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Abstract—Complex-valued Associative Memory (CAM) can
store multi-state patterns unlike Hopfield Associative Memory
(HAM). CAM stores not only given training patterns but also
many spurious patterns, such as their rotated patterns, at the
same time. Rotor Associative Memory (RAM) can make the
most of rotated patterns unstable but the reversed patterns
remain stable. In the present work, we propose RAM with a
Periodic Activation Function (PAF) to make the reversed patterns
unstable. PAF is an activation function that Aizenberg introduced
to CAM. We prove that RAM with a PAF has far fewer spurious
patterns by using dynamic associative memories which can search
the stored patterns.

Index Terms—complex-valued neural networks, associative
memory, rotor associative memory, periodic activation function

I. INTRODUCTION

Several advanced associative memory models have been
proposed since Hopfield Associative Memory (HAM) was
proposed by Hopfield [1]. Complex-valued Associative Mem-
ory (CAM) is one of them (Aizenberg et al. [2], Noest
[3], Jankowski et al. [4]). CAM is often applied to storing
gray scale images (Aoki and Kosugi [5], Aoki et al. [6],
Muezzinoglu et al. [7]). However, CAM stores not only
training patterns but also their rotated patterns. This is referred
to as rotation invariance (Zemel et al. [8]). Kitahara and
Kobayashi [9], and Kitahara et al. [10], [11] proposed Rotor
Associative Memory (RAM) to reduce spurious patterns. RAM
can make the most rotated patterns unstable but the reversed
patterns remain stable.

Aizenberg proposed universal binary neurons, a flexible
binary neuron model (Aizenberg et al. [2]). Moreover, he
extended them to complex-valued neurons with a Periodic
Activation Function (PAF) (Aizenberg [12], [13]). In the
present work, we propose rotor neurons with a PAF to remove
the stable reversed patterns. It is impossible, however, to make
only the training patterns stable. So it is desirable that only
the training patterns are strong attractors and the other stable
states are weaker ones.

Dynamic associative memories can search patterns stored in
the associative memories. The time the recalled pattern, which
has minimal energy, holds depends on the depth of energy. We
use a dynamic associative memory model based on Nagumo
and Sato [14] to investigate stable states (Kitahara et al. [10],

[11]). Our computer simulations show that our proposed model
makes all the rotated patterns, including the reversed patterns,
unstable and only the training patterns are strong attractors.

II. COMPLEX-VALUED ASSOCIATIVE MEMORY

A. Complex-valued neurons

A complex-valued neuron has a complex number. And the
state of complex-valued neuron is K-valued on the complex
unit circle, where K is an integer greater than two. It divides
the complex unit circle into K sectors. Let a real number θK
and complex numbers sk (k = 0, · · · ,K − 1)be as follows:

θK =
π

K
, (1)

sk = exp(
√
−1(2k + 1)θK), (2)

The states of complex-valued neurons belong to the set {sk}.
A complex-valued neuron receives the weighted sum input

from all the other neurons. Then it selects a new state for
the weighted sum input by following the activation function.
In the present work, we use the following activation function
f(·):

f(z) =



s0 0 ≤ arg(z) < 2θK
s1 2θK ≤ arg(z) < 4θK
s2 4θK ≤ arg(z) < 6θK
...
sK−1 2(K − 1)θK ≤ arg(z) < 2KθK

(3)

where arg(z) is the argument of the complex number z.
Therefore, f(z) maximizes Re(s̄kz), where Re(z) and z̄ are
the real part and the complex conjugate of z respectively.

B. Complex-valued Associative Memory (CAM)

Let a complex number wji be the connection weight from
the neuron i to the neuron j. Then the connection weight wji

needs to satisfy the following requirement:

wji = w̄ij . (4)

This requirement ensures that CAM reaches a stable state. In
section III-D, it is proven that CAM is a special case of RAM
due to (2). In section III-C, it is proven that RAM always
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Fig. 1. The correspondence of the state of neuron and gray scale

Fig. 2. A training pattern: This pattern consists of 20× 20 pixels, so CAM
also consists of 400 neurons.

reaches a stable state. Therefore, CAM always reaches a stable
state, too.

Let zi be the state of the neuron i. The weighted sum input
Sj that the neuron j receives from all the other neurons is
defined as follows:

Sj =
∑
i

wjizi. (5)

Assume that zp is the pth training pattern and zp =
(zp1 , · · · , z

p
N ) (p = 1, 2, · · · , P ), where P and N are the

numbers of the training patterns and the neurons. Then the
complex-valued hebbian learning rule is as follows:

wji =
∑
p

zpj z̄
p
i . (6)

The connection weights wji obtained by (6) clearly satisfy (4).
Given a training pattern zq to CAM, the weighted sum input
Sj to the neuron j is as follows:

Sj =
∑
p

∑
i6=j

zpj · z̄pi · zqi (7)

= (N − 1)zpj +
∑
p6=q

∑
i6=j

zpi · z̄pi · zqi . (8)

If the second term, which we call the crosstalk term, is enough
small, the training pattern zq is stable.

C. Rotated patterns in CAM

In the present work, in order to visualize the behavior of
associative memories, the states of neurons and the gray scale

Fig. 3. Rotated patterns of Fig. 2

levels correspond. Figure 1 shows correspondence between the
states of complex-valued neurons and the gray scale levels in
case of K = 4. The corresponding gray scale becomes darker
as the suffix k of sk increases. Then a training pattern stands
for a gray scale image and each neuron corresponds to a pixel.
Figure 2 shows an example of training pattern. This pattern
consists of 20× 20 pixels. Since each pixel corresponds to a
neuron of CAM, this CAM has 400 neurons.

For a training pattern z = (z1, z2, · · · , zN ), the patterns
skz = (skz1, · · · , skzN ) (k = 1, 2, · · · ,K − 1) are referred
to as its rotated patterns. Therefore, the rotated patterns are
obtained by rotating the states of all neurons by 2kθK . The
rotated patterns of Fig. 2 are the three patterns shown in Fig.3.

Suppose that a training pattern z is stable. Then the follow-
ing equation holds for each j:

f(
∑
i6=j

wjizi) = zj . (9)

For a rotated pattern skz, the following equation holds:

f(
∑
i6=j

wjiskzi) = skf(
∑
i6=j

wjizi) = skzj . (10)

This implies that the rotated patterns skz are also stable.
Therefore, a training pattern has K−1 stable rotated patterns.

D. Dynamic Complex-valued Associative Memory (DCAM)
Once CAM recalls a stable state, it keeps the stable state.

Dynamic associative memories can get out of stable state and
search patterns stored in the associative memories. In the recall
process of dynamic associative memory, The time the recalled
pattern, which has minimal energy, holds depends on the depth
of energy. The strong attractors hold for a long time and the
weak ones do for a short time.

Let z(t) and S(t) be the neuron output and weighted sum
input at time t. The dynamics of dynamic complex-valued
neuron is defined as follows:

z(t+ 1) = f(S(t+ 1)− α
t∑

d=0

kdz(t− d)). (11)

The coefficients α and k are the scaling factor and damping
factor respectively. The second term of (11) is the historical
term. In short, it is accumulation of old values of neuron. When
CAM remains a stable state for a while, the historical terms
become stronger. When the historical terms become enough
large, CAM can get out of the stable state and reach another
stable state. Therefore, DCAM can get out of the stable states
and recall all the training patterns by the historical terms.



III. ROTOR ASSOCIATIVE MEMORY

A. Rotor neurons

The states of rotor neurons are represented by two-
dimensional vectors. Let K be an integer greater than two.
We define hk as follows:

hk =

(
cos (2k + 1)θK
sin (2k + 1)θK

)
. (12)

Therefore, {hk} divides the unit circle of the x−y plane into
K sectors.

The activation function of rotor neurons is a mapping from
two-dimensional vectors to two-dimensional vectors. Let φ be
the angle of a two-dimensional vector z to a two-dimensional
vector (1, 0)T, where superscript T stands for the transpose.
Then the two-dimensional vector (x, y)T is written as follows:(

x
y

)
=

√
x2 + y2

(
cosφ
sinφ

)
. (13)

We define the activation function g(·) of rotor neurons as
follows:

g(z) =



h0 0 ≤ φ < 2θK
h1 2θK ≤ φ < 4θK
h2 4θK ≤ φ < 6θK
...
hK−1 2(K − 1)θK ≤ φ < 2KθK

(14)

From hk
Tz = |z|·cos(φ−(2k+1)θK), g(z) maximizes hk

Tz.
Rotor neurons are equivalent to complex-valued neurons if we
regard complex numbers as two-dimensional vectors.

B. Rotor Associative Memory (RAM)

First, we define connection weights of RAM. The connec-
tion weights of RAM are expressed by 2×2 matrices. Let Wji

be the connection weight from the neuron i to the neuron
j. The connection weights Wji must satisfy the following
relation.

Wji = WT
ij (15)

Next, we define the weighted sum input of RAM. Let a two-
dimensional vector zi be the state of the neuron i. Then we
define the weighted sum input Sj to the neuron j as follows:

Sj =
∑
i6=j

Wjizi. (16)

Finally, we describe rotor hebbian learning rule. As-
sume that Ap is the pth training pattern and Ap =
(ap1, · · · ,a

p
N ) (p = 1, 2, · · · , P ). Then, the rotor hebbian

learning rule is as follows:

Wji =
∑
p

apja
pT
i . (17)

Then Wji is a 2× 2 matrix. It is clear that (17) satisfies (15).
Given a training pattern Aq to CAM, the weighted sum input

Sj to the neuron j is as follows:

Sj =
∑
p

∑
i6=j

apja
pT
i aqi (18)

= (N − 1)apj +
∑
p6=q

∑
i6=j

api a
pT
i aqi . (19)

If the second term, which we call the crosstalk term, is enough
small, the training pattern is stable.

C. Energy function

The energy function E of RAM is defined as follows:

E = −1

2

∑
j

∑
i6=j

zTj Wjizi. (20)

Next, we prove that the energy function decreases
monotonously. Suppose that the state zk of the neuron k
changes to the state z′k. Then the energy gap ∆E is as follows:

∆E = −1

2

∑
i6=k

z′
T
kWkizi −

1

2

∑
j 6=k

zTj Wjkz
′
k

+
1

2

∑
i6=k

zTkWkizi +
1

2

∑
j 6=k

zTj Wjkzk (21)

= −1

2

∑
i6=k

z′
T
kWkizi −

1

2

∑
j 6=k

zTj W
T
kjz

′
k

+
1

2

∑
i6=k

zTkWkizi +
1

2

∑
j 6=k

zTj W
T
kjzk (22)

= −1

2

∑
i6=k

z′
T
kWkizi −

1

2

∑
j 6=k

z′
T
kWkjzj

+
1

2

∑
i6=k

zTkWkizi +
1

2

∑
j 6=k

zTkWkjzj (23)

= −z′
T
k

∑
i6=k

Wkizi + zTk
∑
i6=k

Wkizi. (24)

In (23), since the term zTkWkjzj is a real number, the
following equation holds:

zTj W
T
kjzk =

(
zTj W

T
kjzk

)T
(25)

= zTkWkjzj . (26)

Since z′k maximizes zTk
∑

i6=k Wkizi, where
∑

i6=k Wkizi is
the weighted sum input to the neuron j, the energy E does
not increase. The number of states of RAM is finite, so RAM
always reaches a stable state.

D. Relationship with CAM

Let the state of the complex-valued neuron i and the
connection weight from the neuron i to the neuron j be
zi = xi+yi

√
−1 and wji = uji+vji

√
−1 respectively. Then,

the input from the complex-valued neuron i to the complex-
valued neuron j is as follows:

wjizi = (ujixi − vjiyi) + (vjixi + ujiyi)
√
−1. (27)



We define the connection weights Wji and the states zi of
the neuron of RAM corresponding CAM as follows:

Wji =

(
uji −vji
vji uji

)
, (28)

zi =

(
xi

yi

)
. (29)

Then connection weights Wji satisfy (15) from uji = uij

and vji = −vij . The behavior of CAM is equivalent to that
of the corresponding RAM. Therefore, we can regard CAM
as a special case of RAM. However, complex-valued hebbian
learning rule is different from rotor hebbian learning rule.
RAM does not store the rotated patterns by learning rule of
RAM, but stores the reversed patterns in case that K is even.

E. Projection Property of Rotor Hebbian Learning Rule
Suppose that the number of training patterns is one. Let

A = (a1, · · · ,aN ) be a training pattern. Then the connection
weight is Wji = aja

T
i The state of the neuron i rotated by

2kθK is expressed by R(k)zi, where R(k) is as follows:

R(k) =

(
cos 2kθK − sin 2kθK
sin 2kθK cos 2kθK

)
. (30)

Then R(k)A is a rotated pattern. Suppose R(k)A is given to
RAM. Then the weighted sum input from the neuron i to the
neuron j is as follows:

WjiR(k)ai = aja
T
i R(k)ai (31)

= cos 2kθKaj . (32)

This equation means the projection from the two-dimensional
vector R(k)ai to the two-dimensional vector aj . The weighted
sum input Sj to the neuron j is as follows:

Sj = (N − 1) cos 2kθKaj . (33)

Therefore, RAM recalls A in case of cos 2kθK > 0 and −A
in case of cos 2kθK < 0. RAM does not recall the rotated
patterns. Moreover, the larger | cos 2kθK | is, the more strongly
RAM recalls the training pattern A or the inverse pattern −A.

F. Periodic activation function of rotor neurons
As described above, The RAM would recall the training pat-

terns or the reversed patterns. To avoid recalling the reversed
patterns, we introduce a Periodic Activation Function (PAF) to
RAM. A PAF proposed by Aizenberg is a flexible activation
function for complex-valued neurons. Let l be a positive
integer. A PAF produces K-valued repeated periodically with
periodicity coefficient l. Consider a rotor neuron with lK
states. A PAF identifies hk and hk′ if k ≡ k′ mod K. Then l
separated sectors are identified by a PAF.

We apply a PAF with l = 2. Then the number of states
or sectors is 2K and the opposite sectors are identified. The
two states hk and hK+k, where 0 ≤ k < K, are different
values but are identical. The behavior of RAM with a PAF is
equivalent to that of ordinary RAM which has double number
of neuron’s state and only the interpretations of the neuron’s
states are different. Figure 4 illustrates the rotor neuron with
a PAF in case of K = 4.

Fig. 4. Rotor neuron with a PAF

G. Dynamic Rotor Associative Memory (DRAM)

This model can get out of stable states and search the stable
patterns. We construct the DRAM based on the DCAM. Let
z(t) and S(t) be the neuron output and the neuron input at
time t. The dynamics of dynamic rotor neurons is as follow:

z(t+ 1) = f(S(t+ 1)− α

t∑
d=0

kdz(t− d)). (34)

The coefficients α and k are the scaling factor and damping
factor respectively. The second term of (34) is the historical
term. The bigger historical terms are, the stronger the effect of
getting out of the current stable state is. In case of DRAM with
a PAF, the dynamics is unchanged and only the interpretation
changes.

IV. COMPUTER SIMULATION

In this section, we confirm the behaviors of DCAM, DRAM
and DRAM with a PAF. Dynamic associative memories can
search patterns stored in associative memories. Moreover, we
can estimate how strong attractors are by how long they hold.

A. Computer simulation for DCAM

Figure 5 shows the training patterns and their rotated
patterns. The patterns A0, B0 and C0 are the training patterns.
The patterns A1-3, B1-3 and C1-3 are their rotated patterns.
Then CAM stores all these patterns.

In computer simulation, the parameters were as follows:

N = 400, k = 0.98, α = 7. (35)

The initial pattern was A0. Figure 6 shows the result of this
computer simulation during t < 200, where t is the time.
All neuron states are updated sequentially one by one, but
in Fig.6, each pattern is shown after all neurons are updated.
The number below the patterns is the time when the patterns
appeared. In the simulation result, the training patterns A0
appeared during t = 84 − 123. The rotated patterns C1
and A2 appeared during t = 26 − 61 and t = 129 − 150



Fig. 6. The result of computer simulation for DCAM

Fig. 5. Training and rotated patterns

respectively. Patterns except training and rotated patterns held
during t = 17 − 19, 21 − 23 and others. Several mixture
patterns, the secondary typical spurious patterns, also seem
to have appeared. For example, the pattern appearing during
t = 21− 23 seems to be the mixture pattern of A0 and B0.

B. Computer simulation for DRAM

The DRAM would store the training patterns A0, B0 and
C0, and the reversed patterns A2, B2 and C2. The parameters
were as follows:

N = 400, k = 0.95, α = 19. (36)

The initial state was A0. Figure 7 shows the result of this
computer simulation during t < 200. All the training and
reversed patterns appeared while any rotated patterns except
the reversed patterns did not appear. Another spurious pattern
appeared during t = 146− 161.

C. Computer simulation for DRAM with a PAF

The DRAM with a PAF would store only the training
patterns A0, B0 and C0. There are two states hk and
hk+K (0 ≤ k < K) corresponding to level k. We assigned
hk on upper half plane to level k. The parameters were as
follows:

N = 400, k = 0.96, α = 17. (37)

The initial pattern was A0.
Figure 8 shows the result of this computer simulation during

t < 200. All the training patterns appeared while any rotated
and reversed patterns did not appear. Some mixture patterns
seem to have appeared for a really short time.



Fig. 7. The result of computer simulation for DRAM

TABLE I
APPEARENCE FREQUENCY UNTIL T=10000

Patterns Frequency
DCAM DRAM DRAM with a PAF

A0 29 32 42
A1 25 0 0
A2 29 32 0
A3 25 0 0
B0 6 32 84
B1 6 0 0
B2 8 32 0
B3 6 0 0
C0 14 64 107
C1 16 0 0
C2 14 64 0
C3 16 0 0

TABLE II
LONGEST DURATION UNTIL T=10000

Patterns Longest duration
DCAM DRAM DRAM with a PAF

A0 40 25 20
B0 47 31 20
C0 44 43 30

others 26 16 8

V. DISCUSSION

We summarize these computer simulations until t=10000
about the appearance frequencies and the longest stable dura-
tions. Table I shows the frequency of stable patterns. Dynamic
associative memories can search the patterns stored in asso-
ciative memories. However, they often recalled patterns but
the training patterns as well. They are required not to produce
spurious patterns as possible.

DCAM recalled all the training and rotated patterns but
the frequency of the pattern B0 is extremely low. We cannot
distinguish the rotated patterns obtained by DCAM from the
training patterns because the rotated patterns hold as long as
the training patterns.

DRAM recalled all the training and reversed patterns. As
with DCAM, we cannot distinguish the reversed patterns
obtained by DRAM from the training patterns.

DRAM with a PAF recalled all the training patterns. DRAM
with a PAF can avoid recalling any rotated patterns.

Table II shows the longest durations of the training patterns
and spurious patterns except the rotated patterns. We can
estimate how strongly a pattern attracts by how long it holds.
In the simulation results for DCAM, DRAM and DRAM with
a PAF, the longest durations of the training patterns are much
longer than those of the other spurious patterns. It implies
that the training and reversed patterns are stronger attractors
of DRAM and the training patterns are stronger attractors of
DRAM with a PAF than any other attractors.

VI. CONCLUSION

Complex-valued Associative Memory (CAM) stores not
only training patterns but also their rotated patterns. Rotor
Associative Memory (RAM) can avoid storing the rotated
patterns but stores the reversed patterns. In the present work,
we introduce a Periodic Activation Function (PAF), which is
a flexible activation function proposed by Aizenberg, to RAM
in order to avoid storing the reversed patterns. The result of
computer simulations shows that RAM with a PAF can avoid
storing the rotated and reversed patterns.

In the present work, we used hebbian learning rule, so
the storage capacity is very low. Thus CAM and RAM with
a PAF can store no more patterns. For experiences with a
large number of patterns, we have to apply advanced learning
methods, such as gradient descent learning rule (Kitahara and
Kobayashi [15]).

Our computer simulations imply the following results:
1) DCAM recalled all the training and rotated patterns.

Moreover, several other strong attractors appeared.
2) DRAM recalled all the training and reversed patterns.

It did not recall any rotated patterns except the reversed
patterns. In addition, no other strong attractors appeared.

3) DRAM with a PAF recalled all the training patterns. It
did not recall any rotated patterns. In addition, no other
strong attractors appeared.

RAM with a PAF remains a problem. The area for each
state of RAM with a PAF is narrower than that of ordinary
RAM. Thus the storage capacity would decreas. To improve
this problem, we should develop more advanced learning
algorithms.



Fig. 8. The result of computer simulation for DRAM with a PAF
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