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Abstract— Creativity and insight are distinctive attributes
of human cognition, but their neural basis remains poorly
understood due to the difficulty of experimental study. As
such, computational modeling can play an important role
in understanding these phenomena. Some researchers have
proposed that creative individuals have a “deeper” organization
of knowledge, allowing them to connect remote associates and
form novel ideas. It is reasonable to assume that the depth
and richness of semantic organization in individual minds
is related to the connectivity of neural networks involved
in semantic representation. In this paper, we use a simple
and plausible neurodynamical model of semantic networks to
study how the connectivity structure of these networks relates
to the richness of the semantic constructs, or ideas, they
can generate. This work is motivated, in part, by research
showing that experimentally obtained semantic networks have a
specific connectivity pattern that is both small-world and scale-
free. We show that neural semantic networks reflecting this
structure have richer semantic dynamics than those with other
connectivity structures. Though simple, this model may provide
insight into the important issue of how the physical structure
of the brain determines one of the most profound features of
the human mind – its capacity for creative thought.

I. INTRODUCTION

Creativity and insight are often seen as arising from the
ability to connect disparate concepts or ideas, i.e, to make
unexpected connections in semantic space [1], [2], [3], [4],
[5], [6]. The experience of unusual combinations leading
to creativity has been documented by several scientists.
For example, Einstein is quoted as saying, “Taken from a
psychological viewpoint ... combinatory play seems to be
the essential feature in productive thought – before there is
any connection with logical construction in words or other
kinds of signs which can be communicated to others” (quoted
in [2], [4]). Similarly, Poincare, described his own creative
thinking process as follows: “Ideas arose in crowds; I felt
them collide until pairs interlocked, so to speak, making
a stable combination. ... the only combinations that have
a chance of forming are those where at least one of the
elements is one of those atoms freely chosen by our will.
Now, it is evidently among these that is found what I
called the good combination. ... among the great numbers of
combinations blindly formed almost all are without interest
and without utility” [7] (quoted in [4]). The latter quote
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points to both the utility and dangers of unusual combinations
– most combinations generated by the creative mind are
not useful, or even nonsensical, but this is the price for
discovering the rare combination of uncommon value.

Since conceptual combinations arise in the minds of indi-
viduals, they must be the product of the cognitive dynamics
of these individual minds. The key idea is that creativity
depends on how associations between concepts are organized
in the mind. Presumably, individuals whose minds link
concepts that most people do not are likelier to find them
when needed. This idea was formalized by Mednick [2] as
an associative hierarchy, which relates the uniqueness (or
“unusualness”) of associations in the individual’s mind with
the strength of these associations. He argued that non-creative
individuals (or individuals thinking in contexts where they
are non-creative) have a steep associative hierarchy, where
common associations are very strong, but uncommon ones
are much weaker. Such an individual is likely to think mainly
in terms of common associations and generate conventional,
non-creative ideas. The creative individual, in contrast, has a
flatter association hierarchy where even unusual concepts are
fairly strong, and therefore likelier to be discovered during
associative search.

Another important factor in creativity is the problem of
fixation – the inability to break out of conventional thinking
or standard practices. This often occurs in individuals with
high expertise in narrow domains because the associations
underlying their standard methods are much stronger than
those that would lead to non-standard ones. Faced with a
particular task, such individuals are likelier to keep return-
ing to the same standard ideas. One interesting aspect of
Mednick’s hypothesis is that creative individuals may be
less likely to generate conventional combinations than non-
creative ones, thus avoiding fixation. It has been argued that
individuals with broad but relatively shallow expertise may
be more creative than those with deep and narrow expertise
[6]. Indeed, experiments have shown that the inclusion of
a few unconventional thinkers can enhance the creativity
of a whole group even if these thinkers are not especially
knowledgeable [8], [9].

Given the significance of how conceptual associations are
organized, it is important to ask three questions:

1) What is the actual organization of associations is in the
minds of individuals?

2) How do these associations generate a “train of thought”
that may lead to creativity?

3) Are some types of associative organization more con-
genial to creative thinking than others?

The focus of this paper is on the last question.



II. BACKGROUND AND MOTIVATION

The organization of associative memory has been studied
very widely, typically using word association or cued recall
tests [10], [11], [12], [13], [14]. Such studies have generated
a rich body of data on association norms, which have been
used to develop theories of associative recall (e.g., [11], [12],
[15], [13]). Very interesting results have emerged from a
network analysis of word association data by Steyvers and
Tenenbaum [16], who showed that such associative networks
possess two interesting properties: 1) A small-world archi-
tecture; and 2) A power-law degree distribution. They also
proposed a model of semantic evolution that could produce
such networks, and have argued that these properties might
be representative of associative semantic networks in general.
While these networks represent data averaged over a large
number of test subjects, they provide a good starting point
for investigating the relationship between associative network
structure and creativity. In particular, one may ask how the
two characteristics found by Steyvers and Tenenbaum impact
the search for conceptual combinations separately and jointly.

The degree distribution of complex networks has recently
been a subject of great interest, with particular attention
focusing on networks with power-law degree distribution
[17], [18], i.e., p(k) ∼ kβ , where p(k) is the probability
of a node having k connections. Random networks with
homogeneous uniform probability of connection between all
node pairs are expected to have a Poisson degree distribution
with a pronounced mode and an exponential tail, unlike
the “fat tail” of the power-law distribution. Networks with
the latter degree distribution are called scale-free networks,
and are known to be generated by processes of preferential
attachment, where new nodes join the network by connecting
preferentially to already well-connected nodes [17]. This
results in the emergence of hub nodes with very high con-
nectivity, which lie in the fat tail of the degree distribution. It
has been proposed that many real-world networks, including
the Internet and the World-Wide Web, are scale-free [19],
[20], [21].

Small-world networks [22], [23] are networks with a high
degree of clustering, C, among nodes as well as low mean
shortest path length, D, between node pairs. Clustering
is defined as the mean probability that the neighbors of
two directly connected nodes are also directly connected.
Networks with uniform random connectivity typically have
low D and low C, whereas networks with local connectivity
have high D and C. Thus, small-world networks, with low D
and high C, represent a distinct class of networks, and have
been found to be good models for many types of real-world
complex networks such as power grids, neural networks and
social networks [22], [21]. It has been shown that neural
networks with small world structure are very efficient as
associative memories [24], and small world characteristics
have been found in cortical neural networks [25]. It has
been suggested that small-world connectivity in the brain
may underlie high creativity in individuals [6].

Scale-free networks have low D, but not necessarily low

C, while small world networks do not necessarily have a
power law degree distribution. Thus, the networks found
by Steyvers and Tenenbaum represent a special subclass of
networks lying in the intersection of the two sets.

In this paper, we describe a simple but neurally plausible
computational model for associative search through the space
of conceptual combinations in semantic neural networks, and
use it to compare the characteristics of the resulting search in
networks with four different types of connectivity: Random
(RA), Localized (LO); small-world (SW); and Steyvers-
Tenenbaum (ST). In particular, we consider the following
issues:

1) Do networks with distinct connectivity differ signifi-
cantly in the richness of their search through the space
of conceptual combinations?

2) Does the ST model provide any advantage in terms of
the search for conceptual combinations, and if so, does
this arise from the small-world property, the scale-free
property, or any from a combination of both?

It is important to emphasize that our work differs nomi-
nally from most models of associative recall (e.g., [15]) in
two ways: 1) We consider the recall of conceptual combi-
nations rather than single associates; and 2) We consider
free recall (or spontaneous thinking) rather than cued recall.
However, insofar as conceptual combinations can themselves
be seen as more complex concepts, our model can be
considered as implementing distributed form of associative
chaining.

III. MODEL DESCRIPTION

A. Network Model

The neural semantic network model we use is an extension
of one we have recently developed as part of a larger
model of cognitive function [26], [27], [28]. It is based on
the concept of competitive itinerant dynamics, as described
below.

The semantic network is modeled as a network of N
concept units, each representing one concept. Each unit can
be seen as a neural assembly tuned to a particular concept.
Since our purpose in this paper is just to study the dynamics
of networks with various types of connectivity, we use
abstract concepts instead of actual words. The connections
between units represent associations, with the connection
from unit j to unit i denoted by wij . For simplicity, we
assume that the connections are binary and symmetric, i.e.,
either two concepts are mutually associated with a weight of
1 or not associated, with a weight of 0. The output of unit
i at time t is denoted by xi(t), and the net input to a unit i
and time t is given by:

xi(t) =

N∑
j=1

wij(t)xj(t) + γnoiseξi(t) (1)

where xj are the outputs from units j, wij are binary
weights to concept unit i from concept unit j, ξi(t) is uniform



white noise between 0 and 1, and γnoise, is a fixed gain
parameter.

The state of concept unit i at time t is given by:

yj(t) = αyj(t− 1) + (1− α)xi(t) (2)

where α is an inertial parameter.
Activity in the network is competitive, and the K non-

refractory units with the highest y(t) > 0 are allowed to fire
at time t. The output of unit i is calculated as:

xi(t) = f(yi(t)) =

{
1, if yi(t) ∈ {k most excited units}
0, otherwise

(3)
Unit activity and excitability are modulated by two other

processes: Refractoriness and synaptic modulation.
Refractoriness: Once fired, unit i may remain active for

an activity duration ϕ if yci (t) remains sufficiently high, after
which it enters a refractory period. This is modeled through
a resource, ri(t) ∈ R(t), with the following dynamics:

ri(t) =

{
(1− λ−)ri(t− 1), if active
ri(t− 1) + λ+(1− ri(t− 1)), if inactive

(4)

where λ− is the resource depletion rate, and λ+ is the
resource recovery rate. A neuron is said to be in a refractory
state if:

ri(t) ≤ Θr (5)

Thus, a unit’s resource is depleted when it fires and
recovers when it is inactive (due to lack of stimulus or
refractoriness).

Synaptic Modulation: Synapses that are excited repeat-
edly by pre-synaptic activity temporarily become habituated
to it and diminish in strength while the activity persists, and
then recover gradually when activity ceases. This is modeled
as follows:

wij(t) =

{
(1− ψ−)wij(t− 1), if active
wij(t− 1) + ψ+ [wij0 − wij ] if inactive

(6)

where ψ- and ψ+ represent the synaptic decay and recovery
rates respectively and wij0 represents the initial weight of
the synapse. Synaptic modulation has recently been proposed
as an important component of neural information processing
and short-term memory [29], [30].

B. Network Connectivity Generation

Since the Steyvers-Tenenbaum model is the focus, we first
generate that network, and then generate the other three
networks to be comparable to it. All connections in the
networks are undirected, resulting in symmetric connectivity.
The networks are generated as follows:

Steyvers-Tenenbaum (ST) Network: This network is
generated according to the method described by Steyvers
and Tenenbaum in [16]. The network begins with M fully
interconnected nodes, followed by the addition of N −M

Fig. 1. Degree distribution for the four networks

nodes one at a time. Each new node is added in two steps:
1) An existing node, i, is chosen with probability Pi =
ki/

∑
j kj , where kj is the degree of node j; 2) The new

node is connected randomly to M other nodes from the set
of nodes to which i is already connected. Thus, the new
node can be seen as a partial replication of node i, which
is chosen with a preference for higher degree nodes. The
resulting network is both small-world and scale-free, with
an exponent near 3. For the simulations described here, we
use N = 500 and M = 6, giving a total of nc = 2979
bidirectional connections, so the network is extremely sparse.

Random (RA) Networks: The RA network comprises
N nodes with nc connections assigned between node pairs
chosen randomly with equal probability. This results in a
Poisson degree distribution for the nodes [21].

Localized (LO) Networks: For the LO network, nodes are
placed randomly in 2-dimensional Euclidean space, and each
node makes connections within a certain radius, r, of itself.
The radius is chosen so that the total number of connections
in the network is approximately nc.

Small-World (SW) Networks: The SW network is ob-
tained by rewiring short connections in the LO network
randomly to more distant nodes until the mean clustering
coefficient of the network matches that of the ST network.

Thus, to summarize, all nodes have the same number of
nodes and connections, the ST and SW networks have the
same clustering coefficient, and the LO and SW networks
have the same basic connection radius.

Figure 1 shows the degree distributions for the four
networks in log-log coordinates. It is clear that the RA,
LO and SW networks have distributions with exponential
tails while the ST network’s distribution has a power law
tail. It is interesting to interpret these connectivity patterns
in light of Mednick’s associative hierarchy. In the three
networks with exponential degree distributions, each concept
has approximately the same number of associations, whereas
the ST network has concepts with very different numbers
of associations, including some with a very large set. Thus,
the associative hierarchies associated with the RA, LO and



Fig. 2. Graph characteristics for the four networks: Top - mean shortest
path length; Bottom - mean clustering coefficient

SW networks have a single scale and can be seen as being
“shallower” than the multi-scale hierarchy associated with
the ST network.

Figure 2 shows the mean shortest path length and mean
clustering coefficients for the four networks. As expected, the
RA network has short path length and almost no clustering,
while the LO network has very long paths and very high
clustering. The ST and SW networks have path lengths
similar to the RA networks but much higher clustering,
showing small-world characteristics [22].

IV. IDEA DYNAMICS

As discussed earlier, we consider ideas to be conceptual
combinations. In terms of the semantic network described
above, an idea is represented by a set of persistently co-
active concept units, or a metastable attractor. As the network
activity moves through the state-space, it is itinerant [31] or
“sticky”, with periods of stable activity patterns punctuated
by intervals of transient activity. Since each unit in the
network represents a concept, any set of co-active units is
a potential idea. However, we assume that only those co-
active sets that persist beyond a certain duration termed the
awareness threshold, Θth, are perceived consciously as ideas,
whereas the rest remain subconscious. The intuition is that
only units that form sufficiently strongly connected sets will
be able to sustain co-activity until refractoriness or synaptic

Fig. 3. Degree distribution for the four networks

Fig. 4. Number of unique ideas produced by the four networks

modulation ends it. Such groups thus represent a metastable
activity pattern – or temporary attractor – in state space.
The connectivity of the network, which is defined by inter-
concept associations, embeds a large number of such latent
ideas in the system, which are unmasked emergently by the
dynamics of the system. In an intuitive sense, such attractors
bring together concepts that “make sense together.”

Functionally, the dynamics of the system can be seen as
generating a sequence of ideas with intervening periods of
transience. We characterize this functional dynamics in terms
of the following attributes:

1) Productivity, ρ, is measured by counting the number
of unique ideas generated over a finite period.

2) Efficiency, η, is a measure of how much time is
“wasted” generating repeated ideas. This is calculated
as:

η = ρ/ρall (7)

where ρall is the total number of ideas (including re-
peated ones) generated by the network. Low efficiency
can be seen as a signature of fixation.

3) Coherence, ω, quantifies how internally coherent the
generated ideas are relative to the knowledge embed-



Fig. 5. Mean efficiency of the four networks

ded in the network. This is measured by calculating
the clustering – or mutual connectivity – among the
nodes participating in the idea. If idea Ik has K active
nodes,

ω(Ik) = q(Ik)/K(K − 1) (8)

where q(Ik) is the number of connections that exist
between the K nodes active in Ik.

The use of cooperatively co-active groups of concepts as
representations of ideas has been considered indirectly by
Nelson et al. [13] in the context of implicit memory. They
found that concepts that are part of such highly connected
(or clustered) groups are easier to recall than those that are
not.

From a neurophysiological viewpoint, a more plausible
instantiation of our co-activity patterns might be in terms
of emergent synchronization among neuronal assemblies,
which has been suggested as the brain’s main mechanism
for representational binding [32], [33], [34], [35], [36], [37].
Several computational models have been developed for such
systems (e.g., [38]), but we use a simpler model for clarity.

Finally, it should be noted that, while we use the term
“concept” for the information represented by each network
unit, they could equally well be seen as “features”. The
distinction between feature, concept and idea is largely a
matter of position in a representational hierarchy rather than
an essential difference.

V. SIMULATIONS AND RESULTS

Identically sized networks (N = 500) of all four types
were simulated and evaluated in terms of the four metrics
described above. The results were compared to characterize
each network in terms of its semantic richness.

The first issue is to set the awareness threshold, Θth, in
a meaningful way given the other dynamical parameters in
the system. Figure 3 shows the distribution of how long
single units remain persistently active in all four networks.
This bimodal distribution indicates that, in most cases, units
remain active only for a few steps before switching off. This

Fig. 6. Number of unique and repeated ideas generated by the four networks
for various awareness thresholds

is clearly indicative of transient activity. However, in some
instances, neurons remain persistently active for durations
between 48 and 53 steps, which is the limit set by the
resource decay rate. We hypothesize that these are the units
participating in a metastable attractor – i.e., an idea – and
remaining active as long as physically possible. Based on
this figure, we set the awareness threshold near the lowest
point of the distribution at Θth = 20.

Figure 4 shows the average number of total and unique
ideas generated by each network over 20 runs of 4000
time steps each. As can be seen, the LO and SW networks
generate a lot of ideas, but a large fraction of these are
repeated ones. In contrast, the RA network generates fewer
ideas but nearly all are unique. Finally, the ST network
generates the highest number of unique ideas with a relatively
low level of repetitions. The useful productivity of the four
networks is shown explicitly in Figure 5, which plots the
efficiency, η of each system. It shows that the RO network
is the most efficient, followed by ST, with the SW and LO
networks faring rather poorly.

An interesting aspect of productivity is its dependence on
the awareness threshold. A larger awareness threshold makes
the system more selective, with only very persistent activity
patterns regarded as ideas. Figure 6 shows the number of
unique and repeated ideas counted at various awareness
thresholds from 20 to 54. As can be seen, very few unique



Fig. 7. Mean coherence of the unique ideas generated by the four networks

ideas are seen for high awareness thresholds. Over the range
from Θth = 20 to 35, the ST network produces more unique
ideas that SW or LO, whereas after that point, all three
networks have similar productivity. This means that the ideas
produced by the ST network last for relatively short durations
compared to those generated by the LO and SW networks,
again suggesting less fixation in the ST network. The SW
and LO networks generally have very similar performance
over most of the awareness threshold range. These networks
also consistently generate more repeated ideas than the ST
network.

Figure 7 shows the internal coherence of the generated
unique ideas, measured as described above. We make the
plausible assumption that coherence is a measure of both
consistency with prior knowledge and novelty. An idea with
very high coherence represents an “old” idea, since all its
component concepts are already well associated with each
other. In contrast, an idea with very low coherence can be
seen as bordering on absurdity – a quirk of the system’s
dynamics. However, ideas with a moderate degree of coher-
ence can be regarded as sensible but novel. The ability to
generate moderately coherent ideas can, therefore, been seen
as a signature of creativity, and from this viewpoint, the ST
and SW networks are most supportive of creativity.

VI. DISCUSSION

The combination of recurrent connectivity, competitive
activity and modulation creates a rich dynamics in all the
model networks. The purpose of this study was to see what
difference the type of connectivity made to the emergence
of metastable patterns of activity, since these are seen as
corresponding to the significant cognitive representations
(ideas) implicit in the system.

The results shown in Figures 4 - 7 lead to two important
observations:

1) ST connectivity, which is both small-world and power
law, generates a large number of distinct metastable
patterns which persist for a moderate duration, whereas
LO and SW connectivity lead to a smaller number of
distinct patterns which are generated repeatedly and

persist somewhat longer. Thus, the dynamics of the
latter two networks is not as rich as that of the ST
network, even though the amount of time spent in
metastable states is higher for LO and SW networks.
Since the SW and ST networks have the same degree of
clustering (and LO much higher clustering), the results
suggest that the richer dynamics is a consequence of
the power law aspect of connectivity in the ST network.
On the other hand, the RA network, which has a
degree distribution similar to the SW and LO networks,
generates a higher number of metastable patterns than
either of these, but fewer than the ST network.

2) The internal coherence of the metastable patterns gen-
erated by the networks is directly proportional to the
clustering in their connectivity. This is not surprising,
but does show the value of structural clustering in con-
fining the dynamics to generating more “meaningful”
patterns.

From these two observations, we conclude that the ST
network represents an elegant way to obtain the primary
advantage of clustered connectivity – coherence – without the
associated loss of richness in the dynamics. We speculate that
clustering tends to confine the dynamics to localized regions
of activity space, leading to repetitions. The existence of high
degree nodes implied by the power law connectivity counters
this tendency by creating more options for the dynamics at
each step. This results in a more “tangled” dynamics, and
a richer sampling of metastable states. Thus, ST networks
may be a neural instantiation of Mednick’s deep associative
hierarchies. A detailed investigation of this is left to future
studies.

VII. CONCLUSIONS

In this study we systematically investigated the effect of
connectivity on the dynamics of a neural network model of
semantic search in the space of conceptual combinations. The
study showed that networks with clustered connectivity and
non-fat tailed degree distributions are prone to generating
repeated but internally coherent metastable activity patterns,
while networks with unclustered connectivity generate more
diverse but less coherent patterns. A network with small-
world connectivity and power-law degree distribution is able
to combine the advantages of both while avoiding their dis-
advantages. This type of connectivity has been observed em-
pirically in real-world semantic networks [16]. This provides
an intriguing correspondence between semantic organization
and semantic richness, raising the question of whether the
observed semantic organization has evolved to support richer
semantic possibilities.
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