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Abstract—This paper presents a study on rock texture image
classification using support vector machines (and also K-nearest
neighbours and decision trees) with the aid of feature selection
techniques. It offers both unsupervised and supervised methods
for feature selection, based on data reliability and information
gain ranking respectively. Following this approach, the conven-
tional classifiers which are sensitive to the dimensionality of
feature patterns, become effective on classification of images
whose pattern representation may otherwise involve a large
number of features. The work is successfully applied to complex
images. Classifiers built using features selected by either of these
methods generally outperform their counterparts that employ the
full set of original features which has a dimensionality several
folds higher than that of the selected feature subset. This is
confirmed by systematic experimental investigations. This study
therefore, helps to accomplish challenging image classification
tasks effectively and efficiently. In particular, the approach
retains the underlying semantics of a selected feature subset.
This is very important to ensure that the classification results
are understandable by the user.

I. INTRODUCTION

Automated and accurate analysis of rock texture images is
an important task, especially for surveying places (e.g. for
geologic or life cues) on the Earth or in space [1], [19],
[27], [29]. A key element of analysing rock images is to
recognise the underlying rock types. However, rock images
are in many cases non-homogenous and strongly directional.
Also, the granular size and colour of rock textures may vary
significantly in relation to their types, and may be blurred with
measurement and transmission noise. These factors make rock
texture image classification a challenging problem [18].

One critical step to successfully build an image classifier
is to extract and use informative or predictive features from
given images [9], [12], [17], [26]. To capture the essential
characteristics of such images, many features may have to be
extracted without explicit prior knowledge of what properties
might best represent the underlying rock texture reflected
by the original image. However, generating more features
increases the computational complexity as well as the mea-
surement noise. This may cause problems in many application
domains such as on-board processing of Mars images where
demand for computational memory and processing time must
be minimised [27] (despite the nowadays generally available
and relatively cheap computer power). In addition, not all
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such features may be useful to perform classification [12],
[15], [23], [25]. Due to measurement noise the use of extra
features may even reduce the overall representational potential
of the feature set and hence, the classification accuracy [16].
It is therefore, often necessary to employ a method that
can determine the most significant features, based on sample
measurements, to simplify the classification process, while
ensuring high classification performance.

Recently, there have been significant advances in developing
methodologies that are capable of minimising feature subsets
in a noisy environment. In general, when decision labels
are available, supervised feature selection methods usually
outperform their unsupervised counterparts [2]. However, in
many cases, the amount of labeled training samples may be
limited as the thorough interpretation of the data available is
infeasible. Therefore, it is necessary to develop unsupervised
feature selection. Amongst the many techniques for unsu-
pervised feature selection is the approach that is based on
measuring data reliability (RFS) [4], [11]. This method uses
the reliability measures to justify the relevance (or importance)
of each feature to the problem at hand, and hence the possi-
bility of being included in the selected feature subset. This
has been shown to be a highly useful technique by which
discrete or real-valued noisy data (or a mixture of both) can
be effectively reduced. Yet, it has not been combined with
learning mechanism to perform classification tasks in general
and image analysis in particular. Of course, when information
on underlying class labels is given, supervised feature selection
may be employed to obtain better results.

Inspired by this observation, this paper presents an inte-
grated approach for performing rock texture image classifi-
cation, by exploiting the potential of combining classification
and feature selection techniques. In particular, support vector
machines (SVMs) [30] are employed to accomplish rock
classification. This is due to the recognition of their high
generalisation performance in complex data sets [5], [30]. The
(unsupervised) reliability measure based and (supervised) in-
formation gain based feature selection methods are utilised to
ensure that classification is carried out with a substantially re-
duced subset of original features only. The resulting integrated
approach helps to improve the effectiveness and efficiency
of SVM-based image classifiers. This is because only those



informative features are required to be generated in improving
the performance of the classifiers, minimising both the feature
measurement noise and the computational complexity (of both
feature extraction and feature pattern-based classification).
Systematic comparative studies are carried out, including the
use of alternative classification techniques (Decision Trees
[22], and K-Nearest Neighbours [8]). Experimental results
demonstrate that the proposed approach entails rapid and
accurate learning of classifiers.

The rest of this paper is organised as follows. Section II
introduces the rock texture images under investigation. Sec-
tions III, IV and V outline the key component techniques used
in this work, covering feature extraction, feature selection and
feature pattern classification, respectively. Section VI shows
the experimental results, supported by comparative studies.
The paper is concluded in Section VII.

(1) rock-type 1 (2) rock-type 2

(13) rock-type 13 (14) rock-type 14

Fig. 1. Rock texture image types

II. ROoCK TEXTURE IMAGES

The rock images considered are classified into 14 different
texture types which are of practical significance, with each
type having a representative as illustrated in Fig. 1.




These images reveal a tremendous amount of detail such
as colour, structure, texture, grain size and orientation. The
ultimate task of this research is to develop an image classifier
that can recognise different image type or class in such texture
image data, although the underlying approach taken is general.

III. FEATURE EXTRACTION

A variety of techniques may be used to capture and rep-
resent the underlying characteristics of a given image [12],
[26]. In this work, low-level feature extraction approaches are
employed due to their popularity and simplicity. In particu-
lar, local colour histograms and the first and second order
colour statistics [5], [21] are exploited to produce a feature
vector for each individual pixel. Such features are effective
in depicting the underlying image characteristics and are
efficient to compute. Also, the resulting features are robust to
image translation and rotation, thereby potentially suitable for
classification of the complex rock texture images concerned.

A. Colour Statistics-Based Features

Images originally given in the RGB (Red, Green and Blue)
colour space are first transformed to those in the HSV (Hue,
Saturation and Value) space [21]. These spaces are in bijection
with one another, and the HSV colour space is widely used in
the literature. By computing the first order (mean) and the
second order (standard deviation, denoted by STD) colour
statistics with respect to each of the R, G, B, H, S and V chan-
nels, twelve features can be generated per pixel, from a certain
neighbourhood of that pixel. For presentational simplicity,
the resulting features are hereafter denoted as M EFANx and
STDx, X € {R, G, B, H, S, V}, representing the first and
second order statistics per colour space channel, respectively.

B. Local Colore Histogram-Based Features

As the name indicates, such features are measured off the
histograms computed from local regions of a given image
[9]. In the present context, a histogram is a summary graph
showing a count of grey levels falling in a number of resolution
ranges (called bins), within a predefined neighbourhood. For a
certain pixel, a set of histogram features Xy;,7 = 1,2,..., B,
where X € {H,S,V}, are calculated (within the given
neighbourhood), regarding a particular bin size B (i.e. number
of bins). Thus, the feature Xj; represents the normalised
frequency of the colour histogram in bin ¢ with respect to
one of the H, S, and V colour channels. Here, for simplicity,
individual bin widths are set equally, and the neighbourhood
size is set to the same as that used in the above colour feature
extraction. The bin size B is empirically set to 8 in this work.

C. Grey-level Statistics and Histogram-Based Features

Similarly, another set of local grey-level (GL) histogram
features can be generated by first transforming colour im-
ages to GL ones. In this work, the bin size for comput-
ing GL histogram features is empirically set to 16. The
resulting GL histogram-based features are denoted by G Ly,
i = 1,2,...,15,16. In addition, two further GL statistic

features, mean and STD, which are denoted by M EAN¢,
and ST D¢, are also generated.

IV. FEATURE SELECTION

Feature selection (FS) [7], [12], [15] addresses the problem
of selecting amongst given features that are most informative
or predictive. It forms a particular approach to the reduction of
the number of features under consideration. Importantly, un-
like conventional dimensionality reduction or general feature
extraction methods, a feature selection algorithm preserves
the original meaning of the selected features after reduction.
The reminder of this section describes two approaches to
implementing such a process of feature selection.

A. Unsupervised Feature Selection Based on Data Reliability

1) Nearest-Neighbour Guided Evaluation of Data Reliabil-
ity: The cluster-based approach to data reliability assessment
has been popular in the literature [20], [28]. However, it
requires high computational efforts: with the time and space
complexity being O(N?) and O(N?), respectively (where
N is the number of input features) [4]. This problem can
be alleviated by taking a recently proposed technique in
measuring data reliability, as summarised below.

For a collection of data arguments A = {a1,...,an}, let
N, (’f be a set of k nearest neighbours of an argument a;, where
NF C An; € NE n; # a;,j = 1...k. The reliability
of a specific argument can be determined by the distance of
this argument to the members of its nearest neighbour set.
Such a distance can be found using the FindNearestNeighbor
algorithm given in Fig. 2. The higher this distance is, the
less reliable that argument becomes. The following distance
metric is used to measure the distance between two given
arguments, for computational simplicity (any other distance
metric may be applied if they do not incur too much overheads
in computation):

d(ai,aj) = |ai — aj| (])

Given the distance metric, the reliability R’(ji of argument
a; depends on the average distance D’; to its k nearest
neighbours (i.e. members of N, (’fi), which is identified as

1
Dg =2 > dlaim) 2)
VntEN(’ji

Following this, the reliability measure R: € [0,1],i =
1...n can be obtained such that

Dk
Ry, =1— - 3)
max
where D00 = max d(ap, aq).

ap,aq€Aap#ay

This reliability measure is more efficient comparing to the
existing cluster-based method since no data clustering process
is required. The time and space complexities generally
decrease by an order, to O(N?) and O(N), respectively [4].



FindNearestNeighbour(a;, k, A)
A, set of arguments, a; € A,i=1...N;

k,number of nearest neighbours, 1 < k < N;
NZ ,set of k nearest neighbours of a;, NF C A;
|N% |, size of neighbour set, 0 < [NF | < k;

d(a;, a;),distance between arguments a;, a; € A;

maz N, neighbour n, € N¥ d(a;,n,) = max d(a;,n);
‘ Vni€NE,

(1) Nt 0

(2) for eacha; € A

(3) ifa; #a

(4) if [INF| <k

(5) NE « Nk Ua,

(6) else if d(a;,a;) < d(a;, maxN)

(7) N « (NF —mazN)Ua;

(8) return N¥

Fig. 2. The FindNearestNeighbour algorithm.

In the extreme case of k = N — 1, the time complexity
becomes a linear function of O(n) as well because no search
for nearest neighbours is needed.

2) Reliability-based Method for Feature Selection: The
above reliability measure can be applied to the problem of
unsupervised feature selection. This is because it can be
regarded as the discriminant factor to justify the relevance of
each data feature to the problem at hand. The resulting method
reflects the intuition that a feature is considered reliable (or
relevance to the problem) if its values are tightly grouped
together. In essence, with a dataset of n samples (z1,...,Z,),
the reliability F'R, of feature f,,r € {1,..., N} is estimated
from the accumulative reliability measures generated for each
of its values fi.,i=1...n:

FR, = i Rk 4)

=1

where the reliability measure Rfc of each feature value
fir,i = 1...n is computed using Equations 2 and 3, given
the set of k nearest neighbours.

The higher the reliability, the more relevant the feature to
the given problem. Thus, the original features can be ranked
in accordance with their reliability degrees. A subset of M
most reliable features, M < N, can therefore be selected
by choosing the first M in the rank list. For simplicity, the
reliability-based method for feature selection will be referred
to as RFS hereafter.

B. Information Gain-based Feature Ranking

Let Dy be the value set of feature f and D. be the label
set of class variable c. The entropies of the class before and
after observing X are respectively defined by [13], [22]:

H(c)=— Y p(u)logsp(u) 5)
ueD,.
H(clf) ==Y p(z) Y plulz)logap(ulz)  (6)
€Dy u€D,.

The amount by which the entropy measure over a certain
class decreases after observing a certain feature reflects the
additional information about the class that feature provides,
and is called the information gain:

IG = H(c) - H(clf) )

It estimates how well a given feature separates data points
with respect to their underlying class labels. Thus, all extracted
features f;, ¢ = 1,2, ..., N, can be ranked with regard to the
IG values of observing themselves:

1G; = H(c) — H(clfi) ®

Such ranking can be arranged in descending order, reflecting
the fact that the higher an /G value is, the more information
the corresponding feature has to offer regarding the class. A
subset of M most informative features, M < NN, can therefore
be selected by choosing the first M in the rank list.

V. IMAGE CLASSIFIERS
A. Support Vector Machine-based Classifiers

Support Vector Machines (SVMs) [30] are used to perform
image classification here, mapping input feature vectors onto
the underlying image class labels. Such a classifier seeks to
find the optimal separating hyperplane among different classes
by focusing on those training points (named support vectors),
which are placed at the edge of the underlying features and
whose removal would change the solution to be found.

More formally, SMVs construct a hyperplane in a space of
a dimensionality higher than that of the original. The intuition
is that by mapping the original data space into a much higher-
dimensional space, the class separation between data points
will become easier in that space. SVMs use a specific mapping
such that the cross products of data points in the larger space
are defined in terms of a kernel function [6] which is selected
to suit the given problem. In so doing, the cross products
may be computed in terms of the features in the original
space, thereby minimising computational effort. In particular,
a hyperplane in the higher dimensional space is defined as the
set of points whose inner product with any vector in that space
is constant.

A good hyperplane is learned over a training process such
that the resulting hyperplane has the largest distance to the
nearest training data points of any given class. This is in order
to increase the discriminative power of the trained classifier.
In the following, the Radial Basis function (RBF) kernel



is adopted to implement the SVM-based classifiers, and the
popular sequential minimal optimisation algorithm is used to
train the SVMs. Detailed SVM learning mechanism is omitted,
but can be found in the literature (e.g. [24], [30]).

In order to increase the efficacy of the SVM classifiers, RFS
is used to rank the extracted features and hence, to select those
most reliable during the training phase. This is of practical
significance as SVMs are proven high-performance classifiers,
but their efficiency relies on effective minimisation of input
features. Aiding SVMs with RFS-based feature selection helps
to minimise the input dimensionality. For learning such classi-
fiers, a set of training data is selected from the typical images
(see Fig. 1) of identified rocks, with each pixel represented
by a feature vector which is manually assigned an underlying
class label.

B. K-Nearest Neighbours (KNN)

K-nearest neighbours (KNN) algorithm [8], [18] is one of
the simplest and most popular learning methods for building
classifiers. To classify an unclassified feature vector X, KNN
ranks the neighbours of X amongst a given set of P data
(Xi,c), @ = 1,2,..., P, and uses the class labels ¢; (j =
1,2,...,K) of the K most similar neighbours to predict the
class of the new vector X. In particular, the classes of these
neighbours are weighted using the similarity between X and
each of its neighbours, where similarity is typically measured
by the Euclidean distance metric (though any other distance
metric may also do). Given such similarity measures, X is
assigned the class label with the greatest number of votes
amongst the K nearest class labels.

Note that the core of a KNN learning process bears close
similarity to the FindNearestNeighbour algorithm, though it is
the training vectors that are considered here rather than the
features (or arguments) addressed there. KNN works without
relying on prior probabilities, and that it is computationally
efficient if the dimensionality of the input features is not very
large. If however, the dimensionality is high, each distance
calculation may become quite expensive. This reinforces in
general, the need for employing a feature selection tool such
as RFS to extend its capacity.

C. Decision Trees

A decision tree (DTREE) based image classifier is learned
from a set of training examples through an iterative process,
of choosing a feature and splitting the given example set
according to the values of that feature. The key question here
is which of the features is the most influential in determining
the classification and hence should be chosen first. Entropy
measures or equivalently, information gains are used to select
the most influential, which is intuitively deemed to be the
feature of the lowest entropy (or of the highest information
gain).

Essentially, the learning algorithm works by: a) computing
the entropy measure for each feature, b) partitioning the set of
examples according to the possible values of the feature that
has the lowest entropy, and c) for each subset of examples

repeating these steps until all features have been partitioned
or other given termination conditions met. The C4.5 algorithm
[22] is used to build decision trees in this research.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

A set of 206 rock texture images with a size of 128 x 128
each are used to perform this experiment. 2744 pixel points are
selected from 14 of these images for training and verification,
196 from each image type. Each of the pixels is labeled with
an identified class index (i.e. one of the 14 image classes
as illustrated in Fig. 1). Each training pixel is originally
represented by a pattern vector of 54 features (see Section III).
The size of a neighbourhood window used for extracting
features is empirically set to 15 x 15. Of course, the actual
classification process only uses subsets of selected features.

For evaluation, the performance of each classifier is mea-
sured using classification accuracy, with ten-fold cross valida-
tion. For easy cross-referencing, Table I lists the reference
numbers of the original features that are extracted, where
i €{1,2,...,7,8} (the empirically chosen bin size for colour
channels) and j € {1,2,...,,15,16} (the empirically chosen
bin size for grey-level image). The SVM penalty parameter
is set to 100, with standard Gaussian Radial Basis function
(RBF) employed, for all experiments.

[ No. Meaning [ No. Meaning [ No. Meaning |
1 MEANp | 2 STDx 3 MEANG
7 STDG 3 MEANp | 6 STDg
7 MEANg | 8 STDx 9 MEANg
10 STDs T MEANy | 12 STDv
13-20 Hp; 21-28 Sy, 29-36 Vp;
37 MEANG, | 38 STDG, | 3954  GLn,

TABLE 1

FEATURE MEANING AND REFERENCE NUMBER

Note that in the following, for KNN classification, the
results are first obtained with K set to 1, 3, 5, 8, and 10.
Those classifiers which have the highest accuracy, with respect
to a given feature pattern dimensionality and a certain number
of nearest neighbours, are then taken to run for performance
comparison.

B. Comparison with the Use of Full Original Features

This subsection shows that, at least, the use of a selected
subset of features does not significantly reduce the classifica-
tion accuracy as compared to the use of the full set of original
features.

1) Use of RFS-selected features: For the given training
data, RFS ranks the original 54 features in the following
descending order as listed in Table II (see Table I and
section III for the meaning of these features). Fig. 3 shows
the classification accuracy, in relation to how many top-ranked
features (based on RFS) are used. The right-most case is the
result of using all of the 54 original features.



Order 1 2 3 4 5 6 7 8 9 10 | 11

RFS 54 | 53 | 2 12 | 10 | 5 21 | 3 9 29 | 11

Order 12 | 13 | 14 [ 15| 16 | 17 | 18 | 19 | 20 | 21 | 22

RFS 13 | 4 37 |1 39 | 38 |6 40 | 7 20 | 45

Order || 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33

RFS 36 | 8 49 | 22 | 28 | 41 | 46 | 52 | 33 | 42 | 18

Order || 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44

RFS 43 1 25 | 23 | 32 | 35 | 44 | 31 | 47 | 34 | 30 | 19

Order || 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54
RFS 14 |26 | 48 | 17 | 51 | 50 | 24 | 15 | 27 | 16

TABLE 11
RANKING ORDER OF RFS-SELECTED FEATURES
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Fig. 3. Performance of SVMs, KNNs and DTREEs vs. the number of RFS-
selected features.

Table III summarises the correct classification rates pro-
duced by the SVM, DTREE and KNN classifiers, all with
10-fold cross validation, where the number of the nearest
neighbours K used by these KNN classifiers are also provided
(in the first column).

[ Classifier [[ Set [ Dim. | Feature No [ Rate |
SVM RFS 20 First 20 RFS 93.58%
SVM RFS 24 First 24 RFS | 93.95%
SVM Full 54 1,2,...,53,54 93.07%

KNN(K=8) RFS 53 First 53 RFS | 86.07%

KNN(K=5) Full 54 1,2,...,53,54 86.07%

DTREE RFS 48 First 48 RFS 80.78%

DTREE Full 54 1,2,...,35,54 | 80.94%
TABLE III

RFS-SELECTED VS FULL ORIGINAL FEATURES

For SVM classifiers, the classification accuracy of using
the first 20 RFS-selected features is higher than that of using
all 54 original features (93.58% vs. 93.07%). For DTREE
classifiers, the accuracy resulting from using the first 48 RFS-
selected features is very close to that from using the full set

of original features (80.78% vs. 80.94%). However, for KNN
classifiers, only when 53 original features are used, i.e. only
one out of 54 features may be ignored, can the accuracy reach
that is achievable when the full set of original features are
employed (80.07% vs. 80.07%). Overall, the combined use of
SVM and RFS techniques offers the best performance, with a
classification rate of 93.95% using 24 RFS-selected features.
This is indicative of the potential of RFS in reducing not only
redundant feature measurements but also the noise associated
with such measurements, improving both effectiveness and
efficiency of the classification process.

Table IV presents detailed break-downs of classification
results per class when the SVM classifiers are employed, with
respect to the two popular performance indices: precision and
recall. For a given class Class, precision and recall are defined
as follows:

P |Ps Correctly Classified into Class|
rec. =

| Ps Correctly/Incorrectly Classified into Class|
)

|Ps Correctly Classified into Class|
|Ps in Class|

where Ps stands for pixels and |X| for the number of X.
These measures are important to check whether the proposed
approach works if the distribution of individual classes is not
uniform, as with the present problem. These results are again
based on 10-fold cross validation. They show that the SVM
classifier that uses only 20 RFS-selected features has similar
rates as the SVM which uses all 54 original features, regarding
these performance indices. For the two most difficult classes:
C1 and C2, both classifiers attain reasonable results. Although
the performance of the SVM that uses the subset of RFS-
selected features drops a little on these two classes overall,
the recall rate for C1 actually improves.

Recall =

(10)

Use of Full Features Use of RFS-selected
Class || Precision | Recall Precision | Recall
Cl 80.6% 82.7% 78.1% 85.7%
C2 84.6% 84.2% 82.5% 74.5%
C3 90.1% 88.3% 92.1% 95.4%
C4 84.9% 83.2% 87.2% 83.2%
C5 90.0% 91.8% 96.4% 94.9%
Co6 98.0% 98.5% 98.5% 99.0%
C7 99.5% 99.5% 100.0% 100.0%
C8 97.9% 95.4% 96.9% 95.9%
(e] 99.0% 99.0% 99.5% 100.0%
C10 100.0% 99.0% 99.5% 99.0%
Cl1 89.8% 89.8% 91.3% 91.3%
Cl12 94.5% 96.4% 93.7% 98.0%
C13 100.0% 99.5% 100.0% 99.5%
Cl4 94.5% 95.9% 94.8% 93.9%
TABLE IV
PRECISION AND RECALL PER CLASS: RFS-SELECTED VS FULL ORIGINAL
FEATURES

The results of Tables III and IV conjunctively form a
significant case in support of the proposed approach. They are



also indicative of the potential of RFS in reducing not only
redundant feature measurements but also the noise associated
with such measurements, improving both effectiveness and
efficiency of the classification process in general.

2) Use of IGR-selected features: 1GR ranks the original
54 features in the descending order as listed in Table V (see
Table I for the meaning of these features). Fig. 4 shows the
classification accuracy in relation to how many top-ranked
features (by IGR) are used. Three plots are presented, in
correspondence to the use of three different types of classifier:
SVM, KNN and DTREE. The right-most cases are the results
of using all of the 54 original features. Clearly, the use of
feature subsets of a different cardinality significantly affects
the classification performance. For comparison, Fig. 4 also
includes the accuracy rates achieved by the three types of
classifier that each uses 20 (SVM), 53 (KNN) and 48 (DTREE)
RFS-selected features, respectively.

Order 1 2 3 4 5 6 7 8 9 10 | 11
IGR 10 | 9 8 7 24 | 16 | 27 | 25 | 6 18 | 17
Order 12|13 |14 |15 |16 | 17 | 18 | 19 | 20 | 21 | 22
IGR 14 | 4 3 38 |5 15 |37 |23 | 11 | 30 | 12
Order || 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33
IGR 2 1 19 | 42 | 26 | 31 | 35 | 51 | 22 | 34 | 50
Order || 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44
IGR 43 | 52 | 41 | 49 | 28 | 44 | 32 | 46 | 47 | 48 | 45
Order || 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54
IGR 33 | 53 | 40 | 21 [ 29 | 36 | 13 | 20 | 54 | 39

TABLE V
RANKING ORDER OF IGR-SELECTED FEATURES
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Fig. 4. Performance of SVMs, KNNs and DTREEs vs. the number of IGR-
selected features.

Table VI summaries the correct classification rates produced
by the classifiers, based on the results of Fig. 4. Also included
in this table are the numbers of IGR-returned features that are
necessary to be used for the corresponding classifiers to reach

a comparative outomce as per those classifiers which use RFS-
selected features. As with the case of using features returned
by RFS, SVM-based classifiers using IGR-selected features
perform the best.

[ Classifier [[ Set [ Dim. [ Feature No | Rate |
SVM RFS 20 First 20 RFS | 93.58%
SVM IGR 16 First 16 IGR 93.44%
SVM Full | 54 | 1,2,..,53,54 | 93.07%

KNN(KS) RES 53 First 53 RFS | 86.07%

KNN(K8) IGR 14 First 14 IGR 86.37%

KNN(KS) || Fall | 54 | 1,2,..,53,54 | 86.07%

DTREE RES 48 First 48 RFS 80.78%

DTREE IGR 18 First 18 IGR 80.83%

DTREE | Full | 54 | 1,2,..,35,54 | 80.94%
TABLE VI

RFS AND IGR-SELECTED VS FULL ORIGINAL FEATURES

Collectively, these results show that although far less fea-
tures are employed, the classifiers using reduced feature sub-
sets outperform their counterparts which use the full features.
The employment of IGR in these classifiers helps not only
to reduce redundant feature measurements (thereby simpli-
fying classification process), but also to minimise the noise
associated with such measurements (thereby improving the
classification accuracy).

C. Comparison between RFS and IGR

The performances of using IGR or RFS to support the
different types of classifier are herein further compared. It
can be seen from the results shown in the preceding section
that the SVM classifier with the first 16 IGR-selected features
has similar performance (93.44%) as the SVM with the first
20 RFS-selected features (93.58%). Both beat that which is
achievable by the use of the full set of original features
(93.07%). Thus, both approaches can significantly reduce the
number of features that are required for SVM to perform.

Interestingly, the KNN and DTREE classifiers that employ
IGR-selected features require a much smaller number of fea-
tures than their counterparts which use RFS-selected features,
in order to reach the classification accuracy that is close to
what is achievable using full features. Yet, neither type of
classifier is able to obtain a classification rate so high as the
SVM-based. Overall, for the present image dataset, the three
types of classifier that employ supervised IGR provide similar
(for SVM) or better (for KNN and DTREE) results in terms
of classification rate and number of features used, comparing
to those using the unsupervised RFS.

These results indicate that if it is feasible to make use
of supervised feature selection then IGR should be used;
otherwise, use RFS. This can be expected, as in general,
when decision labels are available during the training phase,
supervised feature selection methods usually outperform their
unsupervised counterparts [2]. Yet, in many cases where the
thorough interpretation of a large data is infeasible, the amount
of labeled training samples is often limited. In such circum-
stances, most conventional supervised techniques may fail on



the ‘small labeled-sample problem’ [14]. Besides, information
required about the underlying classes of the image patterns
may not be available for certain applications, it will therefore
be necessary to employ the unsupervised feature selection
techniques such as RFS. It is very encouraging to note that
for the problem at hand, when SVM-based classifiers are used
with RFS-selected features the best performer is very similar
to that when IGR-selected features are employed, both in
classification accuracy and in number of features required.

VII. CONCLUSION

This paper has presented a study on rock texture image clas-
sification using support vector machines (and also K-nearest
neighbours and decision trees) with the aid of feature selection
techniques. It has offered both unsupervised and supervised
methods for feature selection, based on data reliability and
information gain ranking respectively.

Following this approach, the conventional classifiers which
are sensitive to the dimensionality of feature patterns, be-
come effective on classification of images whose pattern
representation may otherwise involve a large number of fea-
tures. Although the images encountered are complex, the
resulting feature pattern dimensionality of selected features
is manageable. Classifiers built using such selected features
generally outperform their counterparts that employ the full
set of original features which has a dimensionality several
folds higher than that of the selected feature subsets. This
is confirmed by systematic experimental investigations.

This work helps to accomplish challenging image classifi-
cation tasks effectively and efficiently. Unlike transformation-
based dimensionality reduction techniques [15], the approach
retains the underlying semantics of the selected feature subset.
This is very important to ensure that the classification results
are understandable by the user. It is of particular significance
for classification and analysis of real-world images in the areas
of medical analysis and space engineering [27]. Indeed, such
applications remain as active research.

The present research suggests the use of SVMs to carry
out classification. However, such classifiers are known to
be effective. It would be useful to further compare their
performance with other well-known systems such as multi-
layer feedforward neural networks, in addition to the K-nearest
neighbours and decision tree based classifiers. It is also very
interesting to compare the present work with the approach that
performs classification tasks by directly using data reliability
measures [3].
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