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Abstract—An unsupervised time series change detection
method based on an extension of Vector Quantization (VQ)
clustering is proposed. The method clusters the subsequences
extracted with a sliding window in feature space. Changes can
be defined as transition of subsequences from one cluster to
another. The method can be used to achieve real time detection
of the change points in a time series. Using data on road casu-
alties in Great Britain, historical data on Nile river discharges,
MODerate-resolution Imaging Spectroradiometer (MODIS) Nor-
malized Difference Vegetation Index data and x simulated data.
It is shown that the detected changes coincide with identifiable
political, historical, environmental or simulated events that might
have caused these changes. Further, the online method has the
potential for revealing the insights into the nature of the changes
and the transition behaviours of the system.

Index Terms—Change Detection, Feature Space, Vector Quan-
tization, Time Series

I. INTRODUCTION

Time Series data are generated, maintained, and processed
within a broad of application domains in different fields.
Mining such time series data becomes vital as the applica-
tions demand for understanding of the underlying processes
or phenomena that generate the data. A specific interesting
mining task is to detect changes in a given time series. Early
identification of changes in a time series is one of the most
promising topics in statistics [1]-[4] and data mining [5]-
[9] due to the numerous applications where early warning
systems are needed. Also, known as change detection or
sometimes event detection, this problem covers a broad range
of areas of application including land cover change detection
[1], [10], [11], early warning of pandemic outbreaks [12],
signal segmentation in data streams [7], [8], fault detection
in engineering systems [13], telecommunication network [14],
economics [15] and business [9].

The aim of this paper is to propose a new method for
real-time change detection, that generates insights into the
transition behaviours of the system. Vector Quantization (VQ)
is a popular and widely applied clustering algorithm [16],
which moves clustering centres demoted as code-book vectors
towards accumulation points in the data set. The algorithm
will be described in section III-B. We propose a growing VQ
approach using a set of features to characterise a time series
subsequence and then introduced a user defined parameter
to control the growth rate of the cluster formation. Then
changes are defined as the transition of subsequences from
one cluster to another. This method reveals transition migration
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of subsequences between existing clusters and helps find new
states of the system.

The paper is organised as follows. Section II presents a
brief review of relevant research. Section III-A represents the
feature extraction of sliding windows. Section III-B presents
vector quantization clustering and change detection based on
a new algorithm which we call growing feature quantization
(GFQ). Section III-C describes how to recognise changes and
transitions between clusters. Section IV presents the results
for three well-known datasets and two simulated time series.
Section V presents the conclusions.

II. RELATED WORK

A typical statistical formulation of change-point detection
is to consider probability distributions from which data in the
past and present intervals are generated, and regard the current
time point as a change point if two distributions are signif-
icantly different [17]. Various other approaches have been
investigated, such as the CUSUM (CUmulative SUM) [1],
[2], direct density-ratio estimation [17] and unsupervised time
series subsequence clustering [10]. CUSUM detects changes
by investigating the sum of linear regression errors. When the
errors exceed a threshold, we consider that the time series
no longer fits the regression model and a change occurred.
Direct density-ratio estimation is a non-parametric approach
to estimate the ratio of probability densities. Whether there
is a change point is decided by monitoring the logarithm of
the likelihood ratio. The unsupervised time series subsequence
clustering clusters the subsequences and defines the transition
of the subsequence from one cluster to another as a change.
However, those approaches only give indication if change has
occurred rather than providing insights into the nature of the
change and the transition behaviour of the system. In [10], the
unsupervised clustering method to detect land cover change
has the potential for revealing patterns in the system, but it
could not be used to deal with recently acquired data.

Considering that a rapid response or early warning is crucial
in many cases, this paper proposes a method for real time
detection of the change points in time series. The proposed
method is based on time series subsequence clustering. There
are two main categories in time series clustering [18]. “Whole
clustering” is similar to that of conventional clustering of
discrete objects. The entire time series is taken as a discrete
object. In contrast, “subsequence clustering” is performed on



individual subsequences extracted with a sliding window. A
subsequence x,(t) for a time series x(¢) with length m is

2 (lptw-1)) (1)

for 1 < p < m—w+ 1, where w is the length of the
subsequence. The sequential subsequences in (1) are extracted
using a sliding window with a length of w and position p,
which is incremented with a natural number N. Wide use
of subsequence clustering has been made in different areas.
However, the sliding window causes the clustering procedure
to create meaningless results as it forms sine wave cluster
centres regardless of the data set, which makes the clusters
extracted by any clustering algorithm essentially random [18].
To address this problem, several solutions have been used. [18]
demonstrated a meaningful motif-based-clustering method.
[19] and [20] used alternative distance measures to make
sequential time series clustering meaningful. In [21], global
measures describing time series were proposed to capture
the underlying characteristics: trend, seasonality, periodity,
serial correlation, skewness, kurtosis, chaos, nonlinearity and
self-similarity, and the clustering was performed on the sub-
sequences defined by a feature vector of these measures.
[10] demonstrated three different unsupervised clustering ap-
proaches that operate on short term Fourier transform coef-
ficients computed over subsequences that are extracted with
a temporal sliding window and created meaningful sequential
time series. Here we borrow the idea of [10] and [21] and
use a set of subsequence features to map the original sub-
sequences into feature space before clustering subsequences
meaningfully. However, changes are detected here in an on-
line manner while [10] operates clustering off-line.

III. PROPOSED METHODOLOGY

A. Feature Extraction

It is claimed in [18] that non-overlapping sliding windows,
with their positions incremented by exactly the periodic length,
would produce valid clusters when applied to a periodic time
series. However, using the magnitude of the first few Fast
Fourier Transform (FFT) components of x,(t) to characterise
the subsequences makes the sliding window position p not
have to be shifted by a fixed amount, but can be incremented
by any natural number N [10]. For each subsequence z,(t),
the features x,(f) are computed as

Xp(f) = [F(2p())] 2

where F(-) represents the Fourier transform. The window
length w depends on the type of time series. For seasonal
time series, w is always fixed at the number of samples
corresponding to the length of the cycle.

Meanwhile, more features besides FFT components like
chaotic properties, serial correlation and so on [21] could be
calculated to characterize the time series subsequences.

B. Unsupervised Change Detection: Growing Feature Quan-
tization

VQ clustering is a classical quantization technique to divide
a large set of points (vectors) into groups. Each group is
represented by its centroid point. Its goal is to discover
structure in the data by finding how the data is clustered. In
VQ, there is a codebook which is defined by a set of M
prototype vectors. M is chosen by the user and the initial
prototype vectors are chosen arbitrarily. An input belongs to
cluster ¢ if ¢ is the index of the closest prototype. From the
mathematical point of view, vector quantization is basically
a simplified version of k-means [22]. The simple idea is in
Algorithm 1.

Algorithm 1 VQ

1: Choose the number of clusters M

2: Initialize the prototypes wi,--- , Wy,

3: Randomly pick an input x

4: Find the winning cluster w* by finding the prototype
vector satisfying

|lw* —z| <|w; —zl,i=1,--- M 3)
5: Update the winning prototype weights according to
u;*new - U;*old + n *x (SU - uj*old) (4)

where 7 is the adaptation value

Algorithm 1 can’t be applied for data sets with an unknown
number of clusters. Various clustering approaches have been
presented in an incremental manner such as sequential k-
means [23], dynamic Self Organised Maps (SOM) [24] and
Growing Neural Gas [25], [26]. The GFQ clustering is pro-
posed in this paper. The goal is to cluster the subsequence
features incrementally, by which new clusters can be recog-
nized in time and the number of clusters don’t have to be
known in advance. In some systems like infectious diseases
the earliest possible warning of a change is required, while
in other systems an early warning of changes costs a lot of
energy, money and sometimes panic. To enable the sensitivity
of the system to be controlled, a user defined single parameter
R is used. For each incoming feature vector z, if this condition
is fulfilled:

distance(z, w*) > R (5)

where w* is the winning prototype, we create a new cluster,
which z belongs to. Otherwise, = belongs to the winning
cluster. The number of clusters will become smaller with the
parameter R growing (Fig. 1). According to a number of
experiments this parameter should be around v/d /3, where d is
the dimension of the feature space. Of course, this parameter
can be flexibly tuned according to the real world context to
reduce false alarms or increase early warnings. The whole
process is summarized in Algorithm 2.

A one-pass incremental and evolving variant of VQ were
demonstrated in [22] by incorporating a vigilance parameter,
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Fig. 1: How the choice of R influences the number of clusters

exploiting the idea in the adaptive resonance theory (ART)
[27]. However the prototype vectors are not rescaled when the
incoming input is outside the estimated range, which actually
places the new input on a different scale to the prototype
vectors.

C. Recognising changes and transition behaviours

Changes in time series are defined as the transition of the
subsequence from one cluster to another within the feature
space which characterise the time series subsequences. Thus
the transition behaviours can be identified according to the
memberships of the subsequences. It reveals whether the
transition is between existing clusters or it changes to a
new state. In this way, the states of the system can be both
qualitatively and quantitatively described.

IV. RESULTS
A. The seatbelt data

The seatbelt data is a monthly time series (from Jan 1969 to
Dec 1984) of the number of car drivers in Great Britain killed
or seriously injured in traffic accidents. There are two break-
points in this time series, which are Oct 1973—associated
with petrol rationing and the introduction of lower speed
limits during the first oil crisis—and Jan 1983—associated
with the seat belt law introduced in the UK on 1983-01-31
[28]. The sliding window length is fixed at w = 12 samples
to correspond to the length of the annual cycle. We use
magnitudes of the first four FFT components to characterize
the sliding windows. Global features like chaotic properties are
not used here because the short length of the subsequences
and the short sliding step will not make those features of
the subsequences well distinguished. In Fig. 2, the circles
represent the ending points of the corresponding subsequences.
Different colors means the subsequences are grouped into
different clusters. From Fig. 2, using GFQ clustering, the
transitions from one cluster to another can be seen both in
end of 1973 and beginning of 1983.

Algorithm 2 GFQ

1: Initialize a threshold R, which gives a radius around a
cluster prototype, in which feature vectors must lie to
belong to the cluster

2: Initialize an adaptation value 7, which depends on the
number of inputs in the cluster

3: Collect a few data samples to obtain the estimated maxi-
mum and minimum for each feature component, and hence
the estimated ranges of each feature

4: Initialize C = 1, where C is the current number of
clusters; initialize a cluster prototype wi, which is the
first normalized input

5: Read the next incoming subsequence and calculate its
feature vector = as the new input

6: if x is outside the estimated range then

Update the ranges of each feature
Rescale the current cluster prototypes using the updated
ranges of each feature

9: else

10:  Use the current estimated ranges of each feature

11: Normalize the input to [0,1]? according to the ranges,
where d is the dimension of the feature space. Name the
normalized input as &

12: Find the winning cluster w* by finding the prototype
vector satisfying

|lw* — 2| <|w; —&|,i=1,---,C (6)

13: if distance(Z, w*) < R then

14:  Make £ a member of w*

15 LetC=C

16:  Update the winning cluster center:

U;*new - u;*old + n *x (‘i - u;*old) (7)
17:  Update the adaptation rule:
1 = 1/(number of inputs in the cluster) (8)

18: else

19:  Create a new cluster; make 2 a member (and the center)
of the new cluster

20 LetC=C+1

To reveal the transition process in this system, denote the
three clusters in this system as states S1,52,.53. At the end
of 1973, the system changed from S1 to S2, after which the
system went back to state S1 from the beginning of 1976 till
1983. After that, there came a new state S3 in the beginning
of 1983 because of the introduction of the seat belt law.

To make comparisons, Fig. 3 gives the clustering results
using growing vector quantization based on raw data (but
not features). The results are in line with the “meaningless
” interpretation reported in [18]. On the other hand, Fig.
2 indicates the meaningful subsequence clustering based on
features. Fig. 4 gives the clustering results using k-means
based on features. The two main changes identified using GFQ
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Fig. 3: SeatBelt time series subsequence clustering using
growing vector quantization based on raw data

are roughly in accordance with the changes detected using

Fig. 5: Nile time series with changes using GFQ

k-means. This indicates that GFQ can obtain similar quality e ‘ ' ' ' '
results as k-means but GFQ clustering is a real-time method, 12l i
in which the number of clusters don’t have to be known in
advance. 10 - Distance ko the ather prototype B
B. The Nile data § e |
®

The Nile data is a time series of the annual flow of the 4 usp 1
river Nile at Aswan from 1871 to 1970 [2], [29]. It measures
annual discharge at Aswan in 103m3. From Fig. 5, we can see i i
that there is a change around 1900. The obvious reason is the wal  Distanoe to the winring prothyp |
Aswan dam that was built in 1898. Fig. 6 shows the distance
from the data points to the winning prototype. From 1871, the 0 ‘ s s s .

1860 1880 1900 1920 1940 1960 1980

data points are moving further from the first prototype until
a new cluster is created around 1900 when the distance of
the incoming data points to the original prototype exceeds the
pre-defined threshold R.

Fig. 6: Distances to prototypes
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Fig. 7: MODIS time series

C. The MODIS NDVI data

The MODIS NDVI data is an NDVI time series of a pinus
radiata plantation [1]. The transition of clusters can be seen
in Fig. 7 around the year 2004, which is the known harvest
year.

D. Simulated time series

Simulated time series are generated by summing individ-
vally simulated seasonal, noise and trend components [1].
The seasonal component is created using an asymmetric
Gaussian function for each season, which has been shown to
perform well when used to extract seasonality [30]. The noise
component is generated using a random number generator
that follows a normal distribution. The trend component was
generated by selecting a constant. Two drops and linear
recovery phases in trend component are simulated in Fig. 8.
An additional change in seasonal component is simulated in
Fig. 9. From the transition of the subsequence membership,
the simulated changes are detected easily.

V. CONCLUSION

In this paper, a method for real-time time series change
detection is proposed. It is based on an extension of VQ—
known as growing feature quantization (GFQ) clustering,
which provides insights into the transitions of the time series
subsequence states. In order to avoid the meaninglessness
limitation pointed out in [18], the method uses features instead
of raw data to characterise the time series subsequences.
According to the experiments on three frequently used time
series as well as two simulated data, the proposed approach
performs as well as k-means, but it can be used to detect
changes in a real-time manner and the number of clusters don’t
have to be known in advance. Besides, the method can reveal
the transitions among the system, provide insights into the
nature of the pattern changes and find new states coming in
the current system.
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Fig. 8: Simulated time series
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Fig. 9: Simulated time series

Further research is necessary to study the choice of sub-
sequence features. Extension of features to a more compre-
hensive feature set will be studied. Future work also involves
the choice of the threshold R. This parameter can be flexibly
tuned according to the real world context to reduce false
alarms or increase early warnings. That means it depends
on trade-off between the benefits of early warning and the
misclassification costs in the system. It is necessary to find
an optimal threshold R* to detect changes reasonably for a
specified system. Besides, larger datasets in more fields of
application such as sleep staging [31]-[34] will be tested using
GFQ change detection approach.
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