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Abstract—In this paper we show how Grassmann distances
and Grassmann kernels can be efficiently used to learn and
classify face sequence videos. We propose two new methods,
the Grassmann Distance Mutual Subspace Method (GD-MSM)
which uses Grassmann distances to define the similarity between
subspaces of images, and the Grassmann Kernel Support Vector
Machine (GK-SVM), which applies two Grassmann kernels –
the projection kernel and the Binet-Cauchy kernel – in a convex
optimization scheme, using the Support Vector Machine (SVM)
framework. GD-MSM and GK-SVM are compared in a face
recognition task with several related methods using a large
database of face image sequences from 100 subjects, containing
expression changes related to a natural conversation setting.
Additionally, we study the effect of combining all available
training image sequences into a single subspace per category,
in comparison with using multiple smaller subspaces, i.e. repre-
senting each category by several different subspaces, where each
subspace is formed from image sequences taken under different
conditions.

Index Terms—Face Sequence Recognition, Grassmann Mani-
fold, Grassmann Distance, Grassmann Kernel, Canonical Angles,
Canonical Correlations, Subspace Methods

I. INTRODUCTION

In many computer vision applications, the objects of inter-
est are naturally represented as sets of images, where each
image set captures some of the variation of the object under
one or several external factors like changes in view angle,
illumination conditions, etc., or due to rigid motion or non-
rigid deformation of the object itself. Especially when object
recognition is concerned, it is generally accepted that it is ad-
vantageous to consider the relations between whole image sets,
rather than between individual images. To be able to compare
two image sets, a suitable distance, or similarity measure, has
to be defined. For this purpose, both parametric model-based
approaches, and non-parametric sample-base methods have
been previously proposed in the literature. In the parametric
modeling approach [1], [2], image sets are represented by
parametric distribution function, and distances between sets
are measured by the Kullback-Leibler (KL) divergence. In
the non-parametric sample-based methods [3], [4], typically
the nearest-neighbor (NN) distance between the individual
samples from each set, or variants of the Hausdorff distance
are used.

Recently, an alternative approach is gaining popularity,
where image sets are approximated as low-dimensional linear
subspaces, and the distance between a pair of image sets

is represented as the distance between their corresponding
subspaces, a concept which has been well studied before
[5], [6]. The distance between subspaces can be represented
in terms of the principal angles between them (details are
reviewed in the next section). Several methods have been
proposed in the literature which make use of the principal
angles between subspaces. In the Mutual Subspace Method
(MSM) [7], the cosine of the smallest principal angle is used to
determine the similarity between two image sequences. Further
modifications of MSM include methods like Kernel MSM
(KMSM) [8], Constrained MSM (CMSM) [9], [10], Boosted
Manifold Principal Angles (BoMPA) [11], Discriminant anal-
ysis of Canonical Correlations (DCC) [12], etc.

A recent work in [13] attempts to provide a unifying view on
subspace-based learning methods, by formulating the problem
on the Grassmann manifold [14], the set of fixed-dimensional
linear subspaces of a Euclidean space. Various distances which
consider the geometric structure of the Grassmann manifold
and can be represented in terms of the principal angles
between subspaces have been given in [15] and reviewed in
[13]. In [13] it is also shown that the projection metric and
the Binet-Cauchy metric can be considered valid metrics on
Grassmann manifolds, and kernel functions compatible with
these metrics are defined, the projection kernel and the Binet-
Cauchy kernel. Then these Grassmann kernels are used in a
kernel LDA (Linear Discriminant Analysis) framework. The
resulting method is called Grassmann Discriminant Analysis
(GDA). Kernel Grassmannian Discriminant Analysis (KGDA)
has also been proposed in [16], to extend GDA in a similar
manner as KMSM extends MSM by using the kernel trick.

In this paper, we propose to extend the Mutual Subspace
Method, so that rather than considering only the cosine of
the smallest principal angle, which geometrically is not a
good measurement for subspace similarity approximation, and
also is not optimal for recognition, the Grassmann distances
are used to define the similarity between image sequences.
The resulting method we call Grassmann Distance Mutual
Subspace Method (GD-MSM). Additionally, in order to obtain
more discriminative learning function based on Grassmann
distances, we apply the Grassmann kernels from [13] in
a convex optimization scheme, using the Support Vector
Machine (SVM) framework [17]. The resulting method we
call Grassmann Kernel Support Vector Machine (GK-SVM).
We compare the performance of GD-MSM and GK-SVM
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with several related methods on a large database of facial
image sequences. This dataset contains face sequences from
100 subjects with expression changes related to a natural
conversation setting (the MOBIO database [18]). Also, we
study the effect of combining all available image sequences
into one large dictionary (learning a common subspace from
all available image sequences for each subject), in comparison
with using multiple smaller subspaces, i.e. representing each
subject by a multitude of different subspaces, where each sub-
space is formed from image sequences taken under different
conditions.

II. PRELIMINARIES

In this section we provide a brief review of the terminology
related to Grassmann distances and Grassmann kernels.

Consider two image sequences Si = {xi
1,x

i
2, · · · , xi

n}
and Sj = {xj

1, x
j
2, · · · ,xj

m}, where xi
n is the n-th im-

age in the i-th sequence (or an object of interest, e.g. a
face, extracted from this image), in vector form. We can
represent the whole set of images (or objects) in each se-
quence by their corresponding subspaces in the Euclidean
space RD, span(Yi) = span{u1, · · · , up} and span(Yj) =
span{v1, · · · ,vq}, where span(Yi) denotes the subspace
spanned by the column vectors of the D × p matrix Yi =
[u1, · · · , up] and {u1, · · · , up} are orthonormal (they can be
computed as the eigenvectors corresponding to the largest p
eigenvalues of the correlation matrix obtained from all images
in the relevant image sequence). The set of all m-dimensional
linear subspaces in RD is called the Grassmann manifold
G(m,D), and the subspaces span(Yi) and span(Yj) can be
considered as two points on the manifold G(m,D). Various
distances on G(m, D) have been defined [15], all of which
can be represented in terms of the principal angles between
subspaces [6].

The principal angles, or canonical angles, 0 ≤ θ1 ≤ . . . ≤
θm ≤ π/2, between the subspaces span(Y1) and span(Y2)
can be defined recursively as

cos θk = max
uk∈span(Y1)

max
vk∈span(Y2)

uT
k vk, (1)

subject to the constraints

uT
k uk = 1,vT

k vk = 1,

uT
k ui = 0,vT

k vi = 0, (i = 1, · · · , k − 1)
(2)

The principal angles can be computed in a numerically
stable way from the Singular Value Decomposition (SVD) of
Y T

1 Y2

Y T
1 Y2 = UΛV T ,Λ = diag(λ1, · · · , λm) (3)

where the orthonormal matrices Y1 and Y2 are the matrix
representation of span(Y1) and span(Y2), and λi = cos θi

are the cosines of the principal angles θi, also known as the
canonical correlations.

In the rest of the paper we will consider the following Grass-
mann distances (we follow the notation introduced in [13]),
which provide a similarity measure between two subspaces.

All of the distances can be represented in terms of the principal
angles between the subspaces.

1) The projection metric (the 2-norm of the sines of the
principal angles)

dP (Y1, Y2) = (
m∑

i=1

sin2 θi)
1
2 = (m−

m∑
i=1

cos2 θi)
1
2 (4)

2) The Binet-Cauchy metric (using the product of the
cosines of the principal angles)

dBC(Y1, Y2) = (1 −
∏

i

cos2 θi)
1
2 (5)

3) The Max Correlation (uses only the smallest principal
angle, equivalent to the MSM method [7]

dMax(Y1, Y2) = (1 − cos2 θ1)
1
2 = sin θ1 (6)

4) The Min Correlation (uses only the sine of the largest
principal angle)

dMin(Y1, Y2) = (1 − cos2 θm)
1
2 = sin θm (7)

5) The Procrustes (chordal) distance (the minimum dis-
tance between different representations of two subspaces
span(Y1) and span(Y2), using the Frobenius norm)

dCF (Y1, Y2) = min
R1,R2∈O(m)

||Y1R1 − Y2R2||F

= 2(
m∑

i=1

sin2(θi/2))
1
2 (8)

6) The Procrustes (chordal) distance using the matrix 2-
norm

dC2(Y1, Y2) = min
R1,R2∈O(m)

||Y1R1 − Y2R2||2

= 2 sin(θm/2) (9)

7) The geodesic distance (the length of the shortest
geodesic connecting two points on the Grassmann man-
ifold)

dG(Y1, Y2) =
m∑

i=1

θ2
i (10)

8) The mean distance (this is not considered in [13])

dMean(Y1, Y2) =
1
m

m∑
i=1

sin2 θi (11)

The distances above can be used to extend the Mutual Sub-
space Method, by replacing the max-correlation distance (that
is, (6) above, which considers only the largest principal angle)
with any of the other distances. In section 4 we provide
an experimental comparison between these eight Grassmann
distances on a face recognition problem using face image
sequences.

In [13] it is shown that the projection metric (4) and the
Binet-Cauchy metric (5) can be used to define the following
positive definite Grassmann kernels:



1) The projection kernel

kP (Y1, Y2) = trace[(Y1Y
T
1 )(Y2Y

T
2 )]

= ||Y T
1 Y2||2F (12)

2) The Binet-Cauchy kernel

kBC(Y1, Y2) = det(Y T
1 Y2)2

= det(Y T
1 Y2Y

T
2 Y1)

=
∏

i

cos2 θi (13)

These kernels can be used in conjunction with any of the
available kernel-based algorithms [19], and in [13] are used
with kernel LDA. In the next section we propose to use them in
a convex optimization scheme, in the Support Vector Machine
(SVM) framework [20].

III. METHODS

Here we describe the methods whose performance on two
different tasks using face image sequences is compared in the
next section.

A. Grassmann Distance Mutual Subspace Method (GD-MSM)

The Grassmann Distance Mutual Subspace Method pro-
posed here, extends MSM in a straightforward manner, by
using the Grassmann distances described in the previous
section, taking into consideration all principal angles between
the subspaces, instead of just using the smallest principal
angle. As a result, we obtain 8 different variations, depending
on which of the distances in (4) - (11) is used. Both the training
and test image sequences are represented as subspaces, and
the class of an arbitrary test sequence is determined as the
class of the nearest training subspace, using the corresponding
Grassmann distance.

B. Grassmann Discriminant Analysis (GDA)

GDA was proposed in [13] and it uses the Grassmann
kernels kP and kBC in (12) - (13) in a discriminant learning
framework, i.e. essentially it is a kernel discriminant analysis
using Grassmann kernels. GDA applies the kernel trick to the
Rayleigh quotient L(ω) = ωT Sbω/ωT Sωω, used in Linear
Discriminant Analysis to find the discriminant direction ω,
where Sb and Sω are the between-class and within-class co-
variances matrices. If φ is the feature map and Φ = [φ1 · · ·φN ]
the feature matrix of the training data (each training data is
a subspace in this case), then by representing ω as a linear
combination of the feature vectors ω = Φα, the Rayleigh
quotient can be expressed in terms of α as

L(α) =
αT ΦT SBΦα

αT ΦT SW Φα

=
αT K(V − 11T /N)Kα

αT (K(I − V )K + σ2I)α
(14)

where K is the kernel matrix obtained by applying one of
the Grassmann kernels on the training data, 1 is an N-vector
of all-ones, V is a block-diagonal matrix whose c-th block

(corresponding to the c-th class) is an Nc × Nc all-ones
matrix divided by Nc (the number of training samples from
the c-th class), and σ2I is a regularizer. GDA proceeds by
finding through eigen-decomposition the values of α which
maximize (14), and then classification is done by nearest
neighbor classification using the Euclidean distance between
Ftrain = αT K and Ftest = αT Ktest, where Ktest is the
kernel matrix obtained from both training and test samples.

C. Grassmann Kernel Support Vector Machine (GK-SVM)

In a similar way as the Grassmann kernels are used in
conjunction with Kernel Discriminant Analysis, they can also
be used in conjunction with Support Vector Machines (SVM),
in a convex optimization framework. We first consider the
two-class classification problem. If the training set S =
{(Y1, y1), · · · , (YN , yN )} is given, where Yi is the matrix
representations of span(Yi), corresponding to the i-th training
image sequence, and yi = {−1, 1} are class labels, SVM
solves the following primal optimization problem

min
ω,ξ,b

1
2
ωT ω + C

N∑
i=1

ξi

subject to yi(ωT φi + b) ≥ 1 − ξi, ξi ≥ 0

(15)

whose dual representation (allowing the use of kernels) is
given by

min
α

1
2
αT Qα − 1T α

subject to yT α = 0, 0 ≤ αi ≤ C
(16)

In (15) and (16), ξ is the margin slack vector, φ again is the
feature-space transformation, C controls the trade-off between
the slack variable penalty and the margin, and Qij = yiyjKij .
The decision function is

sgn(
N∑

i=1

yiαiK(Yi, YT ) + b) (17)

where YT is the representation of span(YT ), corresponding
to a test image sequence. For multi-class classification we use
the ”one-against-one” approach, where for c classes, c(c −
1)/2 binary classifiers are constructed, and classification is
determined by majority voting.

D. Mutual Subspace Method (MSM)

MSM [7] corresponds to the Max Correlation distance (6)
above.

E. Kernel Mutual Subspace Method (KMSM)

KMSM [8] applies kernel PCA to MSM to account for
nonlinearity in the input data.



F. CLAFIC

We have implemented also CLAFIC [21], one of the earliest
subspace-methods, which also represents each class c as
span(Yc) through Yc = [u1, · · · , up], but rather than using
distances between subspaces as a similarity measure, the angle
between a test vector xT (a single test image, or a single test
pattern) and a class subspace is used

cos2 θ =
1

||xT ||22

p∑
i=1

(uT
i xT )2 (18)

Implementing CLAFIC would show whether something can be
gained in terms of recognition precision, when whole image
sequences or sets of image sequences are used, compared to
just classifying each image individually.

Additionally, as baseline methods, we also have imple-
mented the Eigenface method [22] based on PCA and the
Fisherface method [23] based on Linear Discriminant Analy-
sis. As CLAFIC, rather than using all the information available
in a sequence or a group of sequences, these methods classify
each face image separately.

IV. EXPERIMENTAL RESULTS

In this section we perform experimental evaluation of the
performance of the proposed methods in the context of a face
recognition task. For our experiments we used the publicly
available MOBIO database [18]. This data set contains a
large number of face video sequences acquired primarily on
a mobile phone (NOKIA N93i). Data for 152 subjects (100
males and 52 females) is available, which has been collected
between August 2008 and July 2010 in six different sites
from five different countries. The videos were recorded in
6 different sessions under different environmental conditions.
In each session, the participants were recorded while being
asked to answer a set of 21 different questions, i.e. 21 videos
per session per subject are available. The questions were of
different type, including both free speech and set speech.
As a result of this experimental setting the video sequences
contain natural facial expressions, as those accompanying
natural human communication.

We have conducted two experiments, the details of which
are described in the subsections below. In the first experiment,
the faces were extracted from the original video sequences
using the Viola-Jones face detector available from the OpenCV
library. The resulting face images are not well-aligned and
often contain part of the background or even some part of the
face is being cropped. This experimental setting simulates the
case when the data is contaminated by noise and therefore
evaluates how robust the different algorithms are to noise.
In the second experiment, instead of using the Viola-Jones
face detector, an eye detector has been used (also available
in OpenCV). Now the eyes of each subject are first detected
in the original images, and then the face is cropped using
the distance between the eyes. In this case all resulting face
images were well aligned, and naturally this led to significant

improvement in performance for all methods (this case simu-
lates the situation when the data is clean and relatively noise-
free.) One problem with this latter method for face detection is
that eye detection fails more often than the Viola-Jones face
detector, and therefore we generally obtain fewer faces per
sequence (images in which the face detection process failed
were discarded.) In all experiments the final face images were
resized to 30 × 30 pixels.

Because of the huge size of the MOBIO database we used a
subset containing the data for 100 subjects. For these subjects
10 video sequences from all 6 sessions were used, but the
images in each face sequence were reduced to 25 (or even
less for cases when face detection failure resulted in less
than 25 faces being detected). The resulting face-only images
were normalized to have zero mean and unit variance. The
recognition rates reported below are the result of using a 6-
fold cross validation, where in turn data from 5 sessions was
used for training and the remaining one session was used as
a test set.

The following eight methods were compared:
1) PCA with 1-NN (nearest neighbor) classifier; 2) LDA with
1-NN classifier; 3) CLAFIC; 4) MSM; 5) KMSM; 6) GD-
MSM; 7) GK-SVM; 8) GDA. For each method, the dimension
of the subspace (or the dimension of the feature space for
PCA and LDA) was set experimentally to obtain the best
performance. Alternatively, this could have been determined
automatically by using the contribution ratio of the eigenval-
ues.

Additionally, for all MSM-related methods (MSM, KMSM
and GD-MSM), we prepared two variants, which we call
“subspace-per-category” and “subspace-per-sequence”, re-
spectively. In the subspace-per-category variant, a single sub-
space (or “dictionary”) is learned from all training sequences
for each subject, and the subspace corresponding to each
test video sequence is compared to this single dictionary.
In contrast, in the subspace-per-sequence variant, a multitude
of subspaces (or “sub-dictionaries”) are learned – a separate
subspace for each training sequence, and the subspace cor-
responding to each test video sequence is compared to all
sub-dictionaries.

A. Experiment 1 - Noisy Data

In this experiment, the faces used for training/test were
detected using the Viola-Jones face detector and therefore
generally contained a lot of noise and were not precisely
aligned to each other.

The average recognition rates are summarized in Fig. 1,
where the error bars show the standard deviation (obtained
from the 6-fold cross validation) for each method. Note that
for the MSM-related methods, the left bar corresponds to the
subspace-per-category case, and the right bar to the subspace-
per-sequence case. Also, the results for GD-MSM show the
recognition rates corresponding to the best-performing among
all Grassmann distances, and the results for GK-SVM and
GDA show the recognition rates of the best-performing Grass-
mann kernels. Fig. 1 indicates that in the “noisy data case”



the Grassmann distance/kernel related methods significantly
outperform the other methods, and the proposed GD-MSM
and GK-SVM outperform GDA.

Fig. 2 shows the recognition rates obtained for each of the
different Grassmann distances, again for both the subspace-
per-category and subspace-per-sequence cases. This figure
indicates that five of the Grassmann distances (the mean,
projection, Binet-Cauchy, the chordal F-norm and the geodesic
distances) achieve similar performance (the mean distance
being slightly better than the other ones), outperforming the
other three distances. It is interesting to note that the Max
Correlation distance, which is used in MSM, actually performs
worst. For all distances, the subspace-per-sequence variant
of GD-MSM slightly outperformed the subspace-per-category
one, which seems to indicate that in the case of noisy data
building a single subspace from all training sequences might
be disadvantageous.

Fig.3 shows the recognition rates for the kernel-based meth-
ods, GK-SVM and GDA, giving the recognition rates for each
of the Grassmann kernels.The proposed GK-SVM outperforms
GDA in this experiment, and the results are stable for both
kernels. GDA performs well with the Binet-Cauchy kernel,
but recognition rate drops sharply when the projection kernel
is used.
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Fig. 1. Recognition rates for all methods in the noisy data case (experiment
1, face detector used)

B. Experiment 2 - Clean Data

In this experiment, the faces used for training/test were
detected from the original face video sequences using the
OpenCV eye detector, and then automatically put into align-
ment by utilizing the position of the detected eyes. In this way
we were able to obtain a relatively clean data set, which allows
to compare all methods under the best possible conditions.

Fig. 4 shows the average recognition rates for all meth-
ods. Here again best performance is achieved by GD-MSM
followed by GK-SVM and GDA, i.e. again the Grassmann
distance/kernel related methods outperform the other methods,
although the difference is not as impressive as in the noisy data
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Fig. 2. Recognition rates for the different Grassmann distances (experiment
1)
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Fig. 3. Recognition rates for the different Grassmann kernels used in GK-
SVM and GDA (experiment 1)

case in Fig. 1. It is interesting to note that here the subspace-
per-category variant achieves better performance than the
subspace-per-sequence one, which indicates that when the
faces are well-aligned and relatively clean from noise it is
advantageous to merge all training data for each subject into
a single subspace.

Fig. 5 shows the recognition rates for the different Grass-
mann distances. Here also the superiority of the subspace-
per-category variant over the subspace-per-sequence one is
obvious. Now best performance is obtained for the geodesic
distance, while the Max Correlation distance again performs
worst. The recognition rates for the different Grassmann
kernels are given in Fig. 6, and again best performance is
achieved for GK-SVM with the projection kernel. For the
clean data set, GDA’s performance with the projection kernel
improves, however still it is way below GK-SVM, or GDA
with the Binet-Cauchy kernel.

Overall, the results from both experiments show that the
Grassmann distance/kernel related methods significantly out-
perform both the subspace-related methods which do not use
the Grassmann metric (CLAFIC, MSM and KMSM) and the



global-subspace methods like Eigenface (PCA) and Fisherface
(LDA). Additionally, when Grassmann distances are used, the
experiments show that using a subspace-per-sequence repre-
sentation is advantageous in the case when the data contains a
lot of noise, while for relatively clean datasets the subspace-
per-category representation is more appropriate.
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Fig. 4. Recognition rates for all methods in the clean data case (experiment
2, eye detector used)
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Fig. 5. Recognition rates for the different Grassmann distances (experiment
2)

V. CONCLUSION

In this paper we have proposed two novel methods. First, we
extend the Mutual Subspace Method [7], so that rather than
considering only the cosine of the smallest principal angle
(which geometrically is not a good measure for subspace
similarity and also not optimal for recognition), Grassmann
distances are used to define the similarity between image
sequences. Second, we apply the projection and Binet-Cauchy
Grassmann kernels in a convex optimization scheme, using
the Support Vector Machine (SVM). The resulting methods,
GD-MSM and GK-SVM were experimentally compared with
several related methods on a large database of videos contain-
ing face sequences from 100 subjects with expression changes
related to a natural conversation setting.
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Fig. 6. Recognition rates for the different Grassmann kernels used in GK-
SVM and GDA (experiment 2)

The experimental results show that for both noisy and
clean datasets, the proposed methods significantly outperform
subspace-related methods which do not use the Grassmann
metric (like CLAFIC, MSM and KMSM) and global-subspace
learning methods like Eigenface and Fisherface.

Additionally, we studied the effect of combining all avail-
able image sequences into one large dictionary (learning a
common subspace from all available image sequences for
each category), in comparison with using multiple smaller
subspaces (i.e. representing each category by several differ-
ent subspaces, where each subspace is formed from image
sequences taken under different conditions). The experiments
showed that using a subspace-per-sequence representation is
advantageous in the case when the data contains a lot of noise,
while for relatively clean datasets the subspace-per-category
representation is more appropriate.

As a further work, it would be interesting to apply the Grass-
mann metric-based methods proposed here to other problems
where the data can be represented as sets of vectors, and for
which the subspace representation is more natural and efficient
than a vector representation.
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