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Abstract—In this paper, we propose a study on the use of
weighted topological learning and matrix factorization methods
to transform the representation space of a sparse dataset in order
to increase the quality of learning, and adapt it to the case of
transfer learning. The matrix factorization allows us to find latent
variables, weighted topological learning is used to detect the most
relevant among them. New data representation is based on their
projections on the weighted topological model. Each object in
the dataset is described by a new representation consisting of
the distances of this object to all components of the topological
model (prototypes).

For transfer learning, we propose a new method where the
representation of data is done in the same way as in the first
phase, but using a pruned topological model. This pruning is
performed after labeling the units of the topological model using
the labels available for transfer.

The experiments are presented as a part of an International
Challenge [1] where we have obtained promising results (5th
rank).

I. INTRODUCTION

Data mining, or knowledge discovery in databases (KDD),
an evolving area in information technology, has received much
interest in recent studies. The aim of data mining is to extract
knowledge from data. The data size can be measured in two
dimensions, the size of features and the size of observations
[2]. Both dimensions can be large, which may cause problems
during the exploration and analysis of the dataset. Models and
tools are therefore required to process data for an improved
understanding [3]. Indeed, datasets with a large dimension
(size of features) display small differences between the most
similar and the least similar data. In such cases it is very
difficult for a learning algorithm to detect similarity variables
that define the clusters.

Features weighting is an extension of the selection pro-
cess whereby features are assigned by continuous weights,
which can be regarded as degrees of relevance. Continuous
weighting provides more information about the relevance of
various features. Clustering and features weighting are then
clearly linked [4]. Applying these tasks in sequence can
reduce the performance of the learning system. Therefore,
a new algorithm for clustering and for features weighting
is needed. Features weighting for unsupervised learning has
received interest recently, and an interesting weighted method
were proposed by Grozavu et al., called [wo-SOM [5] which
represents an extension of the classical SOM algorithm [6]
allowing to weight the relevant features. This approach allows
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to build a prototype matrix (to reduce the data size) and to
weight the relevant features.

In this study, we focus on reducing the dimensions of the
feature space as part of the unsupervised learning through the
matrix factorization and the transformation of this space to
facilitate the process of transfer learning.

The approximate factorization and tensor factorization (or
decomposition) of a matrix have a main contribution in the
improvement of data and the extraction of latent components.
A common point for noisy detection, reduction of the model,
the reconstruction of feasibility, and the BSS (Blind Source
Separation) is to replace original data by an approximate
representation of reduced dimensions obtained via a matrix
factorization or decomposition.

The concept of matrix factorization is used in a wide
range of important applications and each matrix factorization
is a different assumption about the components (factors) of
matrices and their underlying structures, and this choice is an
essential process in each application domain.

Very often, the datasets to be analyzed are nonnegative (or
partially positive), and sometimes they also have a sparse
representation. For these datasets, it is better to take into
account these constraints in the analysis and to extract the
non-negative components or factors with physical meaning
or a reasonable interpretation, and thus to avoid absurd or
unpredictable results.

The singular value decomposition (SVD) treats the rows and
columns in a symmetrical manner, and thus provides more
information on the data matrix. This method also allows us
to sort the information in the matrix so that, in general, the
relevant part becomes visible. This property makes the SVD
so useful in data mining and many other areas.

The bidiagonalisation GK (Golub-Kahan) method was orig-
inally formulated [7] for computing the SVD. This method can
be also used to calculate a partial bidiagonalisation:

AQy = Pry1Bri1

where A is the data matrix, By, are bidiagonal, and the
clones @y and Py are orthonormal.

With this decomposition, the approximations of singular
values and singular vectors can be calculated similarly by
tridiagonalisation. Indeed, it can be shown that the procedure
of the GK bidiagonalisation is equivalent to applying the
Lanczos tridiagonalisation on a symmetric matrix with a
particular initial vector.



In our method we use this technique for the sparse data
and Principal Component Analysis (PCA) for other datasets.

The rest of this paper is organized as follows. Section I
presents briefly the principle of Matrix Factorization and the
use of this technique for clustering, and the principles of the
transfer learning. The methods proposed for the unsupervised
learning and topological transfer learning are presented in
Section II A and B. In Section III, we present the results of
the validation and their interpretation. A conclusion and some
perspectives are given in Section IV.

II. TRANSFORMATION OF THE FEATURE SPACE
A. Unsupervised Transformation

The unsupervised learning is often used for clustering data
and rarely as a data preprocessing method. However, there
are many methods that produce new data representations from
unlabeled data. These unsupervised methods are sometimes
used as a preprocessing tool for supervised learning models.

Given a data matrix represented as vectors of variables (p

observations and n features), the goal of the unsupervised
transformation of feature space is to produce another data
matrix of dimension (p,n’) (the transformed representation
of n’ new latent variables) or a similarity matrix between
the data of size (p,p). Applying a supervised method on the
transformed matrix should provide better results compared to
the original dataset.
The transformation of the feature space is done in two steps.
First, we decompose the sparse data matrix using the SVD
method. Then the matrix of latent variables obtained after this
decomposition is used to learn a topological model (lwo-SOM
[5]), to detect and weight the relevant features.

This approach uses the weights to filter the observation
by adapting them during the learning process. Using this
principle, the observation x is weighted () before computing
the Euclidian distance and the objective function of {wo-SOM
is presented as follows:
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where x; represents an example (object) from the dataset, w
is the prototype vector and 7; - the weights computed during
the learning process. The final coding of each data point is
based on the distances given for each of the prototype of
the [wo-SOM model. This distance matrix represents the new
description of the dataset. To assess the quality of this new data
coding, the new representation is presented later in a classifier
as a linear discriminant analysis (LDA).

For a training dataset A, an evaluation (test) dataset B, and
a final evaluation (test) dataset C, the proposed method for
feature space transformation is presented as following:

1) Normalization: A = A x diag(std(A))? R
2) Dimensionality reduction of the dataset A by matrix
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factorisation: svd(A) = [U S 37V3]
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Fig. 1. Unuspervised learning for feature space transformation
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oA where k is the

For each column of Ug, Uy =
number of retained eigenvectors
3) Matrix quantization: P = lwo — SOM (Uj)
4) Apply steps 1 and 2 on the sets
svd(B) = [UpSgVgl

~

svd(C) = [UsSaVa]

B and C

5) Calculation of distances matrices for B and C-
D = (di;) where di; = ||U; — P;]|?

Figure 1 illustrates the proposed process for unsupervised
learning we used for the Challenge, and Figure 2 coresponds
to the methodology used for the transfer of knowledge.

In the following (Algorithm 1) we present the proposed un-
supervised learning algorithm for feature space transformation.

Algorithm 1: Transformation of the feature space and data
coding

Inputs:

Learning (Training) data

Validation data

Final evaluation data

Output:

New representation of the validation and final
datasets(the matrix decomposed)

Begin

Using the factorization of the initial matrix (training data)
Construct the prototypes matrix using the [wo-SOM
algorithm

Construct the matrix of distances between the prototypes
of lwo-SOM and validation and final evaluation matrices
End

B. Semi-supervised transformation

Predictive models capable to classify new objects (correctly
predict the labels) generally require learning by using large
amounts of labeled data.

Unfortunately, only a small amount of labeled learning data
may be available because of the cost of manual annotation
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of the data. Recent research has been focused on the use
of large amounts of available unlabeled data, including: the
transformation, the reduction of dimensionality, hierarchical
representations of the variables ("deep learning”), kernel based
learning, etc..

In some practical cases, it is desirable to produce represen-
tations of data that can be reused from one area to another.
In this study, we examine how representation developed with
a set of labels can be used to learn in an easier way another
similar task. For example, in the field of handwriting recogni-
tion, labeled handwritten numbers are available for learning.
The evaluation task would be the recognition of handwritten
alphabet letters. We call this type of learning transfer learning.

For the transfer learning, we propose a new method for
transforming the feature space where the representation of data
is done in the same way as in the first unsupervised method,
but using a pruned [wo-SOM map. This pruning is performed
after labeling the prototypes matrix of [wo-SOM using avail-
able labels. Pruning is to remove all labeled prototypes (which
represent labeled data) and we obtain a decomposition of
the initial matrix, which resulted in the unlabeled prototypes
matrix. Indeed, this new matrix, represents the data of other
classes that are not available for transfer. These prototypes
will be used as a dictionary for encoding validation data and
final evaluation data. Indeed, the data validation and final
evaluation sets are projected onto the unlabeled prototypes by
calculating the Euclidean distance between these observations
and prototypes of the lwo-SOM model. This distance matrix
represent the new feature space and this new representation of
the data is subsequently presented to a classifier such as the
linear discriminant analysis (LDA).

The proposed algorithm for this second transformation (for
the transfer learning) is presented in Algorithm 2.

III. EXPERIMENTAL PROTOCOL

Both proposed methods for the transformation of the data
space have been tested as part of an International Challenge
on Unsupervised and Transfer Learning [1]. The Challenge
was made in two steps: The unsupervised learning for the
transformation of the data space and the Transfer Learning.
More details about the Challenge can be found on the official
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Transformation of the feature space for Transfer Learning

Algorithm 2: Transformation of the feature space for
transfer learning

Inputs:

Learning (Training) dataset

The knowledge to be transferred

Validation dataset

Final evaluation dataset

Output:

The pruned prototypes matrix

New representation of the validation and final evaluation

datasets

Begin

Label the prototypes matrix ({wo-SOM map) using the
available labels for transfer (majority voting rule)

Prune the map (the matrix of prototypes) by removing
the labeled prototypes

Affect the validation data and final evaluation data on the
final pruned matrix

end

website of the Challenge
(http://www.causality.inf.ethz.ch/unsupervised-learning.php).
In the first phase of the challenge, no label is provided to
participants. Participants are asked to produce representations
of data that will be evaluated by the organizers in a supervised
learning process (using labeled data that are not available for
participants).

The transformed data should give better results in the
supervised learning tasks used by the organizers to evaluate
them. Labels for supervised learning tasks used for assessment
remain unknown to the participants in Phase 1 and 2, but
other labels will be available for transfer learning in Phase 2.
In the second phase of the challenge (transfer learning),
some labels are provided to participants for the same datasets
used in the first phase, which will normally improve the
representations of data obtained in the first phase.

Five datasets were available to participants in the Challenge
(http://www.causality.inf.ethz.ch/unsupervised-learning.php).



Datasets:

+ AVICENNA is a handwriting recognition dataset. The
task of AVICENNA is to spot arabic words in an ancient
manuscript to facilitate indexing. The data were formatted
in a feature representation by the group of Mohamed
Cheriet (Ecole de technologie superieure de Montreal,
Quebec). The reception of this work is particularly in-
tensive and widespread in the period between the late
twelfth century to the first half of the fourteenth century,
when more than a dozen comprehensive commentaries
on this work were composed. These commentaries were
one of the main ways of approaching, understanding and
developing Avicennas philosophy and therefore any study
of Post-Avicennian philosophy needs to pay specific
attention to this commentary tradition.

« HARRY is a Human Action Recognition dataset. The
HARRY dataset was constructed from the KTH human
action recognition dataset and the Hollywood 2 dataset of
human actions and scenes. The data include video clips
shot on purpose to illustrate human actions (KTH data)
and clips of hollywood movies (Hollywood2). The task
is to recognize human actions like hand clapping, picking
up a phone, walking, running, driving a car, etc. The data
were preprocessed into a “bag” of STIP features.

o RITA is an image recognition dataset. This dataset was
constructed from the CIFAR dataset that is part of the
80 million tiny image dataset. See this techreport, for
details. The original data representation was enriched
with new features and transformed to make the patterns
unrecognizable.

e SYLVESTER is an ecology dataset. The task of
SYLVESTER is to classify forest cover types. The forest
cover type for 30 x 30 meter cells is obtained from US
Forest Service (USFS) Region 2 Resource Information
System (RIS) data.

« TERRY is a text recognition dataset. The data of TERRY
come from a collection of Reuters, Ltd new articles
made available by David D. Lewis: RCV1-v2/LYRL2004:
The LYRL2004 Distribution of the RCV1-v2 Text Cat-
egorization Test Collection (12-Apr-2004 Version). The
preprocessed data is a sparse representation based on
a bag-of-word with a vocabulary of 47,236 stemmed
tokens. Compared to the original dataset, the data were
subsampled and scrambled and the features disguised.

Table 1 summarizes a description of datasets used to validate
our approaches. All variables are numeric, and there are no
missing values. Var. is the number of variables; Spars. - the
percentage of sparse data, App. and transfer. are respectively
the number of examples throughout the training data and the
number of labels used to transfer during the transfer learning
phase. The validation and final evaluation datasets consists of
4096 samples each.

The performance prediction are evaluated on the AUC curve
and the area under the learning curve (ALC) on the test set
versus the number of examples used to achieve learning (figure

TABLE I

DATASETS
[ Dataset [[ Domain [ Var. [ Spars. [ App. [ Transf. |
AVICENNA Handwriting 120 0% 150205 50000
HARRY Video 5000 98.1% 69652 20000
RITA Images 7200 1.1% 111808 24000
SYLVESTER Ecology 100 0% 572820 | 100000
TERRY Text 47236 | 99.8% | 217034 40000

A3 undar the ROG curve (AUIC)
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Fig. 3. ALC: Graphical representation

3). Each curve consists of all the points for all used learning
algorithms. The prediction performance was evaluated with
the ALC (Area Under the Learning Curve).
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Fig. 4. AVICENNA: the AUC et ALC scores

The AUC (Area Under the ROC Curve [8] is calculated for
all observations in the data set [9]. The obtained score is the

standardized ALC calculated as follows:

_ (ALC—-Arand)

score = (Amaxz—Arand)

where Amax is the best achievable area (ie 1) and Arand is



the area of a solution based on random predictions (or 0.5).
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Fig. 5. HARRY dataset: the AUC and ALC scores

For the AVICENNA dataset, we obtain a small AUC score
which is 0.15 and 0.18 (Figure 4), but this is normal since
AVICENNA is a difficult problem for the unsupervised learn-
ing. For this dataset our method retained 73 eigenvectors using
PCA after the normalization, and a prototypes matrix of size
100 (10x10 cells). Almost all the participants of the challenge
has the similar scores.

For the HARRY dataset, we built a prototype matrix size
900 (30x30 cells) by transforming the initial dataset using a
matrix factorization technique (SVD) by retaining 20 eigen-
vectors. This allows us to obtain quite high AUC and ALC
scores (Figure 5).

We used the SVD for the RITA dataset, and we built a
prototype matrix size 900 (30x30 cells). The results made us
ranked on the second place for this dataset in the Challenge
(Figure 6).

After the dimensionality reduction of the SYLVESTER
dataset using the PCA , we have built a matrix of prototypes of
size 1600 (40x40 cells) and we got the AUC score of 0.61 for
the validation dataset and 0.45 for the final evaluation dataset
(figure 7).

Finally, for the TERRY dataset with 47236 features, we
used the [wo-SOM method and we obtained a prototypes
matrix of size 1089 (33x33 cells on the map) after a matrix
transformation of the initial dataset using the SVD. The AUC
and ALC scores and are given in Figure 8.

The results of the Challenge can be found on the oficial
website Challenge (our team has the name NG-A3):
http://www.causality.inf.ethz.ch/unsupervised-learning.php?
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page=results#cont

By analyzing the results of the Challenge, we can conclude
that the approach we have proposed provides performance that
exceed other methods such as: those based on Random Forests,
factor analysis, the reduction of dimensionality with RBM, k-
means type algorithm, etc.

Table II summarizes the AUC and ALC scores for the both
Validation and Final Evaluation datasets using the proposed
unsupervised learning algorithm for feature space transforma-
tion.

TABLE I
THE EXPERIMENTAL RESULTS FOR THE UNSUPERVISED LEARNING

Datasets Validation Final Evaluation
AUC [ ALC AUC [ ALC
avicenna 0.658561 | 0.149326 | 0.701728 | 0.182106
harry 0.978586 | 0.794511 | 0.961722 | 0.709893
rita 0.707198 | 0.284878 | 0.786303 | 0.489439
sylvester || 0.937103 | 0.606385 | 0.825077 0.44926
terry 0.990022 | 0.780955 | 0.994574 | 0.808953

Contrarily, in the first phase of the Challenge, the winner
(team name: AIO) [1] used a kernel based learning algorithm.
Using the validation data, they have gradually improved the
kernel. In Table IV, we show the results obtained by the AIO
team and our team (NG-A3). As we can see, the score obtained
using our proposed method is close to those obtained by AIO
Team. Besides the Harry dataset, we get a higher ALC score.

All these results are summarized in Table III.

Table IV summarizes the results for transfer learning ob-
tained using the proposed method.
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TABLE III
COMPARISON WITH THE BEST RESULT OF THE CHALLENGE

[ Method [[ Avicenna | Harry [ Rita [ Sylvester [ Terry |
AIO team 0.2183 0.7043 | 0.4951 0.4569 0.8465
Proposed Method 0.1821 0.7099 | 0.4894 0.4493 0.8089

IV. CONCLUSION

In this work, we proposed two methods for transforming the
data features space: A method based on the combination of
a matrix decomposition technique and a weighted topological
learning, and an extension that uses a semi-supervised process
for pruning the topological model. We adapted these methods
for the Challenge “Unsupervised Learning and Transfer” to
transform the feature space for different datasets. Our ap-
proaches have proven a high effectiveness for high dimen-
sionality problems and different types of data.

For the second phase of the Challenge, a learning method-
ology to transfer new knowledge has been proposed using
a pruning technique of the matrix obtained with prototypes

TABLE IV
THE EXPERIMENTAL RESULTS FOR TRANSFER LEARNING

Datasets Validation Final Evaluation

AUC | ALC AUC [ ALC
Avicenna || 0.637932 | 0.130236 | 0.623894 | 0.105119
Harry 0.978586 | 0.794511 | 0.961722 | 0.709893
Rita 0.707523 | 0.259007 | 0.759892 | 0.363303
Sylvester || 0.936743 | 0.606771 | 0.624744 | 0.126217
Terry 0.983234 | 0.739909 | 0.888154 | 0.566029

obtained with [wo-SOM.

The results are very promising and we were ranked Sth
in the final ranking of the “Unuspervised and Transfer
Challenge”- NG-A3 team:
http://www.causality.inf.ethz.ch/unsupervised-learning.php?
page=results#cont.
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