two dimensional (z; and x2) sensory
inputs, which are assumed to have uniform densities and fall into
one of the three class areas: “blue”, “green” and “red”. The “rel-
evant” dimension (i.e., important to distinguish label outputs) and
“irrelevant” dimensions are presented in the upper left legend, which
are linear in this case. (b) The effect of sparse coding in bottom-up
space: 9 cells are used to partition the space, however, resulting
in the class boundaries mixed. (c) Top-down connections boost the
variance of relevant subspace in the cell input, and thus recruit more
cells along the relevant direction for better discrimination. (d) The
effect of sparse coding in the boosted space. When embedding back
into two dimensions, the partition boundaries now line up with the
class boundaries and data that falls into a given partition is mostly
from the same class. Figure is adapted from [24].

features to be recruited by the noises and outliers. An
example is shown in Fig. 3. Consider two dimensional (z;
and x2) sensory inputs, which are assumed to have specific
data densities along with a small number of noises and
outliers. Four cells are used to model the data distribution.
Given the max pooling of neural responses based on the
correlation of feature vectors and data points (i.e., Eq. 7),
two feature vectors are unfortunately recruited by a data point
with noise (e.g., in “magenta”) and outliers (e.g., in “cyan”),
while the other two feature vector present the main density
of data distribution (in “blue”).

A regulation is thus in need to pool the distracted cells
towards the main data distribution. In this paper, we use the
lateral smoothness to reach this goal: when the max-pooled
cell k£ is updated, its 3 x 3 neighboring cells becomes updated
as well, using the same learning rule in Eq. 9. As the main
density of data distribution (e.g., “blue” points in Fig. 3)
updates their corresponding feature vectors frequently, the
noise and outlier vectors are gradually pooled towards mod-
eling the main data distribution. By this way, the proposed

network gets immune to the noises and outliers.
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Fig. 3. An illustration of lateral pooling (best viewed in color).

Further recall the role of top-down connections in Sec II-
C, which make the lateral pooling above apply within cells
belonging to the same class, and thereby forms the class-
specific topographic groups (discussed in detail in [24]). That
is, based on the availability of cells, the weight features
represented for the same class are grouped together to reduce
complexity of discriminative boundaries and lead to a better
recognition ability. Multiple experiments in Sec. IV are about
to verify this grouping phenomenon.

III. LEARNING DEEP STRUCTURE

Learning a deep network is known to be difficult. To
develop the feature weights along layers, the good inference
or approximation of layer representation is first required,
yet encounter the obstacles such as “explaining way” and
expensive computations [25]. Traditional learning strategy
applies gradient descent search using back propagation, but
empirically results in poor solutions for networks with mul-
tiple layers. Recently, the feed-forward layer-wise learning
of deep networks has become popular, mainly based on
the contrastive divergence learning of restricted Boltzmann
machines (e.g., [26]) or the encoder-decoder architecture
(e.g., [20]).

A. Divide and conquer

The proposed hierarchical architecture contains bidirec-
tional (bottom-up and top-down) information flows, thus the
feed-forward layer-wise learning is not applicable. In our
case, inference of internal states becomes harder due to the
recurrent structure: inference of the current layer state not
only relies on the previous layer but also the next one. To
solve this problem, we use a divide-and-conquer method. As
Eq. 7 requires no searching iterations, we can divide the
equation into two parts: bottom-up activation ¥, and top-
down activation yy,, where k;, = arg maxlgigm{WbZTX}
and k; = arg maxlgigm{WtiTZ}. Note that the max pool-
ing index k, may not equal to k.



The network then freezes the connection weight and
computes the bottom-up and top-down activations throughout
the network via separate information flows. That means,
originated from input, bottom-up activation of the current
layer [ is computed in terms of the bottom-up activation
of the previous layer [ — 1. On the other hand, originated
from class labels, top-down activation of the current layer [ is
computed in terms of the top-down activation of the previous
layer | + 1. After the two-way activations are generated
at every layer, we add the two parts together given the
parameter o and repeat the max pooling. The network weight
is then updated given the post-pooling activation via Egs. 9
and 10. Fig. 4 illustrates the divide-and-conquer process for
the hierarchical deep network.
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Fig. 4. Divide-and-conquer method to update hierarchical neural
structures (best viewed in color). In each layer, the inference of
internal states is divided into bottom-up part (originated from input)
and top-down part (originated from label) separately. After the
activation in each part is computed throughout all the layers, the
network is updated based on their combined activation.

B. Initialization and pre-training

The network weights are initialized with random samples
from the data. The number of layers and per-layer cells
depends on a specific task. When a layer contains a large
number of cells (e.g., 40 x 40), we need to pre-train the
network with a smaller size (e.g., 20 x 20) first and then
scale up the entire size. The pre-trained weights are copied
to the cells in its neighborhood, which is determined by the
scaling ratio (e.g., 40 x 40 / (20 x 20)).

The pre-training procedure is necessary to explore cell
resource and fit data manifold accurately. Since the data
manifold here is described by a mixture of cell weights;
when the network is initialized with too many cells, some
initialized weights are possible to over-fit the data locally.
As a result, the over-fitted cells can hardly be updated and
only the rest cells are used to adapt to data distribution. The

resource is wasted, and ultimately, the developed weights
of these limited cells represent the data manifold in a very
coarse manner.

IV. EXPERIMENTS

Multiple experiments are conducted to evaluate the pro-
posed sparse coding architecture, based on the data set of
natural images, hand-written digits and 3-D object appear-
ance.

A. Natural images

We apply the proposed sparse coding model to learn
natural images - using only one layer with unsupervised
learning (o = 0). As natural images hold the vast inequities
in variance along different directions of the input space, we
should “sphere” the data by equalizing the variance in all
directions [27]. This pre-processing is called whitening. The
whitened sample vector x’ is computed from the original
sample x as x’ = Wx, where W = VD is the whitening
matrix. V is the matrix where each principal component
Vi, V2, ..., Vy, is a column vector, and D is a diagonal matrix

. o1
where the matrix element at row and column ¢ is —— (\;

is the eigenvalue of v;). Whitening is very beneficial to
uncover the true correlations within the natural images since
it avoids the derived features to be dominated by the larger
components.

Fig. 5. A dictionary of feature weights developed from natural
images (with whitening), ordered by the number of updating times
of each cell. The cell with the most updates is at the top left of the
image grid, and it progresses through each row until the one with
the least updates, at the bottom right.

Figure 5 shows the developed learning weights using 256
cells and based on 500,000 whitened input samples with 16 x
16 dimensions. Each weight is reshaped to a 16 x 16 grid in
the figure. The developed Gabor-like features resemble the

2available at http://www.cis.hut.fi/projects/ica/imageica/
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Fig. 6. 2D neural class map in the hidden layer (best viewed in color): (a) with top-down connections and (b) without top-down connections.
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Fig. 7.

orientation selective cells that were observed in V1 area [1],
[28].

B. MNIST Handwritten Digits

Next, we will evaluate the discriminative tasks like object
classification. MNIST is a well-known handwritten digit
dataset 3 composed of 70,000 total images (60,000 training,
10,000 testing) with 10 classes of handwritten digits - from 0
to 9. Each image is size-normalized to 28 x 28 = 784 dimen-
sions. All images have already been translation-normalized,
so that each digit resides in the center of the image.

We developed a network with one hidden layer of 50 x 50
cells to train on this task, where o« = 0.4. To evaluate
the discriminative sparse coding model compared to the
unsupervised constructive one, we first define the empirical
“probability” to evaluate a cell’s updating experience across
classes, as used in [23], [24]

n(c)

pczqi

cel,2,...,q
— n(c)

13)

where n(c) is the updating times of a cell based on class c.

3available at http://yann.lecun.com/exdb/mnist/
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We further use the “entropy” metric in [24] to measure the
purity of a cell with respect to each class

entropy = — Z pelog pe. (14)

c=1
where a cell with zero entropy learns inputs from the same
class, while a cell with maximum entropy learns inputs with
equal probability of all the classes.

To illustrate the maximum empirical “probability” of each
cell, Fig. 6(a) plots a class map of the hidden layer with
50 x 50 cells. Given a cell’s position, a color indicates a class
holding the largest empirical “probability” p., and there are
10 colors in total. Based on the discriminative and pooling
properties in Sec. II-C and Sec. II-D, cells tend to distribute
along the classes (i.e., “relevant information”). When the
number of available cells is larger than the number of classes,
the cells representing the same class are grouped together,
leading to the simpler boundaries for class decision and thus
a better classification result as shown later. See [23], [24] for
details and more examples. Without the discriminative top-
down connections (i.e., &« = 0), however, no class-specific
cell groups are observed and cells presenting the same class
are scattered around the plane (see Fig. 6(b)).



Fig. 7(a) shows the corresponding entropy map in the
hidden layer with 50 x 50 cells. Compared to the network
without top-down discrimination (see Fig. 7(b)), the cell’s
entropy is much lower. In conclusion, the proposed network
exhibits purer cell representations with respect to classes,
and entails every cell with higher discriminative power for a
specific class.

Table I summarizes the network performance with and
without top-down discriminative connections, and compare
to other state-of-art supervised models that deal with mono-
lithic input. It shows that top-down discriminative connec-
tions boost the recognition performance in contrast to the
network without top-down connections. Methods with local
analysis and deformation processing (e.g., Convolutional
Nets [29]) are known to be suited for the digit recognition
problem with better performance. The proposed hierarchi-
cal structure compares favorably with the recognition rates
achieved by K nearest neighbor (K-NN) and the back-
propagation algorithms. The network performance is almost
the same as the contrastive divergence approach applied to
train restricted Bolzmann machines (RBM) [26]. The work
of [26] further fine-tuned the RBM with deep structure using
supervised gradient descent (called deep belief network) and
reached the final performance with 1.25% error rate. Such a
tuning is also applicable to our method and is investigated
under the on-going studies.

TABLE I
SUMMARY OF RECOGNITION ERROR (%) ON MNIST DATASET. THE
“IMPROVEMENT” ITEM SHOWS THE PERFORMANCE IMPROVEMENT DUE
TO THE SUPERVISED TOP-DOWN CONNECTION.

K-NN (L2 Euclidean) 5.0
Back propagation (1000 hidden units) 4.5
Back propagation (500+150 hidden units) 2.95

Contrastive divergence 2.49
Deep belief network 1.17
Proposed work 2.64
Improvement 5.82

Using the trained network, we can also reconstruct an input
providing the activation of one cell in the label layer, based
on the random sampling of internal states. Fig. 8 shows
certain examples of generated images for each class. This
refers to the internal “imagination” of a neural network as is
termed in [26].

C. NORB Objects

The normalized-centered NORB dataset* is a challenging
dataset for 3D object recognition. It contains images of
50 different toy objects, and each 10 objects belong to
one of five generic classes: cars, trucks, planes, animals,
and humans. The training set contains 24,300 stereo image
pairs of 25 objects (5 per class) while the test set contains
remaining 24,300 stereo pairs with different 25 objects. We
trained a network with two hidden layers, given both top-
down-disabled and top-down-enabled configurations. There

4available at http://cs.nyu.edu/ ylclab/data/norb-v1.0/
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Fig. 8. Examples that are generated (i.e., “imagined”) from the
proposed model, with a particular label activated.

are 80 x 80 neurons used in the first layer and 40 x 40 in
the second. oo = 0.3 in both layers.

TABLE 11
SUMMARY OF RECOGNITION ERROR (%) ON NORB DATASET. THE
“IMPROVEMENT” ITEM SHOWS THE PERFORMANCE IMPROVEMENT DUE
TO THE SUPERVISED TOP-DOWN CONNECTION.

K-NN (L2 Euclidean) 18.4
Logistic Regression 19.6
SVM-+Gaussian kernel 11.6
Deep belief network 11.9
Proposed work 12.1
Improvement 8.8

Tables II summarizes the performance with other well-
known models. Our method compares favorably with other
methods based on monolithic inputs. Better results are avail-
able by certain methods utilizing local analysis and supple-
mentary training (e.g., aforementioned Convolutional Nets
[29]). With top-down connections, our method outperforms
K-nearest neighbor and provides a similar result regarding
the deep belief network and SVM. However, SVM had to
use significantly sub-sampled data (too slow to train with
the original high dimensionality). And also, SVM lacks on-
line learning capability and struggles when dealing with
combinatorial data and expandable tasks. In that sense, our
method is more scalable than any of the other methods, and
new classes can be potentially added on the fly.

V. CONCLUSION

In this paper, we presented a hierarchical discriminative
sparse coding via the propagation of bottom-up and top-
down information flows. The sparse coding model minimizes
the reconstruction errors of both bottom-up and top-down
inputs. ¢y norm is adopted for the sparse constraint, leading
to an efficient online learning without iterative computation
of the sparse representation. Due to this fact, the sparse
coding model can be extended to learn deep structures in the
divide-and-conquer fashion. The introduction of top-down
connection and lateral pooling reorganizes cell distribution



for a class-specific grouping and facilitates the discriminative
tasks. Experiments in visual recognition problems showed
that the sparse coding network delivers similar performance
with other comparable methods. Regarding the future work,
we will extend the sparse coding algorithm to learn deeper
networks with local analysis, and apply it in more complex
problems with multiple sensory modalities.
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