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Abstract

A variety of resting state neuroimaging data tend to exhibit fractal
behavior where their power spectrums follow power-law scaling. Resting
state functional connectivity is signi�cantly in�uenced by fractal behav-
ior which may not directly originate from neuronal population activities
of the brain. To describe the fractal behavior, we adopted the fraction-
ally integrated process (FIP) model instead of the fractional Gaussian
noise (FGN) since the FIP model covers more general aspects of fractal-
ity than the FGN model. This model provides a theoretical basis for the
dependence of resting state functional connectivity on fractal behavior.
Inspired by this idea, we introduce a novel concept called the nonfractal

connectivity which is de�ned as the correlation of short memory indepen-
dent of fractal behavior, and compared it with the fractal connectivity
which is an asymptotic wavelet correlation. We propose several wavelet-
based estimators of fractal connectivity and nonfractal connectivity for a
multivariate fractionally integrated noise (mFIN). These estimators were
evaluated through simulation studies and applied to the analyses of resting
state fMRI data of the rat brain.

1 Introduction

The dynamics of endogenous neuronal activities has been an important issue
in neuroscience since it is supposed to take control of most neuronal activities
arising in the brain [1]. The huge default-mode functional network of the brain
has been usually investigated through resting state neuroimaging data such
as electroencephalography (EEG) and functional magnetic resonance imaging
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(fMRI) [2�5]. One of the major goals in resting state neuroimaging research is
the reliable inference of functional dynamics of spontaneous neuronal population
activities from resting state neuroimaging data. However, it is not straightfor-
ward since resting state signals may be signi�cantly a�ected by non-neuronal
physiological factors. On the other hand, the response to stimulation in task-
based experimental paradigm is prominently correlated with brain activities
either directly or indirectly.

One of the non-neuronal obstacles in resting state neuroimaging studies is
the fractal behavior (or long-range dependence) where the power spectrum tends
to exhibit 1/fα power law scaling across low frequencies. This phenomenon has
been observed through a number of resting state neuroimaging studies [6�9].
As such a phenomenon has been ubiquitously observed in nature, the fractal
behavior in neuroimaging data may also arise from various mediators such as
respiration [10, 11], cardiac �uctuations [12], system noise, hemodynamics (in
the case of fMRI) as well as neuronal activities [13�15].

The classical model of fractal behavior or long memory in baseline neu-
roimaging signals has been the fractional Gaussian noise (FGN) which is de�ned
as an increment process of fractional Brownian motion (FBM) and completely
characterized by both Hurst exponent and variance [16]. The FGN model has
been adopted to various fractal-based analyses of fMRI data for a decade so as
to account for scale-free dynamics of neuroimaging signals [17�21].

However, there is a controversy about whether the FGN is the most ap-
propriate model for resting state neuroimaging signals among a variety of long
memory models. While the FGN model is de�ned just with two parameters
under mathematically strict conditions of self-similarity, a neuroimaging signal
is produced from a nonlinear biological system which is controlled by numer-
ous hidden parameters. In this reason, the fractionally integrated process (FIP)
model, based on the concept of fractional di�erencing [22], is worth considera-
tion as an alternative to the FGN model since it embraces diverse types of long
memory. Indeed, the FGN is regarded as a special type of the FIP model which
is more extensive than FGN.

In this paper, we adopted the fractionally integrated process (FIP) model
to e�ectively describe the fractal behavior of neuroimaging signals. In the FIP
model, a neuroimaging signal is represented as the output of a long memory
(LM) �lter whose input is a nonfractal signal (sometimes called short memory

as a notion corresponding to long memory). In other words, a nonfractal signal
is transformed into a neuroimaging signal with fractal behavior through long
memory �ltering as shown in Fig. 1, which indicates that the fractal behavior
is attributed not to the nonfractal input but to the LM �lter. The in�uence
of several factors on the fractal behavior can be well aggregated in terms of a
sequence of long memory �lters.

The FIP model sheds light on the in�uence of fractal behavior on functional
connectivity. The correlation of resting state neuroimaging signals between
two brain regions may signi�cantly di�er from that of the nonfractal input
signals according to the di�erence of memory parameters. Hence, the ordinary
correlation of resting state neuroimaging data may not well re�ect the functional

2



Figure 1: The FIP model representation of resting state neuroimaing signals.

dynamics of spontaneous neuronal activities due to the fractal behavior.
The theoretical expectation that functional connectivity may be in�uenced

by fractal behavior leads us to take into account the correlation of fractal-free
input signals as a novel concept of resting state functional connectivity while the
Pearson correlation of neuroimaging signals has been the most popular de�ni-
tion of functional connectivity. This particular correlation, which is independent
of fractal behavior, is called the nonfractal connectivity. Its mathematical de-
scription is provided in section 3. The nonfractal connectivity is not exactly
identical to the correlation of spontaneous neuronal population activities due to
the nonlinearity of neurophysiological systems. However, it may give us better
information on correlation structure of spontaneous neuronal populations than
ordinary correlation of neuroimaging data since it eliminates the distortion of
functional connectivity due to fractal behavior.

The nonfractal connectivity is comparable to fractal connectivity which was
�rst proposed in [23] as the asymptotic value of wavelet correlations over low
frequency scales. The wavelet correlations of two long memory processes are
converged on a speci�c value which is determined by the correlation of short
memory parts as well as memory parameters. We show the theoretical relevance
of nonfractal connectivity to fractal connectivity.

In this paper, we propose three wavelet-based approaches to estimating both
nonfractal connectivity and fractal connectivity: (1) the SDF(Spectral density
function)-based method, (2) the covariance-based method, and (3) the linearity-
based method. As prerequisite to estimating these connectivities, memory pa-
rameters should be estimated a priori. We tested two wavelet-based univariate
estimators of memory parameter: the wavelet-based least-mean-squares (LMS)
method and the wavelet-based maximum likelihood (ML) method. The perfor-
mance of all proposed estimators was veri�ed through simulation studies. We
also show an example of applying these estimators to resting state fMRI data
taken from anesthetized rat brains to estimate nonfractal connectivity.

This paper is organized as follows. In section 2, the FIP model of resting
state neuroimaging signals is brie�y introduced, and the concepts of nonfractal
connectivity and fractal connectivity are described in section 3. The wavelet-
based estimators of both connectivities are proposed in section 4. The results
of simulation studies and experiments in fMRI data are provided in section 5
and 6.
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2 Long memory model

Fractal properties of a time series can be modeled as long memory models such as
FGN, ARFIMA, and GARCH processes. In this section, we especially introduce
both univariate and multivariate fractionally integrated processes (FIP) that
encompass several classes of long memory such as fractionally integrated noise
(FIN), FGN, and ARFIMA [22,24].

2.1 Univariate case

Let x(t) be a real-valued discrete process of length N given by

u(t) = (1− L)
d
x(t) (1)

where d ∈ R, L denotes the back-shift operator, and u(t) (called short memory)
is a stationary process whose spectral density Su (f) is a non-negative symmetric
function bounded on (−π, π) and bounded away from zero at the origin. x(t)
can be represented as the convolution of u(t) with the long memory (LM) �lter
g(t) as follows

x(t) =

∞∑
τ=0

g(τ)u(t− τ) (2)

where

g(t) :=
dΓ(d+ t)

Γ(d+ 1)Γ(t+ 1)
. (3)

If −1/2 < d < 1/2, the spectral density of x(t) is given by

S(f) =
∣∣1− e−if ∣∣−2d

Su(f). (4)

The fractal behavior is controlled by the memory parameter d. If 0 < d < 1/2,
the process x(t) is said to be a stationary long memory process with memory
parameter d while x(t) is nonstationary if d > 0.5. If d = 0, the process becomes
a white noise.

2.2 Multivariate case

The de�nition of the univariate long memory model can be extended to the
multivariate case. Consider a real-valued q-vector process X(t) given by (1− L)d1 0

. . .

0 (1− L)dq


 X1(t)

...
Xq(t)

 =

 U1(t)
...

Uq(t)

 , (5)

where U(t) = (U1(t), ..., Uq(t)) is a multivariate stationary process whose spec-
tral density S(f) = [Sm,n(f)] is bounded on (−π, π) and bounded away from
zero at the origin. For −1/2 < dk < 1/2, the spectral density of U is given by

S (f) = Φ (f) Su (f) Φ∗ (f) (6)
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where

Φ (f) =

 (1− eif )−d1 0
. . .

0 (1− eif )−dq

 . (7)

In the case of 0 < dk < 1/2 for 1 ≤ k ≤ q for 1 ≤ k ≤ q, X(t) is said to be
a stationary long memory process with memory parameter d = (d1, · · · , dq). If
U(t) is a vector ARMA process, X(t) becomes a multivariate ARFIMA process.
On the other hand, if U(t) is a vector i.i.d. random variable, i.e.

U(t)
i.i.d.∼ N (0,Σu) , (8)

X(t) becomes a multivariate fractionally integrated noise (mFIN). In this case,
the cross-spectral density of xm(t) and xn(t) is given by

Sm,n (f) = γm,n
(
1− eif

)−dm (
1− e−if

)−dn
(9)

where γm,n is identical to the (m,n)-th element of Σu.

3 Nonfractal and fractal connectivity

As discussed in the section 1, the most popular de�nition of functional connec-
tivity has been the Pearson correlation. The multivariate long memory model
introduced in the section 2 additionally provides two novel de�nitions of resting
state functional connectivity: fractal connectivity and nonfractal connectivity.
While fractal connectivity is de�ned based on the asymptotics of wavelet cor-
relation, nonfractal connectivity is de�ned based on the covariance of short
memory.

3.1 Nonfractal connectivity

Let X(t) be an mFIN process with memory parameter d, and U(t) be a short
memory function of X(t) given in (5). The nonfractal connectivity of xm(t) and
xn(t) is de�ned as

Dm,n =
γm,n√
γm,mγn,n

(10)

where γm,n denotes the covariance of um(t) and un(t); that is, γm,n := E [um(1)un(1)].

3.2 Fractal connectivity

The variance of a discrete time series can be decomposed over several fre-
quency bands (called scales) through the discrete wavelet transform (DWT).
LetWi(j, k) be the wavelet coe�cient of the ith process xi(t) at scale j and time
point k. The wavelet covariance is de�ned as νm,n(j) := cor (Wm(j, k),Wn(j, k))

5



at scale j. Since the wavelet coe�cients of an FIP at a scale j is covariance sta-
tionary, νm,n(j) is independent of time t. LetHj(f) be the squared gain function
of the wavelet �lter such that

Hj(f) ≈
{

2j for 2π/2j+1 ≤ |f | ≤ 2π/2j

0 otherwise
. (11)

Then, the wavelet covariance of xm(t) and xn(t) at scale j is related to the
cross-spectral density [25] as follows

νm,n(j) = 2π

∫ π

−π
Hj(f)SX(f)df. (12)

The wavelet correlation ρm,n(j) := cor (Wm(j, k),Wn(j, k)) is given by

ρm,n(j) =
νm,n(j)√
νm(j)νn(j)

. (13)

Theorem 1 (Asymptotic wavelet covariance). Suppose that X(t) is a multivari-
ate FIN process which satis�es the condition (8). Then, the wavelet covariance
of xm(t) and xn(t) at scale j is approximated by

νm,n(j) ≈ γm,nβm,n2j(dm+dn) as j →∞ (14)

where

βm,n := 2 cos
(π

2
(dm − dn)

) 1− 2dm+dn−1

1− dm − dn
(2π)−dm−dn . (15)

Proof. It is well known the following Taylor series

sin−dm−dn (f/2) ≈

(f/2)
−dm−dn +

dm + dn
6

(
f

2

)2−(dm+dn)

. (16)

From (9) and (16),

Sm,n (f) = γm,n2−dm−dn

((
f

2

)−dm−dn
+

dm + dn
6

(
f

2

)2−(dm+dn)
)
. (17)

Substituting Sm,n (f) in (12) with (17), we �nally get (14).

The asymptotic property of wavelet correlation 1 was also proved for more
general cases of short memory in [23]. From (13) and (14), the wavelet correla-
tion of xm(t) and xn(t) asymptotically converges to

ρm,n(j)→ ρ∞m,n := Dm,nΥ(dm, dn) as j →∞ (18)
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Figure 2: The ratio of fractal connectivity to nonfractal connectivity in a bivari-
ate ARFIMA(0, d, 0) process over memory parameters. Note that H1 = d1 +0.5
and H2 = d2 + 0.5.

where

Υ(dm, dn) :=
βm,n√
βm,mβn,n

. (19)

The asymptotic wavelet correlation ρ∞m,n is called the fractal connectivity of
xm(t) and xn(t). The ratio of fractal connectivity to nonfractal connectivity is
given from (18) by

ρ∞m,n
Dm,n

= Υ(dm, dn). (20)

The ratio depends just on a pair of long memory parameters as depicted in Fig.
2. As the di�erence of long memory parameters increases, fractal connectivity
gets away from nonfractal connectivity. On the other hand, fractal connectivity
is nearly identical to nonfractal connectivity if the di�erence of two memory
parameters approaches zero.

4 Estimation of fractal connectivity and nonfrac-

tal connectivity

The multivariate FIP model indicates that both nonfractal connectivity and
fractal connectivity can be well estimated if memory parameters are known.
Here we deal with a simple case such that a given time series is approximated
as a multivariate FIN process (mFIN). The estimation of nonfractal connectivity
and fractal connectivity is organized as two steps. The �rst step is to estimate
memory parameters, and the next step is to compute both fractal connectiv-
ity and nonfractal connectivity given the memory parameters. In this section,
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several wavelet-based techniques which can be exploited in each step are in-
troduced. All of these methods are based on the wavelet transform which are
optimal to investigate the properties of long memory processes.

4.1 Estimation of memory parameters

4.1.1 Wavelet least-mean-squares method (LMS)

By taking logarithm to (14), we obtain the following linear relationship of
wavelet variance in the logarithm scale:

log2 [νm(j)] ≈ 2dmj + cm. (21)

It enables us to estimate the memory parameters d̂m by linear regression over
a given scale interval J = jlow → jhigh on the basis of the biased estimator of
wavelet variance given by

ν̂m(j) =
1

nj2j

nj∑
t=1

W 2
m(j, t) (22)

where nj is the number of coe�cients in scale j except boundary coe�cients [25].
In a similar manner with [23], the optimal scale interval Jopt for linear regression
in (21) is globally determined by

Jopt = argmin
J⊂J

σ2
LS(J ) (23)

where J is the space of all scale intervals, ∆J = jhigh − jlow + 1, and

σ2
LS(J ) =

1

∆J

jhigh∑
j=jlow

q∑
m=1

{
log2 [ν̂m]− 2d̂mj − ĉm

}2

. (24)

4.1.2 Wavelet maximum-likelihood method (ML)

The likelihood function for memory parameter dm and asymptotic variance Gm
is given by

L
(
d̂m, γ̂m |xm(t)

)
:=

1

(2π)N/2 |Σm|1/2
e−x

T Σ−1
m x/2. (25)

The matrix Σm denotes the covariance matrix of xm(t), and can be replaced

by Σ̃m := WTΛW where W is a wavelet transform matrix and Λ is a diagonal
matrix which has diagonal elements Λm(j) := νm(j) given in (14) for j =
1, ..., J as an average value of spectral density function (SDF) over the band[
1/2j+1, 1/2j

]
. The reduced log likelihood function can be obtained on the
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basis of the Brockwell and Davis's method [26]:

l
(
d̂m, γ̂m |xm(t)

)
(26)

= −2 logL
(
d̂m, γ̂m |xm(t)

)
−N log(2π)−N

= N log (γ̂m,m) + log(Λm(J + 1)) +

J∑
j=1

Nj log (Λm(j))

with N = 2J , Nj = N/2j , and

γ̂m,n :=
1

N

(
V TmVn

Λm,n(J + 1)
+

J∑
j=1

1

Λm,n(j)

Nj−1∑
t=0

Wm(j, t)Wn(j, t)

 (27)

where Vm are the scaling coe�cients at scale J and Wj,t is the t-th element

of j-th level wavelet coe�cients. The optimal memory parameter d̂m can be
estimated by minimizing (26) with respect to d̂m [25].

4.2 Estimation of short-memory covariance

4.2.1 The SDF-based method (SDF)

The estimator γ̂m,n of short memory covariance can be semiparametrically com-
puted by (27). Since Vm ≈ 0 in stationary long memory processes, the equation
can be approximated as

γ̂m,n ≈
1

N

J∑
j=1

1

Λm,n(j)

Nj−1∑
t=0

Wm(j, t)Wn(j, t). (28)

4.2.2 The covariance-based method (COV)

Alternatively, the short memory covariance can be estimated by exploiting the
properties such that the sum of wavelet covariances over all scales is identical
to the covariance of a time series; i.e.,

σ̂2
m,n =

cov (Vm, Vn)

N
+

J∑
j=1

cov (Wm(j, t),Wn(j, t))

2j
. (29)

Since cov (Vm, Vn) ≈ 0 for a FIN process, the estimator of short memory covari-
ance can be obtained from (14) and (29) as follows

γ̂m,n =
σ̂2
m,n

2Bm,n
∑J
j=1 2(dm+dn−1)j

(2π)
dm+dn . (30)
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4.2.3 The linearity-based method (LIN)

The estimator of short memory covariance can be also obtained in the other
way based on the linearity of wavelet covariance over scales as follows.

γ̂m,n =
2ĉm,n−1

Bm,n cos
(
π
2 (dm − dn)

) (2π)dm+dn (31)

where

ĉm,n =
1

J

J∑
j=1

[log2 ν̂m,n(j)− (dm + dn)j] , (32)

Bm,n :=
1− 2dm+dn−1

1− dm − dn
. (33)

4.3 Estimation of fractal and nonfractal connectivity

After the estimators for memory parameters d̂ and the short memory covariance
Γ̂ are obtained, the nonfractal connectivity D̂m,n can be estimated by using (10)
as follows

D̂m,n =
γ̂m,n√
γ̂m,mγ̂n,n

. (34)

Likewise, fractal connectivity ρ̂∞m,n can be estimated from (18) and (34) as fol-
lows

ρ̂∞m,n := D̂m,nΥ(d̂m, d̂n). (35)

5 Simulation study

In this section, the performance of three wavelet-based estimators for nonfractal
connectivity was evaluated. We also analyzed the in�uence of short memory
condition, dimension, and length of time series on the estimation of nonfractal
connectivity. By combining a connectivity estimator with a memory parameter
estimator, six pairs of estimator, such as LMS-LIN, LMS-COV, LMS-SDF, ML-
LIN, ML-COV, ML-SDF methods, were �nally tested.

5.1 Setup

We simulated multivariate ARFIMA(p,d, 0) processes that belong to the FIP
model. First, the short memory U(t) in (5) was given as an ARMA(p, 0) process
as follows

U(t) = Φ−1
p (L)Aε(t). (36)

In (36), εi(t) for i = 1, · · · , q is an i.i.d. random variable where

cov(εm(t), εn(t)) =

{
1 if m = n

0 if m 6= n,
(37)
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Φp(L) =


∑p
i=1 ϕ1,iL

i 0
. . .

0
∑p
i=1 ϕq,iL

i

 , (38)

and

A =



1 0 · · · · · · 0
0 1 a · · · a
... a

. . .
...

...
... 1 a

0 a · · · a 1

 . (39)

If we set

a =
1±
√

1− bρ
b

(40)

where b = ρ(q−2)−(q−3), the short memory correlation is forced to beDm,n = ρ
for m,n > 1 and m 6= n. Afterwards, the memory parameters d were equally
distributed over d ∈ (−1/2, 1/2), and the multivariate ARMA(p, 0) process was
�ltered by the LM �lter de�ned in (3).

5.2 E�ects of short memory condition

To study the e�ects of short memory conditions on the performance of esti-
mators, we performed Monte Carlo simulations with 100 repetitions of four-
dimensional ARFIMA(p, d, 0) processes under four di�erent types of short mem-
ory condition in (38) and (39):

(1A) A = I and ϕk,i = 0

(1B) A = I, ϕk,1 = 0.9 and ϕk,i = 0 for i > 1

(2A) A = A0 and ϕk,i = 0

(2B) A = A0, ϕk,1 = 0.9 and ϕk,i = 0 for i > 1

where d = {0.2, 0.4, 0.6, 0.8} and A0 was set with ρ = 0.3 in (40). In the
conditions (1A) and (1B), each short memory process is statistically independent
of each other while the conditions (2A) and (2B) let short memory processes
be cross-correlated. On the other hand, the conditions (1B) and (2B) let each
process be autocorrelated.

In Fig. 3, all methods were weak in the conditions (1B) and (2B) where short
memory parts were more auto-correlated; the relative decrease in consistency for
two cases was common to all six methods. The deteriorated performance in (1B)
and (2B) is a foreseeable result since these short memory conditions no longer
follow the assumption of mFIN in (8) adopted for our proposed estimators.
Hence, our proposed estimators were not e�cient when the set of short memory
signals cannot be approximated as a multivariate i.i.d. process.
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 3: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(p, d, 0) processes with di�erent short memory conditions.

In the cases (2A) and (2B) where short memory processes are cross-correlated,
LMS-LIN, ML-LIN, and ML-COV estimators were not signi�cantly biased.
However, Fig 4 and 5 show that all estimators except LMS-LIN are more biased
as the correlation of short memory increases when the dimension (the number
of time series) is large.

In these experiments, the short memory processes were given as a multivari-
ate ARMA(0, 0) process with innovation which ful�lls (39) and (40). The short
memory correlation coe�cient in (40) was set by either ρ = 0.2 or ρ = 0.8.
In Fig 4 and 5, the absolute bias of estimators except LMS-LIN increased as
the dimension increases, and the increasing rate of bias was faster when the
short memory correlation was high. Hence, the high correlation of short mem-
ory results in the deterioration of estimation performance. All the above results
show that the bias of estimators tends to be associated with cross-correlation
of short memory parts, but also that the consistency tends to be related to
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 4: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable dimensions when the short
memory correlation is ρ = 0.2.

auto-correlation of each short memory part. In summary, the performance of
our proposed estimators for nonfractal connectivity is manifestly in�uenced by
the short memory conditions.

5.3 E�ects of dimension and length of time series

Fig 4 and 5 show that the estimators of nonfractal connectivity except LMS-LIN
depend on the dimension of time series. The LMS-LIN method was relatively
less biased even in high dimension than other methods, however the consistency
was large. On the other hand, the other methods were more biased as the di-
mension increases; especially the increase in bias was more prominent in the
LMS-SDF and ML-SDF methods. Hence, the increase in the number of time
series leads to the poor performance of estimating nonfractal connectivity. Nev-
ertheless, the ML-COV method has the best consistency even in high dimension
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 5: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable dimensions when the short
memory correlation is ρ = 0.8.

and high correlation.
Fig. 6 shows that the performance of nonfractal connectivity estimation is

associated with the length of time series. In multivariate ARFIMA(0, d, 0) pro-
cesses with zero cross-correlation between short memory parts, the consistency
of all methods was improved as the length of time series increases. However,
the LMS-LIN method had greater bias than ML-LIN when the length of time
series was small. In Fig. 3, the LMS-LIN and ML-LIN methods had di�erent
performance in all tested short memory conditions even though they have the
common approach to estimating nonfractal connectivity. These results imply
that the estimation of nonfractal connectivity can be a�ected by the estimator
of memory parameter.

Concluding Fig. 3-6, the ML-COV method would be the best choice as an
estimator of nonfractal connectivity since it exhibits small bias in various cases
of short memory conditions and high consistency even in high dimension and
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(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Figure 6: Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable length of time series when the
short memory correlation is ρ = 0.

high short memory correlation. As shown in Fig 7, the connectivity matrix es-
timated by the ML-COV method has smaller di�erence with the original short
memory correlation matrix than those produced by other methods have. How-
ever, it is theoretically expected that the covariance-based method including
ML-COV may be more sensitive to additive noises than other methods. In the
case that the signal-to-noise ratio is low, the ML-LIN method may have better
performance than ML-COV.

6 Resting state functional MRI

We applied our proposed estimator of nonfractal connectivity to a resting state
fMRI data of the anesthetized rat brain taken from 4.7T MRI scanner. We man-
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(a) Short memory correlation (b) ML-LIN

(c) ML-COV (d) ML-SDF

Figure 7: An example of nonfractal connectivity estimation in a simulated 8-
dimensional ARFIMA(0, d, 0) process.

ually separated the 15 ROIs from the anatomical MRI image, and mapped them
into the 64× 64× 8 volume of blood-oxygen-level-dependent (BOLD) signals in
fMRI by using the FLIRT (FMRIB's Linear Image Registration Tool). These
ROIs correspond to aCG, CPu-L, CPu-R, MEnt+MEntV-L, MEnt+MEntV-R,
HIP-L, HIP-R, S1-L, S1-R, S2-L, S2-R, LSI+MS, TE-L, TE-R, and TH [27].

We computed both the Pearson correlation and nonfractal connectivity by
using the ML-LIN method. In Fig. 8, the estimated nonfractal connectivity has
signi�cantly di�erent patterns from the ordinary correlation. As shown in the
modularized graph representations of Pearson correlation and nonfractal con-
nectivity obtained after thresholding the number of edges by 20, the nonfractal
functional network tends to exhibit increased modularity while the correlation-
based functional network exhibits high randomness.

7 Conclusion

In this article, we modeled a resting state neuroimaging signal as a fraction-
ally integrated process and introduced the nonfractal connectivity as a novel
concept of resting state functional connectivity. There is no empirical evidence
which demonstrates that the nonfractal connectivity re�ects the correlation of
spontaneous neuronal population activities. Through empirical analyses and
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(a) Nonfractal connectivity (b)

(c) Pearson correlation (d)

Figure 8: An example of nonfractal connectivity estimation in resting state
fMRI data of the anesthetized rat brain.

computational modeling of resting state neuroimaging data, the association of
nonfractal connectivity and neuronal population activities needs to be clari�ed
in the future.

We also proposed several wavelet-based methods for estimating nonfractal
and fractal connectivity. These estimators are optimal under the assumption
that the given signals can be approximated by an mFIN while neuroimaging
signals would have various short memory and can be seriously contaminated by
physiological or system noises. Hence, the estimators need to be improved in
a variety of short memory conditions and the existence of additive noises. It
would be also valuable to �gure out the biological mechanism of fractal behavior
which gives rise to the distortion in functional connectivity. All these challenges
may give us insight into the relationship of resting state functional connectivity
and fractal behavior.
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