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Abstract—Although computer Go players are now better than
humans on small board sizes, they are still a fair way from the
top human players on standard board sizes. Thus the nature
of human expertise is of great interest to artificial intelligence.
Human play relies much more on pattern memory and has been
extensively explored in chess. The big challenge in Go is local-
global interaction — local search is good but global integration is
weak. We used techniques based on the cognitive neuroscience of
chess to predict optimal areas to move using perceptual chunks,
which we cross-validated against game records comprising up-
wards of five million positions. Prediction to within a small
window was about 50%, a remarkable result.

I. INTRODUCTION

In many complex systems human expertise has dominated
computer software. In some it still does, but the number is
dwindling. One of the landmark victories was the fall of human
chess champion Gary Kasparov to IBM computer Deep Blue
in 1997, after he had won the first such match in 1996. More
recently IBM computer Watson has beaten the best human
players at Jeopardy, a television quiz game requiring general
knowledge and natural language understanding.

Yet despite the gradual encroaching of computers on human
skill levels, there are still fundamental differences in the
algorithmic approaches and a full procedural description of
how human expertise works and is acquired is still lacking.
Computers such as Deep Blue operate primarily by search.
Human chess players rely much more on memory for patterns
and their experience of similar positions encountered in the
past.

Herbert Simon [2] proposed that around 50,000 patterns or
chunks are needed to reach a high level of expertise in any
domain. Chase, Gobet and Simon [1], [2], [12] subsequently
explored the nature of these chunks for chess and Gobet
and colleagues subsequently created models for identifying
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chunks, the CHREST model, discussed in section III. The
CHUMP model then uses the chunks to predict moves.

A full solution to the expertise problem requires a model
whose performance grows at a similar rate to human perfor-
mance as a function of exposure. Some successful computer
programs, such as neurogammon for Backgammon [22], have
surpassed the top human players, but use much greater ex-
posure, in this case an order of magnitude more games. The
Simon argument was that around 10,000 hours of exposure,
feedback and analysis are needed to reach the top.

Although it is difficult to compare the speed and memory
of the human brain with a computer because of their radically
different computational behavior, it seems to be generally
accepted that the human brain achieves around 1 petaflop,
about 100 times the top computers in 2011. Thus the best
one can hope for is to get the scaling behavior right. Games
provide the ideal framework to do this since they have precise
metrics for performance and exposure (positions encountered,
or games played). In the case of the old oriental game, Go,
computers still do not approach human professional levels.
Thus the game is doubly interesting, since not only is it a good
domain to study human cognition, but it also holds out the
possibility of a computer using human strategy to outperform
human players.

Competition Go is played on a 19x19 grid and two players,
black and white, alternately place stones on the intersections,
referred to as points. The stones do not move, but are killed
and removed when completely surrounded by opposing pieces.
Unlike chess the branching factor of successive moves is not
amenable to pruning in any way so far discovered, which
makes search impractical.

However, the latest technique, Monte Carlo tree search, has
enabled a leap forward in computer Go, and computers now
win on smaller boards, such as 9x9 (in 2011). On the larger



boards, global factors influence local decisions. Anecdotal
evidence suggests that top players very rapidly, in less than
a second, identify the area of board in which to move, with
their first eye fixation on this area. Subsequent fixations may
be made elsewhere, but usually this first fixation is where the
move is made.

The goal of this paper is to determine the extent to which
low level chunks are able to predict the local area where a
move might be made. One would not expect predictions to be
very accurate, since any given move will require precise local
search [7]. Section II provides an overview of research on
human expertise in Go. Section III summarises the CHREST
and CHUMP models. Section IV describes the use of online
game data to measure the success of CHUMP and section V
gives the results. Section VI discusses the findings.

II. THE PSYCHOLOGY OF GO EXPERTISE

Board games, given their complexity and strategic nature,
have offered crucial insight for understanding the cognitive
processes underpinning experts’ thinking. Simon’s estimates of
50,000 chunks and 10,000 hours of practice were based on his
seminal research with Chase [1] on chess. They used a recall
task, where a chess position is briefly presented, and a copy
task, where one has to reconstruct a position on a new board
whilst the original position stays in sight. They then defined
the boundary between chunks as a pair of pieces replaced (a)
with an inter-piece latency longer than 2 seconds in the recall
task, and (b) with a glance at the stimulus board in the copy
task. An analysis of the chess relations between pair of pieces
(e.g. attack, proximity) showed that the two definitions led
to similar results. Considerable research on chess has largely
confirmed but also extended these results (for an overview, see
Gobet et al. [10]).

As search trees are much larger in Go than in chess,
perception and knowledge would be expected to be even
more important in Go than in chess. Empirical research has
confirmed the central role of these in Go. In a recall task,
the skill effect with game positions was found in Go [18],
where a 11x11 version of Go was used. No skill effect was
observed in a control task independent from Go. Reitman [20]
was interested in seeing whether Chase and Simon’s [1] results
supporting the presence of chunks with chess players would
lead to similar results with Go. She used both a recall task
(brief presentation of positions) and a copy task, where one
has to reconstruct a position on a new board whilst the original
position stays in sight. The results, although limited to one
master and one beginner, are interesting. Just as in the chess
data, she found that the latency between the placements of
two stones was longer when there was a glance at the stimulus
position between the placement of the stones than when the
two stones were placed in succession. However, an important
difference with the chess data was that there was only a poor
match between the chunks found in the recall task and in
the copy task. Reitman also carried out a partitioning task.
This task consists in asking participants to draw boundaries
around the clusters of stones that they perceive as meaningful.

While Chase and Simon’s results with chess suggested that
chunks were organized hierarchically in long-term memory,
the results with Go suggested that the Go master’s knowledge
was organized as overlapping clusters. However, given the very
small number of participants in Reitman’s study, more data is
necessary to reach firm conclusions.

A natural way to study the role of perception is to record
eye movements. Unfortunately, very little data are available on
Go using this methodology. Yoshikawa and Saito [24], [25]
recorded eye movements to understand how players generate
candidate moves in Go. Just as in chess [4], players tended
to fixate between stones and not on the stones themselves.
Players examined only a portion of the board before selecting
a move but looked at a larger area after having played
their move. These authors also studied how players solved
tsume-Go problems (local ‘life-and-death’ problems used for
practising look-ahead skills) when only limited thinking time
(4 seconds) was allowed. For the problems solved correctly,
the eye fixations of their stronger player (6-dan) were fast
(between 200 and 260 ms), which suggests the use of pattern
recognition. By contrast, the weaker players had to carry out
search to be able to find the solution.

The most comprehensive study on the cognitive mechanisms
underpinning expertise in Go was carried out by Masunaga
and Horn [18], [19]. They used a remarkably large sam-
ple for this kind of study (263 players, from beginners to
professionals, spanning 48 levels of expertise). They had a
number of Go tasks, and each task was matched by a similar
task using material different from Go. These control tasks
made it possible to investigate the possibility of transfer.
Here, we provide only a sample of their results, focusing
on the importance of perception and pattern recognition. In
a pattern-recognition task, players were presented with ‘atari’
(important stone configurations) and were requested to identify
them as quickly as they could from foils. Better players
were quicker, and the difference was particularly pronounced
between professionals and the rest of the players. As expected,
there was no skill difference in the corresponding control task,
which consisted of finding a target letter amongst Japanese
letters. In a pattern-matching task, players had to compare a
pair of Go configurations and decide as quickly as possible
whether the two configurations were the same. As in the first
task, the professionals were quicker than the remainder of the
players, but there was no skill effect in the corresponding
control task in which pairs of strings of Japanese letters were
compared.

In a memory-recognition task under distraction, players
were presented with configurations for around 10 seconds.
Their task consisted in both counting the number of black
and/or white stones and memorizing the position. Once the
position was removed from sight, players had to select the
position from six configurations. A skill effect was found
(particularly pronounced with the professionals), but there was
no skill difference in a control task using material different
from Go. A similar pattern was found in other tasks measuring
memory, intelligence and reasoning, either with Go or with



non-Go material.

Knowledge plays a central role in Go expertise. This can be
seen in the rich terminology used in Go books, with concepts
such as kosumi (a diagonal extension) or shinogi (saving a
group of stones that was in difficulty) (see Shirayanagi [21]).
Yoshikawa et al. [23] found that Go experts, when seeing a
new position, first used concepts to provide a global evaluation
of their possible moves and their opponent’s possibilities.
The generation of candidate moves and effective analysis
of variations only came in a second stage. This behavior
is reminiscent of chess players’ behavior [3]. Due to their
limited knowledge, novices tended to create their own terms
to designate concepts. While intermediate players are able to
understand when concepts are relevant in a given position,
these concepts are not linked to pertinent evaluations or plans.
Only advanced players have practiced and studied enough
to acquire this kind of knowledge, where perceptual and
conceptual information is linked.

III. CHREST aAND CHUMP
A. Overview

CHREST (Chunk Hierarchy and REtrieval STructures) [8],
[11] consists of four main components: (a) a long-term mem-
ory, where chunks are stored, (b) visual and auditory short-
term memories (STMs) with limited capacity, (c) modules
dealing with visual and auditory mental images, and (d)
attention mechanisms. CHREST is a self-organizing, dynamic
system, in which chunks are accessed by traversing a dis-
crimination net, which is a treelike structure consisting of a
set of nodes (chunks) connected by links. Learning occurs
through creating new nodes, adding information to these
nodes, creating links between nodes, creating templates (nodes
with schema-like properties) and creating micro-productions
(links between a perceptual chunk and a possible action or
sequence of actions). In the literature, when the focus is on
the micro-productions, as in this paper, the model is usually
known as CHUMP [10].

STM is dynamic, in the sense that older chunks are con-
tinuously updated by new incoming information. The largest
chunk recognized so far is used to direct eye movements; the
rationale is that eye movements that were useful in the past
are likely to be useful in the future if a similar constellation
of pieces is present on the board. Other heuristics used by
the eye movements include a preference to fixate on ‘novel’
information (pieces on the periphery that have not been
considered so far), and also to scan parts of the board so far
not observed.

When the focus is on simulating human data, the model
uses time parameters, such as the time to create a new chunk
(8 seconds) and the time to encode a chunk into STM (50
milliseconds). Recently, CHREST’s decision making ability
has been extended so that it can use attentional and problem-
solving heuristics to supplement the information provided by
pattern recognition. CHREST learns from complex input data,
including realistic data reflecting the statistical structure and
complexity of the environment. CHREST can be seen as
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Fig. 1. Example Go position, on a reduced 8x8 board.

using incremental case-based reasoning, where the cases are
built up piece-meal with new information, rather than being
constructed fully on the single exposure of a case.

CHREST currently provides state-of-the-art models in mul-
tiple psychological domains including: perception and memory
in expert behavior in chess and Awele [4], [9], [12], concept
formation [17], problem solving with diagrams [16] and ac-
quisition of syntax and vocabulary [5],[6], [13], [14] In all
these cases, it uses naturalistic input (e.g. masters’ games in
chess) for training the model.

In this paper, we use the micro-productions to predict moves
in Go. As CHUMP is trained, it associates the move in a
given position with the chunks within that position. In the test
phase, CHUMP recognizes a set of chunks in the test position,
and retrieves the associated moves. CHUMP then predicts the
most frequently occurring legal move from this set. (In future
experiments, we plan to use an extension of CHUMP, called
SEARCH, which provides lookahead search routines; see [7],
[15] for a description.)

B. Learning Chunks

Perceptual chunks are learnt in an unsupervised manner
from each game position in turn. The eye is guided across the
grid and perceives the pieces in a part of the board, depending
on the size of its field of view. For example, looking at square
(5, 5) of Figure 1, the model would retrieve the pieces [W 5
5] [B 5 6] [B5 7] [We6 4] [W6 6] [BG6 7]
[w 7 5] [B 7 7].

The representation used for the pieces is an item-on-square
representation: the name of the piece and its row/column
coordinates are given. The chunks are thus tied to specific
board positions. This representation has been found to be
effective for generalising patterns across a larger sector of the
board; discussion of this representation may be found in [15].

We can illustrate the two key learning mechanisms used
within CHREST using two simple Go patterns. The learning



mechanisms are familiarisation and discrimination. The learn-
ing process generates a discrimination network, using tests
based on specific pieces or groups of pieces to sort an input
pattern to an internal node within LTM. This internal node
contains a familiar pattern, otherwise known as a chunk. Thus,
chunks are simply patterns which have become familiar.

The discrimination process uses mismatches between the
currently input pattern and the retrieved node to extend the
network with new test links and new nodes. The familiarisation
process adds information from the current input pattern to
a retrieved node, when the two are compatible. Figure 2
illustrates the process. The greyed nodes represent test links,
and the clear nodes contain chunks. In (a), the model has
learnt about one pattern, with two pieces. When presented
with the new pattern, the model retrieves node 3 but there
is a mismatch because the colour of the piece on square
(5, 6) is incorrect. So in (b), the model has discriminated
between the two patterns adding a new node for the new chunk
(single-piece chunks are also learnt incrementally, to hold the
‘alphabet’ of the patterns); this illustrates discrimination. As
learning proceeeds, the new node is filled out with information
from the current pattern; this is familiarisation. Note that
chunks may hold more, less or equal amounts of information
as the set of tests required to retrieve them. Further details
of the learning mechanisms, including the way learning can
proceed faster, a pattern at a time instead of a piece at a time,
and also how subsets of the network become associated into
board-covering templates, may be found in [11].

C. Eye Fixations

The perceptual chunks are learnt in an unsupervised manner
from the database of games. Each position is scanned for 100
fixations, using the heuristics described above to guide the eye.
New chunks are created and familiarised. As an illustration of
what has been learnt, Figure 4 shows a trace of the model’s eye
fixations on the position in Figure 1. A model of Go positions
was trained from a set of 21,000 positions, training continuing
until the model’s LTM contained 10,000 chunks. An indication
of the fixations is shown in Figure 3.

The eye fixations show the range of heuristics used in
retrieving information: the eye initially is located at one of the
central squares, and then proceeds using one of a set of generic
heuristics. In this example, three heuristics are illustrated.

1) Random item fixates a previously unseen item within the

field of view, but not at the centre.

2) Random place fixates a previously unseen square within
the field of view, but not the centre.

3) LTM uses the largest chunk currently in STM to guide
the next fixation. The heuristic proposes the location of
information required to pass one of its test links.

At the end of its cycle of fixations, the model’s STM
contains pointers to nodes 3940, 9, 7087 and 5087. The
trace above shows the images of these retrieved nodes. This
information, and information about the moves associated with
each chunk, is used by CHUMP for further learning and to
generate moves.
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Fig. 3. Tllustration of fixations on example Go position.
Fixations:
(6, 7) Random item heuristic
(6, 5) Random place heuristic
(7, 5) Random item heuristic
(6, 4) LTM heuristic
(7, 2) Random place heuristic
(5, 2) LTM heuristic
(6, 2) Random place heuristic
(5, 2) LTM heuristic
(6, 2) Random place heuristic
(5, 2) LTM heuristic
(3, 4) Random place heuristic
(5, 6) Random place heuristic
(6, 7) Random item heuristic
(5, 7) Random item heuristic
(6, 7) Random place heuristic
(6, 7) Random item heuristic
(7, 5) Random place heuristic
(6, 4) LTM heuristic
(7, 4) Random place heuristic
(7, 5) Random item heuristic
Chunks retrieved:
Node: 3940 < [W 5 5] [B 5 6]
[W 6 6] [B 6 7]
Node: 9 < [B 2 6] [W 5 5] [B
Node: 7087 < [W 5 5] >
Node: 5087 < [B 5 6] >

Fig. 4. An illustration of the eye fixations made by the model
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Fig. 2. A trace of three learning steps. In (a) the model has learnt pattern [W 5 5] [W 5 6]. In (b), the model has seen [W 5 5] [B 5 6] [B 5
7], and discriminated a new node. In (c), the model has completely learnt the new pattern.



IV. METHODOLOGY

CHUMP was run on a series of games provided by GoGoD!
to predict the actual move and the move within a small, 5x5
window. The average errors in both directions between the
prediction and the exact move were also calculated.

For reference a random estimate of the move was calculated.
A random move could be illegal, since the point may be
occupied or have no liberties. Thus random moves were
generated iteratively until a legal move was found.

The 5,000,000 positions were partitioned into lots of
750,000 to work on different date ranges of games: as in-
dicated by the Table 1°s titles A-G.

V. RESULTS

Tables 1A-G show the performance of CHUMP for predict-
ing the exact move and the 5x5 window in which the move
occurs. Surprisingly, the prediction depends only weakly on
the number of positions, wherein table G only had 500,000
positions and still maintained around 50% accuracy. This
suggests that the most important chunks have been found early
in the learning cycle.

Tables 1A-G show the results of tenfold cross validation
using 100 fixations and a visual short term memory of 90.
The number correct within the 5x5 window is around 50%.
Both the exact number correct and the average error are
considerably better than random.

VI. DISCUSSION

The prediction of the location of a move to within a small
window is surprisingly good, considering that there are no
specifically Go heuristics used in the position estimation. The
implication is that the low level building blocks, which are
the key to expert position memory go a substantial way to
predicting which areas of the board have the highest priority
for action.

There has been little eye movement work for Go, hence the
eye movement protocols used herein are at best intuitive (see
section II). Thus the fixations are noisy and more accurate eye
movement data would undoubtedly improve the accuracy and
reduce the number of fixations required.

The results improve as the short term memory increases,
with values much higher than that of humans. This might
result from the poor eye movement heuristics, making the
chunks themselves noisy also. Thus a larger number of chunks
is required to get an adequate prediction.

The approach here is thus a good starting point for the goal
of building an Al along the lines of human expertise. The
major problem of selecting the area to move within a large
board is partially solved by use of chunk data harvested from
expert games.

Further work will attempt to extend this approach to attach
meaningful information to the chunks and templates during
learning. The template theory, which CHREST and CHUMP
implement, argues that templates are associated with strategic

Uhttp://www.gogod.co.uk

A. 750,000 positions, 0196 — 1951

Predictions Predictions Predictions

CHUMP Correct Window xDiff yDiff
Average 723 32350 3.97 3.98
Std Dev 29.2 181  0.0462 0.0644
Random
Average 195 17627 5.80 5.80
Std Dev 19.6 109  0.0120 0.0202
B. 750,000 positions, 1951 — 1976
Predictions Predictions Predictions
CHUMP Correct Window xDiff yDiff
Average 710 31432 4.05 4.10
Std Dev 19.7 263  0.0850 0.0694
Random
Average 194 17728 5.79 5.80
Std Dev 10.1 127  0.0177  0.0190
C. 750,000 positions, 1976 — 1988
Predictions Predictions Predictions
CHUMP Correct Window xDiff yDiff
Average 665 31770 4.02 4.09
Std Dev 34.0 222 0.0774  0.0722
Random
Average 190 17613 5.79 5.82
Std Dev 114 122 0.0226 0.0196
D. 750,000 positions, 1988 — 1993
Predictions  Predictions Predictions
CHUMP Correct Window xDiff yDiff
Average 769 32357 4.00 3.99
Std Dev 38.6 213 0.0584  0.0653
Random
Average 198 17621 5.81 5.81
Std Dev 8.3 129  0.0143  0.0155
E. 750,000 positions, 1993 — 1997
Predictions  Predictions Predictions
CHUMP Correct Window xDiff yDiff
Average 572 22411 3.98 3.98
Std Dev 18.2 255 0.069 0.061
Random
Average 135 12193 5.79 5.82
Std Dev 13.1 89.5 0.0241 0.0188
F. 750,000 positions, 1997 — 2002
Predictions  Predictions Predictions
CHUMP Correct Window xDiff yDiff
Average 784 32271 3.97 3.97
Std Dev 24.6 457  0.0722  0.0627
Random
Average 195 17645 5.80 5.80
Std Dev 12.8 78.1  0.0177 0.0132
G. 518,219 positions, 2002 — 2003
Predictions  Predictions Predictions
CHUMP Correct Window xDiff yDiff
Average 572 22411 3.98 3.98
Std Dev 18.2 255 0.069 0.061
Random
Average 135 12193 5.79 5.82
Std Dev 13.1 89.5 0.0241 0.0188
TABLE I




information, memory of previous games, etc. Examples of this
association in the game of chess may be seen in [12], [15];
we expect these ideas to generalise naturally to Go.
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