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Ahstract-This paper proposes a spectral algorithm for cross­
topographic clustering. It leads to a simultaneous clustering on 
the rows and columns of data matrix, as well as the projection 
of the clusters on a two-dimensional grid while preserving the 
topological order of the initial data. The proposed algorithm is 
based on a spectral decomposition of this data matrix and the 
definition of a new matrix taking into account the co-clustering 
problem. The proposed approach has been validated on multiple 
datasets and the experimental results have shown very promising 
performance. 

I. INTRODUCTION 

Clustering has received a significant amount of attention 
as an important problem with many applications, and a 
number of different algorithms and methods have emerged 
over the years. Although many clustering procedures such 
as hierarchical clustering and k-means aim to construct an 
optimal partition of objects or, sometimes, variables, there 
are other methods, known as block clustering methods, which 
consider the two sets simultaneously and organize the data 
into homogeneous blocks. In recent years block clustering, 
also denoted co-clustering or bi-clustering, has become an 
important challenge in the context of data mining. For datasets 
arising in text mining and bioinformatics where the data 
is represented in a very high dimensional space, clustering 
both dimensions of data matrix simultaneously is often more 
desirable than traditional one side clustering. Co-clustering 
which is a simultaneous clustering of rows and columns 
of data matrix consists in interlacing row clusterings with 
column clusterings at each iteration [1], [2]; co-clustering 
exploits the duality between rows and columns which allows 
to effectively deal with high dimensional data. The earliest 
co-clustering formulation called direct clustering has been 
introduced by Hartigan [3], who proposed a greedy algorithm 
for hierarchical co-clustering. Dhillon [2] developed a spectral 
co-clustering algorithm on word-document data, the largest 
several left and right singular vectors of the normalized word­
document matrix are computed and then a final clustering step 
using kmeans is applied to the data projected to the topmost 
singular vectors. In [4], the authors proposed an information­
theoretic co-clustering algorithm that presents a non-negative 
matrix as an empirical joint probability distribution of two 
discrete random variables and set co-clustering problem under 
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an optimization problem in information theory. Probabilistic 
model-based clustering techniques have also shown promising 
results in several co-clustering situations, the co-clustering of 
binary and contingency data has been treated by using latent 
block Bernoulli and Poisson models [5], [6]. The co-clustering 
implicitly performs an adaptive dimensionality reduction at 
each iteration, leading to better document clustering accuracy 
compared to one side clustering methods [2]. Co-clustering 
is also preferred when there is an association relationship 
between the data and the features (i.e., the columns and the 
rows) [7]. 
Even if the co-clustering problem is not the main objective 
of nonnegative factorization matrix (NMF), this approach has 
attracted many authors for data co-clustering and particularly 
for document clustering [8]. 

In text mining field, Dhillon [9] has proposed a spectral 
block clustering method by exploiting the duality between 
rows (documents) and columns (words). In the analysis of 
microarray data, where data are often presented as matrices 
of expression levels of genes under different conditions, block 
clustering of genes and conditions has been used to overcome 
the problem of choosing the similarity on the two sets found 
in conventional clustering methods [10]. The aim of block 
clustering is to try to summarize this matrix by homogeneous 
blocks. 
A wide variety of procedures have been proposed for finding 
patterns in data matrices. These procedures differ in the pattern 
they seek, the types of data they apply to, and the assumptions 
on which they rest. In particular we should mention the work 
of [4], [7], [5] who have proposed some algorithms dedicated 
to different kinds of matrices. The basic idea of these methods 
consists in making permutations of objects and attributes in 
order to draw a correspondence structure between these two 
sets. In Table 1 we illustrate this task on binary data and 
obviously, the tables on the right are preferable because they 
are more concise. It clearly appears that we can characterize 
each cluster of rows by a cluster of columns. The data on 
which we are focused represent matrices crossing documents 
words. There are high dimensional data, very sparse, where 
the number of words is much higher than the number of 
documents. 

In this paper we propose a new approach called TSC (To-



pographical Spectral Co-clustering). The proposed approach 
combines a spectral decomposition of the data matrix and the 
application of the SOM algorithm to a new matrix resulting 
from a spectral decomposition. This latter leads to a new 
representation data in a low dimensional space which makes 
our algorithm faster and more efficient compared to conven­
tional approaches (SOM, Spherical K-means). Furthermore, 
our approach allows to visualize the results of the co-clustering 
on a two-dimensional map. 

Fig. I. Left: original data. Right: reorganized data. 

The rest of paper is organized as follows. Section 2 introduces 
the formalism of the traditional Self-Organizing Map (SOM). 
Section 3 describes our proposed notations and describes the 
topographical co-clustering model. Section 4 provides details 
on the TSC algorithm. The results obtained on real document 
datasets are presented in section 5. Finally, the conclusion 
summarizes the advantages of our contribution. 
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Fig. 2. The principle of the Self-Organizing Map 

II. TRADITIONAL SELF-ORGANIZING MAP (SOM) 

The self-organizing maps are increasingly used as tools for 
data visualization, as they allow projection in low dimensional 
spaces, typically bi-dimensional. The basic model proposed by 
Kohonen consists of a discrete set C of cells called "map". This 
map has a discrete topology defined by an undirected graph, 
which usually is a regular grid in two dimensions. For each 
pair of cells (r ,8) on the map, the distance J (r, 8) is defined 
as the length of the shortest chain linking cells r and 8 on 
the grid. For each cell this distance defines a neighbor cell; in 
order to control the neighborhood area, we introduce a kernel 

positive function K (K � 0 and lim K(y) = 0). We define 
lyl ..... <X) 

the mutual influence of two cells rand 8 by Kr,s' In practice, 
as for traditional topological maps we use a smooth function to 
control the size of the neighborhood as Kj,k = exp( -O� ,s)) .  
Using this kernel function, T becomes a parameter of the 
model and as in the Kohonen algorithm, we decrease T from 
an initial value Tmax to a final value Tmin. 

Let �M be the Euclidean data space and A = {ai; i = 

1, . . .  , N} a set of observations, where each observation 
ai = (at , a; , ... , af1 ) is a vector in �M. For each cell k 
of the grid (map), we associate a referent vector (prototype) 
Wk = (w} " w� , ... , w{;1 ) which characterizes one cluster as­

sociated to k. We denote by W = {Wk; Wk E �M}l�i the 
set of the referent vectors. The structure of the SOM map 
is presented in figure 2. The set of parameter W has to be 
estimated iteratively by minimizing the classical cost function 
defined as follows: 

N IWI 

R(tp , W) = L L Kk,'P(ai)llai - w kl12 
i=l k=l 

(1) 

where tp assigns each observation ai to a single cell in 
the map C. This cost function can be minimized using both 
stochastic or batch techniques [II]. 

III. TO POGRAPHICAL CO-CLUSTERING 

This approach is an extension of the SOM algorithm pro­
posed in [11] to the simultaneous topographical clustering of 
rows and columns of a data matrix. Like for the classical model 
of self-organizing maps SOM, we use for the TSC approach a 
neural network with an input layer for the objects (individuals 
and attributes) and a map C which contains an topological 
order like output, the topology oh the map is defined by an 
undirected graph. 
The TSC model uses also the vector quantification, each 
cell on the map which is the index of the prototype of 
the searched quantification will be represented by a vector 
of the same size as the objects. The quantification is done 
by an assignment function tp and the choice of prototypes 
and assignment function is done by maximizing an objective 
function denoted by :JT(tp, W). The maximization should 
allow firstly, to define prototypes to achieve a conservation 
of the topology of the data and perform in the other hand a 
partition of L = (I U J) into homogenous subsets or blocks (J 
is the set of observations and J is the set of columns). Then, 
in the rest of this paper, we consider the partitioning of I and 
J simultaneously into 9 � 2 non overlapping clusters. 

Let A be a N by M data matrix, R be a N x 9 index matrix 
and C be a M x 9 index matrix. The matrices Rand C take 
these forms R = (R1IR21 . .  ·IRg) and C = (C1IC21·· ·ICg) 
where a column Rk or Ck is defined as follows: rik = 1 if 
row i belongs to cluster Rk and rik = 0 otherwise, and in the 
same manner Cjk = 1 if column j belongs to cluster Ck and 
Cjk = 0 otherwise. 
Our approach consists of two components : 



1) Spectral decomposition of the data matrix: This step 
consists of a spectral decomposition of a weighted data 
matrix using an SVD and the construction of a new data 
matrix D adapted to the problem of co-clustering. 

2) Co-clustering of original data A by applying the SaM 
algorithm on D. 

A. Spectral decomposition 

In the following, the number of clusters 9 on I and J 
is assumed fixed. We use the following strategy to address 
the problem of finding a simultaneous partitioning; Compute 
the first (g - 1) left and right eigenvectors of data matrix 
A to form a (g - I)-dimensional embedding of data into a 
Euclidean space. Then we use a hard-assignment thanks to 
saM on this new space to obtain a simultaneous clustering 
Rand C. 

Let A be an N by M data matrix, taking Dr = diag(All) 
and Dc = diag(Atll) (where II is the vector of appropriate 
dimension which values are equal to 1), the matrix A can 
be approximated by the (g - 1 )th largest eigenvectors of the 
scaled matrix 

mmus the trivial vectors (corresponding to the largest 
eigenvalue) 

Note that we can rewrite A as 

1 -1 1 1 A = D! (D;'2 ADJ)DJ. 
It is well known that the largest eigenvalue of 

A = Dr-,l ADc-,l 

is equal to AO = 1 and the associated left and right eigenvec­
tors are respectively [12], 

1 1 D!ll DJll 
Uo = F.. and Vo = F..' with a .. = La{ 

i,j 
Applying the spectral decomposition of the scaled matrix A 
instead on A directly, leading to 

.! � t '! A = D; � UkAkVkDJ. 
k�O 

(2) 

Substract the trivial eigenvectors corresponding to the largest 
eigenvalue AO = 1 give 

(3) 

Keeping the (g - 1 )th first eigenvectors, we obtain the follow­
ing approximation 

(4) 

where 
- � - � 
Uk = Dr2 Uk and Vk = Dc2 Vk. 

We can approximate A by 

g-1 
L UkAkV{ 
k=1 

The data matrix A is expressed in terms of (g - l)th first 
eigenvectors of the scaled matrix A. Then we have a (N x 

(g - 1)) matrix 

U = [UI, ... , Ug-1] 

formed by the (g - 1) left eigenvectors and a (M x (g - 1)) 
matrix 

v = [VI, ... , Vg-l] 

formed by the (g - 1) right eigenvectors. We then normalize 
U into U in which 

1 D!Uk 
1 

IID!Ukll 
and V into V in which 

.! DJVk 
1 

IIDJVkl1 
The eigenmatrices U and V can be an input of the SaM 

algorithm via the following new matrix 

D= (�) (5) 
D is a rectangular matrix of size (( N + M) x (g - 1)), it 
is a superposition of the two matrices U and V. The term 
"individuals(rows)-variables(columns)" is to be taken here 
with a very broad sense. Indeed, the principle of superposition 
plays on the lack of distinction between these notions when 
taking into account data, to be restored at the level of 
the final solution. The set of objects to cluster is the set 
L = I U J, union of the two sets of departure. In the matrix 
D, individuals and variables are now playing a similar role, 
so we will refer to by the single term "object". We thus 
find the problem of one side clustering, since the problem 
is again to cluster a set of objects, this time however, the 
set in question is no longer either I or J, but the union of 
the two sets. The solution is a partition of L, we denote by 

( � ) the corresponding matrix partition. It seeks to bring 

together, in homogeneous clusters the most similar objects 
(rows and/or columns). 

Analogically with the SaM model, we will give the expres­
sion of the objective function of the TSC model: 

N+MiWi 

:JT(cp, W) = L LK{a(CP(i),£»lldi - w kl1 2 (6) 
i=1 k=1 



where c.p the assignment function is defined by 

c.p(i) = argmin Iidi - wkl12 k 
IV. TOPOGRAPHICAL SPECTRAL CO-CLUSTERING 

ALGORITHM (TSC) 

(7) 

The proposed algorithm called TSC begins by computing 
the first (g - 1) eigenvectors ignoring the trivial ones. This 
algorithm is similar in spirit to the one developed by Dhillon 
[9]. The algorithm embed the input data into the Euclidean 
space by eigen-decomposing a suitable affinity matrix and then 
cluster D using a geometric clustering algorithm. Hereafter, 
the pseudo code of the proposed algorithm. 

Algorithm 1 TSC 

Input: data A, number of clusters g 
Output: partition matrices Rand C 
1. Form the affinity matrix A 
2. Define Dr and Dc to be the diagonal matrices 

Dr = diag(Ali) and Dc = diag(Atli) 
3. Find U,v the (g - 1) left-right largest eigenvectors of 

- _ 1 _ 1 A = Dr 2 ADc 2 
4. From U and V, form the matrices fj, if and 

D= ( � )  
5. Cluster the rows of D into g clusters by using saM 
6. Assign object i to cluster Rk if and only if the corre­
sponding row di of the matrix D was assigned to cluster 
Rk and assign attribute j to cluster Ck if and only if the 
corresponding row dj of the matrix D was assigned to 
cluster Ck. 

The TSC algorithm contains two majors components: com­
puting the eigenvectors and executing saM to partition the 
rows and columns data. We run saM on D; each row is a 
(g - 1) vector. Standard saM with Euclidean distance metric 
has time complexity O((N + M)dkt), where (N + M) is the 
number of data points plus the number of attributes, and t 
is the number of iterations required for SaM to converge. 
In addition, for the TSC algorithm there is the additional 
complexity for computing the matrix eigenvectors D; for 
computing the largest eigenvectors using the power method 
or Lanczos method [13], the running time is O(N2 M) per 
iteration. Similar to other spectral graph clustering method, 
the time complexity of TSC can be significantly reduced if 
the affinity matrix A is sparse. 

V. EXPERIMENTAL VALIDATIONS 

To evaluate the quality of clustering, we adopt the approach 
of comparing the results to a "ground truth". We use the 
clustering accuracy for measuring the clustering results. This 
is a common approach in the general area of data clustering. 

In general, the result of clustering is usually assessed on 
the basis of some external knowledge about how clusters 
should be structured. This may imply evaluating separation, 
density, connectedness, and so on. The only way to assess 
the usefulness of a clustering result is indirect validation, 
whereby clusters are applied to the solution of a problem 
and the correctness is evaluated against objective external 
knowledge. This procedure is defined by [14] as "validating 
clustering by extrinsic classification", and has been followed 
in many other studies [15], [16]. We feel that this approach 
is reasonable one if we don't want to judge clustering results 
by some cluster validity index, which is nothing but a bias 
toward some preferred cluster property (e.g., compact, or well 
separated, or connected). Thus, to adopt this approach we need 
labelled data sets, where the external (extrinsic) knowledge is 
the class information provided by labels. Hence, if the TSC 
finds significant clusters in the data, these will be reflected by 
the distribution of classes. Therefore we operate a vote step 
for clusters and compare them to the behavior methods from 
the literature. The so-called vote step consists in the following. 
For each cluster Ck E C: 

• Count the number of observation of each class f (call it 
NkRJ. 

• Count the total number of observation assigned to the cell 
k (call it Nk). 

• Compute the proportion of observations of each class 
(call it SkI-= NkdNk). 

• Assign to the cluster the label of the most represented 
class as follows: (£* = argmaxl(Skl-). 

A cluster k for which SkI- = 1 for some class labelled f 
is usually termed a "pure" cluster, and a purity measure can 
be expressed as the percentage of elements of the assigned 
class in a cluster. The experimental results are then expressed 
as the fraction of observations falling in clusters which are 
labelled with a class different from that of the observation. 
This quantity is expressed as a percentage and termed "error 
percentage" (indicated as Err% in the results). Regarding the 
evaluation method, we choose not to perform cross-validation 
or similar procedures, considering that the algorithm is trained 
in a completely unsupervised manner, and calibration already 
occurs (in a sense) on an external validation data set, that 
is the set of class labels. Cross-validation or resampling 
methods, however, could be very useful to assess the stability 
of the proposed method, by comparing clustering structures in 
repeated experiments. 

A. Textual datasets 

In order to compare the performances of TSC with other 
traditional unsupervised clustering algorithms, we use many 
text datasets, which represent the frequency of words in 
documents. 

We used eight datasets for document clustering. "Clas­
sic30", "Classic 150", "Classic300", "Classic400" are an ex­
tract of Classic3 [9] which contains three classes denoted 
Medline, Cisi, Cranfield as their original database source. 
Classic30 consists of 30 random documents described by 1000 



words and Classic150 consists of 150 random documents 
described by 3625 words. Trll and TR12 were extracted from 
the "Cluto toolkit". Finally, NG2 (2 classes of documents), 
NG5 (5 classes) are a subset of 20-Newsgroup data NG20 
and composed by 500 documents described by 2000 words, 
concerning talk.politics.mideast and talk.politics.misc. A short 
description of these datasets is presented in the table I. Co­
clustering is preferred for applications in high dimensional 
spaces. Most clustering algorithms do not work efficiently in 
high dimensional spaces due to the curse of dimensionality. It 
has been shown that in a high dimensional space, the distance 
between every pair of points is almost the same for a wide vari­
ety of data distributions and distance functions. Co-clustering 
performs an implicit feature selection and overcome object 
similarity computation. Co-clustering is preferred to classical 
clustering methods for applications in high dimensional and 
particulary when N < < M. 
To compute the quality of the performed clustering we adopted 
an evaluation approach which uses external knowledge (the 
class information provided by labels). Thus we use the purity 
index to evaluate the results of the documents clustering. We 
compared our method with Spherical k-means [17] and SaM 
approaches. The table II presents the performances obtained 
by our method. We observe an improvement of the purity on 
all the databases. 

Our approach consists of two components: I)Spectral de­
composition of the data matrix and 2) co-clustering of objects 
(documents and words) applying the SaM on the matrix 
D obtained from the spectral decomposition. The first stage 
allows us to reduce considerably the data dimension, which 
will decrease the computational cost thereafter on the second 
phase. This fact is confirmed by the run-time results reported 
in the table III. 

TABLE I 
DESCRIPTION OF THE DATABASES USED FOR THE EVALUATION. 

Databases 

Classic30 
Classic150 
Classic300 
Classic400 

NG2 
NG5 
Trll 
Tr12 

# Documents 

30 
150 
300 
400 
204 
878 
414 
313 

TABLE II 

# Words 

1073 
3625 
5577 
6205 
5831 
7453 
6424 
5799 

#classes 

3 
3 
3 
3 

2 
5 
5 
5 

COMPARISON OF THE PURITY INDEX FOR SPERICAL K-MEANS, SOM AND 
TSC METHODS 

Purity: '10 Size of the map Spherical k-means SOM TSC 

Classic30 (2 x 3) 83.31 83.33 100 

Classic150 (3 x 3) 90 90.24 100 

Classic300 (5 x 6) 93.66 82.4 99.3 

Classic400 (5 x 5) 82 85.16 98.5 

NG2 (5 x 5) 84.40 64.52 71.56 

NG5 (6 x 7) 56.91 67.31 82.46 

TRll (4 x 4) 53.86 55.42 68.35 

TR12 (7 x 6) 58.14 54.61 66.45 

TABLE III 
COMPARISON OF TIME (IN SECONDS) FOR SOM AND TSC METHODS 

Time Size of the map SOM TSC 

Classic30 (2 x 3) 15.69 0.22 

Classic150 (3 x 3) 506.68 0.39 

Classic300 (5 x 6) 1658.66 1.17 

Classic400 (5 x 5) 2121.51 1.17 

NG2 (5 x 5) 1873.25 2.13 

NG5 (6 x 7) 4384.64 7.58 

TRll (4 x 4) 2479.43 1.23 

TR12 (7 x 6) 1881.59 1.92 

B. Zoo data 

To illustrate the visualization of the co-clusters, we propose 
to apply our algorithm on Zoo data. This dataset is taken 
from [18], it contains 101 animals described with 16 variables. 
Each animal is labelled 1 to 7 according to its class. We use 
the names used in original data set, [18]. Our results on this 
dataset is presented in the figure 3. We can simultaneously 
visualize animals and variables collected by each cell, and 
also we obtain a topology of the data which is projected on 
the map. We observe in bottom right comer of the map the 
sea animals (cell 15, cell 16). On the up left comer we can 
observe that the domestic birds and wild birds are grouped 
in neighborhood cells (cell 1, cell 2). The insect family is 
represented in the middle of the map (cell 9, 10, 11). The 
animals of the cells 4 and 8 share close characteristics as 
"milk", "hair", "toothed","predator". The empty cells (5,6,7) 
form borders between birds and insects families. 

V I. CONCLUSION 

In this paper we proposed an extension of the SaM 
algorithm to co-clustering of the dyadic data. The proposed 
approach combines a spectral decomposition of the data 
matrix and the application of the SaM algorithm to a 
new matrix defined from the matrices of eigenvectors. This 
new matrix is well adapted to the co-clustering problem. 
The experimental results obtained using different real high 
dimensional and sparse databases, show the effectiveness 
of our approach in terms of classification accuracy and 
computation time compared to classical SaM and Spherical 
k-means methods. 
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