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Federal University of Rio Grande do Sul, Brazil.

Email: bazzan@inf.ufrgs.br

Abstract—Learning in coordination games has been extensively
studied in the game theory and multi-agent learning literature.
Most of this work has considered a low number of agents and/or
states (typically two agent, two action games). When the number
of states and/or joint actions increases, standard approaches for
multi-agent learning have difficulties coping with a high number
of agents due to the combinatorial explosion in the number of
joint actions and joint states. In real-world applications, this is
a common setting though. This paper introduces a methodology
for learning to coordinate in stochastic games with many agents.
More specifically, we introduce a structure where some agents
have knowledge about joint actions and how they have performed
in the past. We empirically investigate this method for multi-
agent learning in a typical stochastic game involving a high
number of agents. Experimental results show that the additional
information and structure is translated into earlier and higher
levels of coordination and thus to higher payoffs.

Index Terms—Multiagent learning, Stochastic games, Coordi-
nation in multiagent systems

I. INTRODUCTION

The problems posed by many actors in a multi-agent re-

inforcement learning (MARL) scenario are inherently more

complex than those appearing in single agent learning. This

issue arises mainly due to the fact that while one agent is trying

to model the environment (other agents included), other agents

are doing the same and potentially changing the environment.

This produces an environment that is inherently non-stationary.

Therefore, at least in the general case, convergence guarantees,

as previously known from single agent reinforcement learning

(e.g., Q-learning), no longer hold.

A popular formalism for MARL is based on stochastic

games (SG), i.e., Markov Games, which are an extension

of Markov decision processes (MDP). Unfortunately, some

problems are associated with this formalism. First, solutions

proposed for general-sum SGs commonly require assumptions

regarding the game structure that do not apply to real situations

(agents’ knowledge, self-play etc.). Also, it is rarely stated

what agents must know in order to use a particular approach.

These assumptions restrain the convergence results to com-

mon payoff games or zero-sum games. Second, the focus

is normally put on two-agent games, and not infrequently,

single-state, two-action games. Third, and more important,

despite recent results on formalizing multi-agent reinforcement

learning using SG, these cannot be used for systems of many

agents, if any flavor of joint-action is explicitly considered.

This happens mainly due to the exponential increase in the

space of joint actions. In fact, most of the game-theoretic

literature concentrates on repeated single-state games with few

players and few actions.

Up to now, these issues have prevented the use of SG-

based MARL in real-world problems, unless simplifications

are made, such as letting each agent learn individually using

single-agent based approaches. It is well-known that this

approach is not effective since agents converge to sub-optimal

policies. In practice this means that, often, the problem cannot

be solved in a centralized way, nor in a completely distributed

one. In the former case, computational complexity issues play

a fundamental role, while in the latter, agents’ actions cause

non stationarity in the environment. Therefore, partitioning

the problem in several, smaller multi-agent systems may be a

good compromise between complete distribution and complete

centralization.

Having this picture in mind, the goal of the present paper

is to address a many-agent system in which these learn in

groups (despite having interactions outside their groups), each

supervised by a higher level agent.

In the present paper we deal with coordination games, a

class of games with multiple Nash equilibria, which is of

broad interest in social sciences and resembles many real-

world situations. For instance, coordination games are of

great interest to model the establishment of new standards

for innovative technologies (e.g., media, music/video players,

etc.), or for coordination tasks in general (e.g., traffic lights,

mobile robots sharing common paths, etc.). We give a more

detailed example in Section II-B.

Our approach differs from others as it does not tackle

simple repeated (known in GT as single-stage) coordination

games, but SG (in GT: multi-stage or multi-state). Moreover,

we consider a high number of agents in a grid-like structure.

Other approaches for MARL rely on observation of joint-

actions at least at some periods of time. Also, other approaches

generally consider games with 2 or 3 agents only. More

details are given in next section, where we focus on related

work. Section III discusses the problems associated with joint

learning, as well as presents our approach. Section IV then

discusses the experiments and results. Conclusions and future

directions are presented in Section V.

II. BACKGROUND AND RELATED WORK

This section introduces reinforcement learning with the

particular example of Q-learning. Furthermore, an intuition of

coordination games is given, and the range of related literature

is discussed.
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A. Single and Multi-agent Reinforcement

Learning

Reinforcement learning (RL) problems can be modeled

as Markov Decision Processes (MDPs). An experience tuple

〈s, a, s′, r〉 denotes the fact that the agent was in state s,

performed action a and ended up in s′ with reward r.

In this paper we use Q-learning, a popular model-free algo-

rithm. The update rule for each experience tuple 〈s, a, s′, r〉 is

given in Equation 1 where α is the learning rate and γ is the

discount for future rewards.

Q(s, a)← Q(s, a) + α (r + γ maxa′ Q(s′, a′)−Q(s, a))
(1)

Considering a high number of agents in multi-agent rein-

forcement learning turns the problem inherently more com-

plex. This complexity has many causes and consequences, as

we have discussed in the introductory section of this paper.

Also, Fulda and Ventura [1] have isolated three factors that

can cause a system to behave poorly: suboptimal individual

convergence, action shadowing, and the equilibrium selection

problem.

In game theoretic terms, multi-agent learning can be trans-

lated into the problem of learning to play best replies. If every

agent is playing a best reply to its opponents, the combination

of strategies is called a Nash Equilibrium. There are two main

categories of games: repeated games and stochastic games

(SG). In the former (in fact a subclass of SG) there is only

one payoff matrix (aka stage) thus agents are always in the

same state (the one associated with the matrix itself). In the

latter many matrices can be considered and agents may or

may not know the structure of the game they are playing,

meaning their joint states, joint actions, and rewards. Several

types of SG have been tackled by ad hoc solutions, but as a

comprehensive description is not possible here, we refer the

reader to [2], [3] and references therein. We remark that the SG

formalism is not the only approach to MARL; for a discussion

on multi-agent learning in general, see [4].

The zero-sum case of SG was discussed by [5] and attempts

of generalizations to general-sum SG appeared in [6] (Nash-

Q). Littman [7] introduced Friend-or-Foe Q-learning (FFQ),

which learns to play Nash equilibria if the overall stochastic

game has a global optimum or a saddle point. The algorithm

requires that each agent is told whether it is facing a friend or

a foe. In particular, the Friend-Q’s guarantees are considerably

weaker than the Foe-Q due to incompatible coordination

equilibria. So far there has been no appropriate answers to

this problem but we return to this in the next subsection.

B. Learning in Coordination Games

This paper considers stochastic coordination games. In its

simplest version, a coordination game is a type of matrix game.

Actions can be selected according to a pure strategy (one

that puts probability one in one single action), or according

to a mixed strategy (there is a probability distribution over

the available actions). In a SG, the solution of the problem

Agent 1
a0 a1

b0 η0 / η0 0 / 0
Agent 2

b1 0 / 0 η1 / η1

TABLE I
PAYOFF-MATRIX FOR A COORDINATION GAME.

from the perspective of player i is to find the best response

to σ−i (the joint strategy played by i’s opponents). All games

have at least one equilibrium, possibly in mixed strategies.

One issue is that some kinds of games have clearly more

than one equilibrium, so the selection of one of them –

the coordination task – is not trivial. For instance, in a

particular class of coordination games called common-payoff

(aka common-interest, common-reward, or team) games all

agents have the same payoff. One characteristic of these games

is that there will always exist a Pareto optimal equilibrium1,

but this needs not be unique.

A canonical example of a coordination game is the follow-

ing: two students are trying to decide which computer and

operating system to use. Both will profit more if they decide

to use the same system so that they can exchange software

and skills. Assuming that the system 0 is more user-friendly

than the system 1, the payoff matrix looks like Table I, with

η0 > η1.

A less abstract example regards coordination of traffic lights

in green waves. Efficient coordination (e.g., one that allows

a sufficiently large time slice for each traffic direction) in

more than one direction is a hard optimization problem.

Thus, in practice, each junction coordinates its green phase

with adjacent neighbors in only one traffic direction. The

decision about with whom to coordinate can be modeled as a

coordination game played among many agents (even if only

some of them directly interact) and, most important, it is a

stochastic game due to the stochastic nature of the problem. At

each time slice each junction is likely to be in a different state,

where states are defined, e.g., by comparing traffic volumes in

the incoming lanes. When for instance (in a grid-like structure)

there is more traffic in the vertical than in the horizontal

approach, it makes more sense to coordinate green lights with

the vertical neighbors. Notice that these neighbors can be in

different states themselves so that being autonomous agents

they may decide to do different actions.

In [8] a coordination game is used to investigate what the

authors call individual learners (IL) and joint-action learners

(JAL). Although they deal with repeated games (not SG),

action selection is stochastic. Thus the convergence to a

coordinated equilibrium (e.g., < a0, b0 > or < a1, b1 > as in

Table I) is not guaranteed. Their approach tries to have agents

explicitly modeling their opponents, assuming that these are

playing according to a stationary policy. This is done via an

estimation of the probability with which opponents will play

1Pareto optimal implies that no joint action improves any agent’s payoff
without making another agent worse off.



a joint action, based on the past plays. Agent i then plays its

best response to this estimated distribution σ−i.

As mentioned, we are interested not only in repeated

common-payoff games in which there is one single matrix

(hence one single state), but rather on the stochastic version of

this problem (several matrices, all of type coordination game).

Henceforth, we use CPSG to denote common-payoff stochastic

game (aka CISG or CRSG).

As put by Sandholm ([9]), multi-agent learning is very

important in case agents do not know the structure of the

game, which is the case in SG. This problem thus involves two

learning tasks: learning the structure of the game and learning

how to play. For this Wang and Sandholm [10] have pro-

posed the Optimal Adaptive Learning (OAL) algorithm, which

creates virtual games for each matrix game. In these virtual

games, suboptimal Nash equilibria are eliminate. This means

that Nash equilibria of the original game must be computed

in the first place. Although in practice Nash equilibria can

be found for reasonably large games, it is unknown whether a

Nash equilibrium can be found in worst-case polynomial time.

Besides, virtual games are solved exponentially in the number

of agents, and it assumes perfect monitoring (observation of

joint actions) thus turning it non-efficient for a high number

of agents. This assumption is particularly strong and here we

subscribe to the view of Stone and Veloso [11] who argue

that complete communication reduces a multi-agent system to

a central process. On the other hand OAL guaranteed finds the

global optimum in fully cooperative SGs.

Brafman and Tennenholtz [12] follow a model-based ap-

proach for the same problem. It assumes a priori coordination

of the agents’ learning processes (e.g., agreement over a joint

exploration phase followed by a settlement on the joint policy

that has yielded maximum reward). This results in a near-

optimal polynomial-time algorithm in the number of actions

of the agents. Recently, Kuminov and Tennenholtz [13] have

introduced a near-optimal polynomial algorithm that considers

imperfect monitoring in a two-player game where it is assumed

that player 1 does not know the payoff matrices or the action

taken by player 2; player 2, however, is fully informed about

both the payoff matrices and the history of the game.

Melo and Ribeiro [14] also address the problem of simul-

taneous learning and coordination in SGs with infinite state-

spaces. Their experiments consider two agents in a simple

multi-robot navigation task.

Previously to these approaches, others have proposed solu-

tions that are also based on perfect monitoring to construct the

joint actions as [15], [16]. Both focus on the climbing game

also used in [8]. Their modeling implies that agents know

the actions performed by all other agents (in order to assign

rewards to these joint states in the Q table). Besides, it is based

on an agreement made at the beginning of the learning.

The approach followed in the present paper relax the

assumption of perfect monitoring at the level of agents. Rather,

it delegates part of this monitoring to an organizational control.

However, the literature also mentions other forms of avoidance

of the combinatorial explosion of the space of (joint) states

and/or actions. Next, we just mention some of these here

as they are not necessarily concerned with all aspects of

coordination in CPSG.

Coordination graphs [17] exploit dependencies between

agents to decompose the global payoff into a sum of local

payoffs. In [18], a sparse cooperative reinforcement learning

algorithm is used in which local reward functions only depend

on a subset of all possible states and variables. This idea is

very suitable for cooperative learning problems, e.g., [19]. In

the present paper, such dependencies between neighbor agents

are also exploited but these agents must not know from each

other. Communication is restricted to agents one level up or

down the hierarchy, as detailed in the next section.

The approach by Vu and colleagues [20] deals with multiple

opponents with an algorithm based on joint strategies for

all the self-play agents (those who learn using the same

algorithm). In this case, the action space is exponential in the

number of self-play agents. Vrancx et al. [21] have investigated

coordination games and a version of the prisoners’ dilemma,

both with two states. However, in their case only two players

are considered.

Some forms of non-explicit biased exploration are worth

mentioning. The first was proposed in [22] where Zhang

et al. introduce a supervision framework to speed up the

convergence of MARL algorithms. Hierarchically superior

agents keep abstract states of lower-level agents. This view is

used to generate rules (that agents must follow) or suggestions

(these are optional), passed down to local agents.

The second form of biased exploration is due to Hines and

Larson [23] who use repeated games where agents can follow

the advice of a mediator that makes suggestions to the agents

as to what actions to take. Mediation allows them to find a

correlated equilibrium. However the authors do not deal with

coordination games with multiple states, and the combination

with Q-learning was left as future work.

Finally, [24] has used the Stackelberg equilibrium concept,

which, in a two-player game means that one acts as the leader

while the other as the follower. The leader enforces its strategy

and the follower reacts to this enforcement. This approach was

tested in a two-state, three learning agents scenario.

III. IMPROVING COORDINATION IN CPSG

This paper approaches multi-agent learning via SGs. This

section defines the game formally and details the learning

processes.

A. Basic Formal Setting

An n-agent SG is a tuple (N,S,A,R, T ) where:

N = 1, ..., i, ...n is the set of agents

S is the discrete state space

A = ×Ai is the discrete action space (set of joint

actions)

Ri is the reward function (R determines the payoff

for agent i as ri : S ×A1 × . . .×Ak → ℜ)

T is the transition probability map (set of probability

distributions over the state space S).



Contrarily to previous works, we let agents play the game

repeatedly with m > 3 other agents. To render the examples

more didactic we only use two payoff matrices or states.

Notice however that it is not the case that we address only

two joint states.

As illustration we refer to Fig. 1 in which 16 agents

(α1, ...δ4) are divided in four groups (α, β, γ, δ). We focus

the example on agent α4.

Let us assume that state s0 is defined by (η0 = 2, η1 = 1)
and s1 by (η0 = 1, η1 = 2) (see Table I). In Fig. 1, α4 and its

neighbors (α2, α3, α4, β3, γ2) interact. The first 3 are in state

s0 while the last 2 in s1. Thus, if all 5 coordinate on action

0, α4 receives payoff of 4, i.e., 1 point for each play with

a neighbor (see Table I). In a repeated game (say only with

state s0) this payoff would be 8 for the same set of actions.

In short, coordinating in SG is harder than in repeated games.

To address problems such as the one of the traffic light

coordination discussed in the previous section, we model a

probability that each agent changes to another state. Thus,

jointly, there are 2|N | possible states where N is the number of

agents that interact. Hence using JAL as in [8] is not an option.

If agents all keep mappings of their joint actions, this would

imply that each agent needs to maintain tables whose sizes are

exponential in the number of agents: |S1|× . . .×|Sn|×|A1|×
. . . × |An|. This is hard even if, as said, |S| = 1. Moreover,

JAL is not feasible if agents have to interact in disjoint groups

which is the case in Fig. 1: if < α4, α2, α3, β3, γ2 > explicitly

record joint actions, they may learn a policy that is optimal

for them (even considering state changes) but which is not

necessarily good for the group < β3, β1, α4, β4, γ1 > in which

β3 is also interacting. Similar reasoning applies to all agents

as there is a chain of interactions.

In the next subsection we define the SG-based formalism

adapted for the case in which agents form an organization

where the relationship is characterized by the physical position

in a non-toroidal grid2.

B. Individual and Supervised Learning

Individual learning is based on Q-learning. Each agent keeps

its Q table where the rewards received by playing with the

m interacting neighbors are collected. This avoids agents

having to know what other agents have played (as no joint

actions are recorded). We stress that, differently from repeated

coordination games, here each agent can be in a different state.

As discussed in the literature, individual learning is not

necessarily efficient and JAL is not feasible as shown before.

Hence our approach is to use supervisors to give recommen-

dations to agents they supervise in a kind of organizational

control.

The supervised learning proposed here is composed of two

kinds of agents: low-level agents (local level) and hierarchi-

cally superior agents (supervisors or tutors). Supervisors are in

charge of controlling groups containing a small number of low-

level agents. This idea is depicted in Fig. 1. There is a group

2This condition can be relaxed; for instance, one may assume that each
agent i is related to a set of Gi other agents forming a social network.
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Fig. 1. Two-level organization: 16 agents (α1, ..., β1, ..., δ4) in the lower
level, supervised by α, β, γ, and δ in the second level; Full-line boxes mean
agents with whom α4 is interacting; White boxes mean agents in state s0;
Color boxes denote agents in state s1.

Algorithm 1 Individual learning stage (stage 1)

1: while t ≤ ∆ind do

2: for all Lj ∈ N = L do

3: when in state sj , select action aj with probability
exp

Q(sj ,aj)/T

∑
aj∈Aj

exp
Qsj,aj

/T (Boltzmann exploration) and ob-

serve reward

4: update Qind
j {// Eq. 1 }

5: end for

6: for all Si ∈ S do

7: observe state, action, and reward for each Lj

8: compute the average reward r (among Lj’s)

9: if tuple < ~atj , ~s
t
j, r > not yet in the base of cases

then

10: add tuple < ~atj , ~s
t
j, r >

11: else

12: if r > rold then

13: replace by tuple < ~atj, ~s
t
j , r >

14: end if

15: end if

16: end for

17: end while

of low-level agents < α1, ..., α4 > supervised by α. The other

three groups are supervised by β, γ, δ. However, interactions

among low-level agents transcend each group because we

consider that each agent interacts with nearest neighbors only.

Of course, alternatively, interactions could occur only within

a supervised group (e.g., all α’s together) but this would mean

disjoint groups which is not realistic. The kind of organization

considered here is more difficult in the sense that joint learning



Algorithm 2 Tutoring stage (stage 2)

1: while ∆ind < t ≤ ∆ind +∆tut do

2: for all Si ∈ S do

3: given ~stj , find ~atj in case base for which r is maximal;

communicate aj to each LJ

4: end for

5: for all Lj ∈ N = L do

6: perform action a communicated by supervisor, col-

lect reward {or follow local policy if supervisor has

not prescribed any action}
7: update Qind

j {// Eq. 1 }
8: end for

9: for all Si ∈ S do

10: observe state, action, and reward for each Lj

11: compute the average reward r (among Lj’s)

12: if tuple < ~atj , ~s
t
j, r > not yet in case base then

13: add tuple < ~atj , ~s
t
j , r >

14: else

15: if r > rold then

16: replace by tuple < ~atj , ~s
t
j, r >

17: end if

18: end if

19: end for

20: end while

is not possible. Besides there is a tendency that clusters of

agents do coordinate over one action, while other clusters of

agents coordinate towards another action thus degrading the

performance of agents located at the borders of the clusters.

Supervisors do not actually play the game thus they are not

included in the set N of low-level agents. In fact, supervisors

must be seen as facilitators or tutors that observe the local

agents’ in their groups from a broader perspective and rec-

ommend actions to them. This recommendation will be made

based on a group perspective, in opposition to the purely local

perspective of low-level agents. The supervised learning works

as formalized in algorithms 1 to 3 as explained next.

The main parameters are: the set of low level agents N =
L = {L1, ..., Lj , ..., Ln}; the set S = {S1, ...} of supervisor

agents; ∆ind (time period during which each Lj learns and

acts independently, updating the Q table Qind
j ); ∆tut (time

period during which each Si prescribes an action to each Lj in

i’s group based on cases observed so far); ∆crit (time period

during which each Lj can act independently or follow the

recommendation of the supervisor); the learning rate α, the

discount rate γ, and the threshold τ (explained later).

The task of the supervisor is, initially, to observe joint states,

joint actions, and rewards of the low-level agents and record

this information in a case base (stage 1). Later, in stages 2 and

3 this information is used to guide the actions of the low-level

agents.

Stage 1 is described in Algorithm 1. Each low-level agent

Lj uses basic Q-learning to learn a policy. Each supervisor

Si observes its low-level agents and collects information to a

base of cases. This information consists of joint states, joint

Algorithm 3 Critique stage (stage 3)

1: while ∆ind +∆tut < t ≤ ∆ind +∆tut +∆crit do

2: for all Si ∈ S do

3: given ~stj , find ~atj in case base for which r is maximal;

communicate a
p
j to each LJ plus expected reward re

4: end for

5: for all Lj ∈ N = L do

6: {//compare Qind
j and re:}

7: if re × (1 + τ) > Qind
j then

8: perform a
p
j {//where a

p
j is action prescribed by

supervisor for this agent}
9: update Qind

j

10: else

11: perform aind {// where aind is selected according

to local policy}
12: update Qind

j {// Eq. 1 }
13: end if

14: end for

15: for all Si ∈ S do

16: observe state, action, and reward for each Lj

17: compute the average reward r (among Lj’s)

18: if tuple < ~atj , ~s
t
j , r > not yet in case base then

19: add tuple < ~atj , ~s
t
j, r >

20: else

21: if r > rold then

22: replace by tuple < ~atj, ~s
t
j , r >

23: end if

24: end if

25: end for

26: end while

actions, and rewards. Thus the base of cases is composed of

tuples < ~s,~a, r > where r is averaged over all supervised

agents.

The case that has yielded the highest r is kept in the

base (line 12 of Algorithm 1). Keeping the best seen case

is sufficient since r is determined by the joint action without

noise. This stage takes ∆ind time steps.

At the second stage, which takes further ∆tut time steps,

low-level agents stop acting individually and follow the joint

action the supervisor finds in its base of cases. It is important

to note that in any case the local Q tables continue to be

updated.

In order to find an appropriated case, the supervisor observes

the states the low-level agents are in and retrieves the set of

actions that has yielded the best reward when agents were in

those states in the past. This reward is also communicated

to the agents so that they can compare this reward, which is

the one the supervisor expects, with the expected Q values

and with the actual reward they get when performing the

recommended action. However, at this stage, even if the

expected reward is not as good as the expected Q values,

low-level agents are committed to the action prescribed by

the supervisor.

If the supervisor does not have a case that relates to



that particular joint state, then the low-level agents receive

no recommendation of action and select one independently

using their individual policies as in stage 1. In this case, the

supervisor’s role is only to observe and record this new case.

In the third stage (which takes ∆crit steps) low-level agents

need not follow the prescribed action. Rather, after comparing

the expected reward that was communicated by the supervisor,

with the expected Q value, each agent may decide to do the

action associated with its local policy. This means that the

low-level agent will only select the prescribed action if this is

at least as good as the expected Q value (here considering a

tolerance factor τ as in line 7 in Algorithm 3). No matter

whether the low-level agents do follow the prescription or

not, the supervisor is able to observe the states, actions, and

rewards and thus form a new case (or update an existing one).

IV. EXPERIMENTS AND RESULTS

A. Settings

Experiments were performed using a coordination game

where each agent has two possible actions and can be in two

states. Thus for a high number of agents, the space of joint

state and actions is an issue. Although we consider here that

low-level agents interact with the 4 nearest neighbors, because

groups of interaction are not disjoint, there are 3 immediate

consequences. First JAL is not possible; second, depending on

how much agents explore, clusters of agents selecting different

actions are seen; and third the setting used in [21] can no

longer be used. The authors address two-agent games and

hence the state change can be based on a pair of actions, one

for each of the two players. In our case, due to the fact that

each Lj plays more than one game at each time (one with each

of the neighbors), we had to modify the way states change.

Thus, after each agent’ has selected its action and played it

with all neighbors, an unobserved state change happens, which

defines the new state of each agent. We consider that this

movement happens, for each player, with probability ~pst. With

abuse of notation, henceforth we write, for example, ~pst = 0.7
meaning ~pst = (0.7, 0.3), i.e., at each step, each player has

70% of being paid by payoff matrix associated with state s0.

Joint actions and their rewards are given by two matrices,

one for each state. In state 0, if two agents (independently)

select < a0, b0 >, each is rewarded with η0; < a1, b1 > pays

η1. In state 1 the rewards are reversed thus < a0, b0 > pays

η1 and < a1, b1 > pays η0, making the game more difficult

to learn than for instance the one considered in [8] as agents

are not informed about which states their neighbors are. We

remark that, in fact, when two agents are, each, in one of

these states, the game is still a coordination game but not of

common payoff (it is a Battle of the Sexes); agents do not

know this though.

Agents are allowed to play this game repeatedly with their

neighbors while rewards are recorded. We have performed 3

types of experiments (see below). Plots of average reward

(over all agents) along time are shown. All experiments were

repeated at least 100 times. To keep the figures more clear

error bars are not shown; however the standard deviation is

Parameter Description Value

N = |L| number of agents 8× 8 and 24× 24

η0 reward 2 or 1
(depending on state)

η1 reward 1 or 2
(depending on state)

T temperature 16
T decay temperature decay 0.99× T

α learning coefficient 0.5
γ discount rate 0.0
~pst vector state prob. ∗

∆ind stage 1 200
∆tut stage 2 10
∆crit stage 3 490
τ intolerance factor ∗

TABLE II
PARAMETERS AND THEIR VALUES

10% at most. Values for the main parameters used in the

simulation are given in Table II (unless otherwise said). The

symbol ∗ there means that the value varied from experiment

to experiment.

B. Individual Learning Without Exploration

Initially, to prove the point of [8], namely that exploration

is key in coordination games, even in the stochastic variant,

Fig. 2 (inset) depicts the performance when no exploration is

used. Here we show the case for ~pst = 0.7 but the main trend

does not change with other values tried.

For ~pst = 0.7, we can expect 70% of the players to be in

state 0 at any given time. Thus if players learn efficiently, the

expected reward would be 0.7× 2 + 0.3× 1 = 1.7.

As expected, without exploration, the performance in this

case is poor. Agents indeed get a reward η of either 2, 1, or 0
thus leading them to prefer one choice of action over the other.

However these preferences are not necessarily coordinated

towards the best rewarding joint actions because agents do

not know the states their neighbors are in. Hence, on average,

the reward is only slightly over 0.75, which is the average

between the rewards of both actions in both states. This would

happen even with only two players but in our case the picture

is even worse because each agent plays with more than one

neighbor. The more neighbors, the less likely it is that they all

play coordinated actions.

C. Individual and Supervised Learning

When exploration is used in combination with individual

learning, players achieve better rewards because at least they

can learn an action for their own states. This can be seen in

Fig. 2 (main plot, grey line) for grid size 8, where the reward

indeed approaches the expected value of 1.7.

To improve the performance we then run simulations with

supervised learning. Supervisors are in charge of four low-

level agents each. In stage 1 local agents act individually

thus we can expect performance to be similar. Because the

supervisors have collected cases during stage 1, in stage 2

they are in position of recommending these cases when they

see agents in a given joint state.
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Fig. 2. Reward along time for grid size 8 x 8: individual learning (grey line);
supervised (black line); individual without exploration (inset).

As seen in Fig. 2 (main plot, black curve), the recommenda-

tion pays off as the expected reward of 1.7 is achieved earlier.

In stage 3, which starts at time 210, low-level agents may

refuse to do the action prescribed by the supervisor. In order

to decide whether or not to refuse, a low-level agent compares

the reward the supervisor is expecting with the value of the Q

table for the current state. This plot is for τ = −0.4 meaning

one agent only accepts a recommendation in case its Q-value

is lower than 60% of r. Other values were tested as well.

When τ ≥ 0 the learning process may take longer as agents

accept more recommendations and therefore explore less.

To test scalability, simulations with a grid 24 were also

performed. The plots are very similar to that in Fig. 2 thus

they are omitted here.

D. Episodic

The third kind of experiment is episodic. Each 700 time

steps ~pst was changed. In the first episode ~pst = 0.5, changing

to ~pst = 0.9, back to ~pst = 0.5 and to ~pst = 0.9. For these

values of probabilities, the expect payoffs are 0.9×2+0.1×1 =
1.9 ( ~pst = 0.9) and 1.5 ( ~pst = 0.5).

The plots in Fig. 3 show averages over 100 runs (except the

internal plot, which is a single run). The individual learning

without supervision (grey line) here does not perform as well

as in the previous case (Fig. 2), exactly because ~pst changes

within time. After agents learn their policies in the first episode

they are not able to adapt to the change in ~pst.

In the internal plot of Fig. 3 we also give a plot of a single

run (again, without supervision), in which we see that not

only agents cannot adapt to the new episode but also that they

perform even worst than in the first episode achieving payoff

1.2 when the correct would be 1.9. This is disturbing because

roughly 50% of the 100 runs are like this.

When the supervisors are activated, the expected reward is

roughly achieved as seen in the black curve. Notice that the

supervisors themselves are not informed of the change of the
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Fig. 3. Reward along time for grid size 8 x 8; episodic variant: individual
learning (grey line); supervised (black line); single instance of individual
learning (inset)

~pst.

E. Discussion

We now discuss some issues that seem important regarding

the employability of such approach. Concerning the results

regarding the single-episode, it is possible to observe that in-

dividual learners, if left alone would converge to the expected

payoff but this would take longer. When the recommendation

starts, agents immediately receive new information about re-

wards that are possible but that they have not yet explored due

the size of state-action space. This new information proves to

be key for better and faster convergence of policies. One may

argues that they gain not very much since both the supervised

as well as the individual learning reach the same level of

payoff in the end. However the fact that this payoff was

achieved sooner proves the usefulness of the new method. This

was indeed what happened in the episodic scenario in which

the supervision represented a significant improvement.

Finally, the supervision of course means additional commu-

nication when compared to individual learning. Now agents

have to exchange two messages each with the supervisor.

However, other approaches rely on even more communication

as they are based on observation of joint actions. In this case,

the number of exchanged messages is m times higher where m

is the number of neighbors: agents have to exchange messages

with each other to know the set of actions.

V. CONCLUSION

Multi-agent reinforcement learning is inherently more com-

plex than single agent reinforcement learning, thus a MDP-

based formalism when applied to coordination games with

many agents is not necessarily efficient. This paper has pro-

posed a kind of hierarchical control based on supervision as

a compromise between complete distribution and complete

centralization. Supervisors have a broader view, observe joint

states and are able to recommend more efficient joint actions.



We have measured the reward with and without this kind of

supervision, and the results show that the new method pays

off, leading to earlier adaptation of cooperative behavior.

As mentioned, coordination games are of great interest

to model the establishment of new standards for innovative

technologies, or for coordination tasks in general (e.g., traffic

lights, mobile robots, etc.).

This work can be extended in many ways. First we plan

to implement further levels of supervision (a kind of hier-

archical learning). Alternatively, supervisors could exchange

good cases among them. Finally, the currently fixed allocation

of supervisors to low-level agents, which makes sense in

scenarios such as the traffic lights (see, e.g., [25]), may be

relaxed so that the supervisor could be allocated on the basis

of the quality of its recommendation.
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