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Abstract—In many cases, databases are in constant evolution,
new data is arriving continuously. Data streams pose several
unique problems that make obsolete the applications of standard
data analysis methods. Indeed, these databases are constantly
on-line, growing with the arrival of new data. In addition, the
probability distribution associated with the data may change over
time. We propose in this paper a method of synthetic represen-
tation of the data structure for efficient storage of information,
and a measure of dissimilarity between these representations for
the detection of change in the stream structure.

Index Terms—Concept drift, usupervised lerning, data streams.

I. INTRODUCTION

In many cases, databases are constantly evolving, they are
characterized by a changing structure over time, new data
arriving continuously. Sometimes, the evolution and the mass
of data is so important that it is impossible to store them in
a database. Only an analysis “on the fly” is possible. These
processes are called “data streams analysis” and are the subject
of numerous studies in recent years due to the large number
of potential applications in many fields [1], [2], [3], [4]. The
study of data streams is a difficult problem: the computing
and storage cost are high and the size of involved datasets is
big. In the field of data mining, the main challenges for the
study of data streams are the ability to compute a condensed
description of the stream properties [5], [6], [7], but also the
detection of change in the stream structure [8], [9], [10].

Data streams pose several unique problems that make ob-
solete the applications of standard data analysis. Indeed, these
databases are constantly online, growing with the arrival of
new data. Thus, efficient algorithms must be able to work
with a constant memory footprint, despite the evolution of the
stream, as the entire database cannot be retained in memory.
This may implies forgetting some information over time.
Another difficulty is known as the “concept drift” problem: the
probability distribution associated with the data may change
over time. Any learning algorithm adapted to streams should
be able to detect and manage these situations. In the context of
supervised learning (each data is associated with a given class,
that the algorithm must learn to predict), several solutions
have been proposed for the classification of data streams in
the presence of concept drift. These solutions are generally
based on adaptive maintenance of a discriminatory structure,
for example using a set of binary rules [11], decision trees
[12] or ensembles of classifiers [13], [14].

This paper deals with an unsupervised framework (class
labels are unknown), which requires adaptations to the pres-
ence of concept drift for the analysis of data streams. We
propose a method of synthetic representations of the data
structure and a heuristic measure of dissimilarity between
these models to detect temporal variations in the structure
of the stream (concept drifts). The advantage of this method
is the comparison of structures by means of models that
describe them, allowing comparisons at any time scale without
overloading the memory. Thus, it is possible to compare the
structure of the stream in two potentially very distant time
periods, since the models describing these periods can be
stored in memory at very low cost.

Section 2 provides a general description of the unsupervised
method for stream analysis and detection of change in the
stream structure. Section 3 presents the algorithm computing
a synthetic representations of the structural information of the
data. The construction of a model of the data distribution is
proposed in Section 4, and a dissimilarity measure for the
detection of change in the stream structure is presented in
Section 5. Finally, Section 6 describes a method to compress
the information and save memory cost.

II. GENERAL DESCRIPTION OF THE PROPOSED METHOD

The unsupervised method of stream analysis and detection
of change in the stream structure proceeds in four steps:

• Construction of a synthetic representation at regular in-
tervals over a data reservoir which empties itself as new
data is stored. This synthetic representation is based on
the learning of a SOM (Self-Organizing Map [15]) and
allows automatic data clustering. During the learning,
each SOM prototype is extended with novel information
extracted from the data. These information will be used
in the following step to infer the distribution probability.
More specifically, the attributes added to each prototype
are the following.

– Density modes. It is a measure of the data density
surrounding the prototype (local density). The local
density is a measure of the amount of data present in
an area of the input space. We use a Gaussian kernel
estimator [16] for this task.

– Local variability. It is a measure of the data vari-
ability that is represented by the prototype. It can
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be defined as the average distance between the
prototypes and the represented data.

– The neighborhood. This is a prototype’s neighbor-
hood measure. The neighborhood value of two proto-
types is the number of data that are well represented
by each one.

• Estimation of the data distribution from each synthetic
representation. This estimation is done offline and does
not require data storage. It is modeled as a density
function from a mixture of Gaussian spherical kernels.

• Distributions comparison for the detection of concept
drift. We propose the use of a dissimilarity measure that
can compare the two density functions estimated in the
previous step.

• Compression of recorded information over the stream
for a fixed memory size storage taking into account a
continuous arrival of new data.

III. CONSTRUCTION OF A SYNTHETIC REPRESENTATION

In this step, some general information are extracted from
the data and stored in the prototypes during the learning of
the SOM. In our algorithm, the prototypes of the SOM will be
“enriched” by the addition of new numerical values extracted
from the data structure.

The enrichment algorithm proceeds in three phases :

Input :
• The data X = {x(k)}Nk=1.

Output :
• The density Di and the local variability si associated to

each prototype wi.
• The neighborhood values vi,j associated with each pair

of prototype wi and wj .
1) Initialization:

• Initialize the SOM parameters
• ∀i, j initialize to zero the local densities (Di), the

neighborhood values (vi,j), the local variability (si)
and the number of data represented by wi (Ni).

2) Choose randomly a data xk ∈ X:
• Compute d(w, xk), the euclidean distance between

the data xk and each prototype wi.
• Find the two closest prototypes (BMUs: Best Match

Units) wu∗ and wu∗∗ :

u∗ = argmin
i

(d(wi, xk))

and
u∗∗ = argmin

i6=u∗
(d(wi, xk))

.
3) Update structural values:

• Variability:

su∗(t) = su∗(t-1)
−ε(t)r(t) (su∗(t-1)− d(wu∗ , xk))

• Density:

∀j,Dj(t) = Dj(t-1)
−ε(t)r(t) (Dj(t-1)−G(t))

with

G(t) = e−
‖x(k)−wj(t)‖

2

2σ2

• Neighborhood:

νu∗u∗∗(t) = νu∗u∗∗(t-1)
− ε(t)r(t) (νu∗u∗∗(t-1)− 1)

νu∗i(t) = νu∗i(t-1)
− ε(t)r(t) (νu∗i(t-1))
∀i neighbor of u∗

With ε(t) the learning rate and r(t) = 1

1+e(−
t

tmax )
.

4) Update the SOM prototypes wi as defined in [15].

5) Repeat T times step 2 to 4, until t = tmax.
At the end of this process, each prototype is associated with

a density and a variability value, and each pair of prototypes
is associated with a neighborhood value. The substantial infor-
mation about the distribution of the data is captured by these
values. Then, it is no longer necessary to keep data in memory.
This information can be used directly to perform clustering of
the SOM and highlight the structure of the stream for the
period recorded in the reservoir (see [17]). The complexity of
the whole process is linear with the number of data, enabling
rapid analysis of the stream during its evolution.

IV. ESTIMATION OF THE DATA DISTRIBUTION

This step involves estimating the underlying distribution of
data using a two-levels method. The idea here is to estimate
the data distribution from a topological model of the data. We
therefore propose to estimate a density function that associates
a density value to each point in the input space. We know the
value of this function at the location of each prototype (it is Di

for a prototype wi). We must infer from this an approximation
of the distribution function.

The hypothesis here is that this function may be properly
approximated in the form of a mixture of spherical Gaussian
kernels ({Ki}Mi=1). Each kernel Ki is a Gaussian function
centered on a prototype wi and M is the number of prototype.
The density function can therefore be written as:

f(x) =
M∑
i=1

αiKi(x)

with

Ki(x) =
1√
2π.hi

e
− |wi−x|

2

2hi
2 and

∑
αi = 1

The most popular method to fit mixture models (i.e. to find
hi and αi) is the expectation-maximization (EM) algorithm



[18]. However, this algorithm needs to work in the data input
space. As here we work on enriched SOM instead of dataset,
we cannot use EM algorithm (see [19]).

Thus, we propose the heuristic to choose hi:

hi =

∑
j

vi,j
Ni+Nj

(siNi + di,jNj)∑
j vi,j

(1)

di,j is the distance between wi and wj . The idea is that
hi is the standard deviation of data represented by Ki. These
data are also represented by wi and their neighbors. Then hi
depends on the variability si computed for wi and the distance
di,j between wi and its neighbors, weighted by the number of
data represented by each prototype and the connectivity value
between wi and its neighborhood.

Now, since the density D for each prototype w is known
(f(wi) = Di), a gradient descent method can be used to
determine the weights αi. These weights are solution of the
following linear system of equations :

D =
M∑
i=1

αiKi(w)

with

D = [Dj ]
M
j=1 et w = [wj ]

M
j=1

However, there are an infinity of solutions to this equa-
tion, which makes impossible any resolution based on matrix
inversion. In addition, the solution obtained by calculating
the pseudo-inverse [20] is often unsatisfactory, particularly
because it can find values of α that no longer guarantee
the constraint ∀x, f(x) > 0. We therefore use to solve this
equation a very simple gradient descent algorithm. The αi
are initialized by the values of Di, and have their value
reduced gradually (with a minimum value of 0) to best satisfy
D =

∑M
i=1 αiKi(w). Thus, the values of α are proportional

to the average values of Di, which satisfies the assumption
that each Di density is generated primarily by the prototype
wi. For this, we optimize the following criterion:

α = argmin
α

1

M

M∑
i=1

 M∑
j=1

(αjKj(wi))−Di

2

Thus, we obtain a density function which is a model of
the data represented by the SOM. This kind of method for
estimating the data distribution has been used successfully
in [19] in a different context. Figures 1 and 2 show some
examples of estimated density.

V. DISTRIBUTIONS COMPARISON FOR THE DETECTION OF
CONCEPT DRIFT

We propose in this step a heuristic measure of dissimilarity
between two distributions represented by density functions
calculated in the previous step. The objective of this measure is
to compare the distributions of two sets of data described in the
same space, so as to detect if their distributions are identical,

Fig. 1. “Engytime” dataset (left) and the estimated density function (right).

Fig. 2. “Wingnut” dataset (left) and the estimated density function (right).

similar or quite different (see Fig. 3). This comparison allows
the detection of changes in the structure of a data stream
(concept drift).

Fig. 3. Example of comparisons of data distributions.



A. Dissimilarity measure

It is possible to define a dissimilarity measure between two
data sets A and B, each represented by a SOM and a density
function:

SOMA =
[
{wAi }M

A

i=1 , f
A
]

and
SOMB =

[
{wBi }M

B

i=1 , f
B
]

With MA and MB the number of prototypes of models
SOMA and SOMB , fA and fB are the density function of
A and B computed during the previous step.

The dissimilarity between A and B is :

CBd(A,B) =

∑MA

i=1 f
A(wAi )log

(
fA(wAi )

fB(wAi )

)
MA

+

∑MB

j=1 f
B(wBj )log

(
fB(wBj )

fA(wBj )

)
MB

= CBdA + CBdB

The idea is to compare the density functions fA and
fB for each prototype w of A and B. If distributions are
identical, these values must be very close. This measure is an
adaptation of the weighted Monte Carlo approximation of the
symmetrical Kullback-Leibler measure (see [21]), using the
prototypes of a SOM as a sample of the database. The idea is
to compare for each prototype i the density Di estimated from
the data and the theoretical density Fd(wi) at this prototype
location, estimated by the density function of the other model.
If the models are identical, the two density measurements
should be very close.

In addition, the index satisfies the properties of a dissimi-
larity measure.
• Positivity : CBd(A,B) > 0
• Symmetry : CBd(A,B) = CBd(B,A)
• Separation : CBd(A,A) = 0.

In order to demonstrate the performance of the proposed
dissimilarity measure, we used five artificial datasets genera-
tors.

Generators “Ring 1”, “Ring 2”, “Ring 3”, “Spiral 1” and
“Spiral 2” generate five types of non-convex two-dimensional
data sets, with different density and variance. “Ring 1” is a
ring of radius 1 (high density), “Ring 2” a ring of radius
3 (low density) and “Ring 3” a ring of radius 5 (medium
density). “Spiral 1” and “Spiral 2” are two parallel spirals.
The density in the spiral decreases with radius. Data from
different distributions can be generated randomly to control
(Figure V-A).

When the number of prototypes is sufficient, the different
distributions are well differentiated. As can be seen in Figure 5,
the distances between models corresponding to the same distri-
bution are much smaller than the distances between models of
different distributions. To see the similarities between models,

Fig. 4. Visualizations of data “Rings” 1 to 3 and ”Spirals“ 1 and 2 (top)
and their density function estimated by our algorithm (bottom).

we used a Sammon projection [22] in two dimensions, which
respects the similarities between elements in the projection
space.

Fig. 5. Visualizations of the similarities between models (one point = one
model). Blue: models of Ring 5, Green: Ring 1, Turquoise: Ring 3, Yellow
and Orange: Spirals 1 and 2.

To test the ability of the method to detect a concept drift,
we presented to the system random “Spiral 1” data until time
5 (each time step represents one thousand data), then we
presented “Ring 5” data until time 20, then “Spiral 2” until
time 25 and finally “Spiral 1” until time 30. The system learns



for each time period an enriched SOM and compares it to the
one computed in the previous period. All our experiments are
based on the use of the “SOMToolbox” [23] by taking the
default settings for the learning of the SOM.

Figure 6 represents the difference between two models
of two consecutive sets over time. Changes in the structure
of the stream are perfectly detected by the system. Indeed,
when the stream does not change, the corresponding models
are very close and the dissimilarity measure provides a very
low value. On the contrary, if the structure of the stream
varies, the corresponding models are much less similar, and
the dissimilarity measure is significantly higher.

Fig. 6. Dissimilarity between the two models of two consecutive sets over
time. Some models are shown to illustrate the temporal variations. These
variations in the structure of the stream (time 5, 20 and 25) are perfectly
detected.

B. Extension to cluster comparisons
The extension of the proposed method to the clusters

comparison is natural, since the SOM-based models are well
suited for data clustering. The idea is to detect, after clustering
two data sets, if some clusters are common, if some are similar
with some variations (concept drift), and if some clusters are
unique to each set:

1) Define density function for each cluster Ck for datasets
A and B:

fk(x) =
∑
i∈Ck

αiKi(x))

2) For each cluster k belonging to one of these datasets,
find the most similar cluster k′ in the other set :

k′ = argmin
i

CBd(k, i)

3) Weight the distance between k and k′ using the mean
distance between k and the others clusters in the same
dataset.

CBdw(k, k
′) =

CBd(k, k′)
1
|Ck|

∑
i∈Ck,i6=k CBd(k, i)

Note that CBdw is not symmetrical.
4) It is then possible to compare datasets:

• If CBdw(k, k′) < 1, there is a concept drift between
k and k′.

• If CBdw(k, k′) ≈ 0, k and k′ are the same clusters.
• If CBdw(k, k′) ≥ 1, k and k′ are different clusters.

In this way, it is easy to detect common clusters to both
datasets and particular clusters to each one.

It is also possible to detect mergers or fission of clusters
from a dataset to another:

1) Decompose the index: CBd(k, k′) = CBdk + CBdk′
like in Section V-A.

2) Define a merger-fission index between k and k′:

MF (k, k′) =
CBdk
CBdk′

3) Analyze MF :
• If MF (k, k′) ≈ 1, the two clusters are well sepa-

rated or very similar.
• If MF (k, k′)� 1, k is a part of cluster k′.
• If MF (k, k′)� 1, k′ is a part of cluster k.

In this way, if two clusters k1 and k2 from one dataset A
both have as closest corresponding cluster k′ from dataset B
and if MF (k′, k1) ≥ 1 and MF (k′, k2) ≥ 1, then k′ is a
merger of k1 and k2, and k1 and k2 are a fission of k′.

This method therefore allows a very detailed analysis of
variations in structures between two data sets. In particular,
this kind of analysis is very useful for understanding changes
in the structure of a data stream, such as appearance and
disappearance of clusters, and phenomena of mergers, fissions
or concept drifts.

VI. COMPRESSION AND STORAGE OF THE STREAM
STRUCTURE

One difficulty in the analysis of a data stream is that
the stream is potentially infinite. We cannot afford to store
indefinitely SOM maps representing different times periods,
since the storage capacities are limited. We therefore wish
to propose a method of merging enriched SOM, which will
compress the stored information.

The idea is to merge two or more SOM representing
successive instants when the data structure represented by
these two maps is sufficiently similar. We propose, if the
available computing power permits, to build and update a
matrix of similarity between the density functions representing
the structure of the stream for consecutive periods. One just
have to compare each new stored SOM with the most recent
SOM already stored. Then, if the space is insufficient, it is
possible to merge the two most similar adjacent enriched
SOM. Thus, at each compression of stored information, the
maximum information on variations of the stream is retained.



The merging of SOM can be done by generating data from
the density functions and running enriched SOM algorithm on
these data.

Let have N enriched SOM and their density function:

SOM1 = {N1
i , w

1
i , α

1
i , h

1
i }M

1

i=1

. . .

SOMN = {NN
i , w

N
i , α

N
i , h

N
i }M

N

i=1

The data generation algorithm is as follows:

1) Select randomly a SOM. Each SOM A, made of MA

neurones, have a probability to be chosen:

P (A) =

∑MA

i=1 N
A
i∑N

K=1

∑MK

i=1 N
K
i

In other words, the more a SOM represents a large
amount of data, the greater its chance of being selected.

2) Randomly select a neuron i of the selected SOM accord-
ing to the parameter α, which represents the contribution
of the neuron for the density function:

P (i) =
αi∑M
j=1 αj

3) Generate random data according to a spherical Gaussian
distribution centered on wi with a standard deviation of
hi.

It is then enough to apply an enriched SOM algorithm
on data generated and to estimate a density function for a
condensed representation of the structure of the N original
SOM.

VII. CONCLUSION

In this paper, we propose an unsupervised method for
analyzing data streams. This method allows the analysis, the
compression and the storage of information about the stream
structure and its variations over time. It is fast enough to be
applicable to large data streams: the complexity of synthetic
representation is linear in the size of the reservoir and the
subsequent steps do not require data to be kept in memory, as
they are based exclusively on the synthetic representation. We
have shown through some examples that the method is able
to detect changes in the structure of the stream and to detect
concept drifts.

These preliminary results must now be confirmed by a
scaling, through real-world applications on large data stream
with an increasing number of dimensions. It is important
to ensure that this type of method is able to detect more
progressive concept drifts than those tested. In addition, we
are currently working on an adaptive version of the enriched
SOM, which will be able to follow the stream in real time and
adapt its performance over time, with an incremental fusion
of SOM during the process.
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